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Abstract

Elliptic Curve Cryptography (ECC) is a relatively new branch of public key cryptography.
Its main advantage is that it can provide the same level of security as RSA with significantly
shorter keys, which is beneficial for a smart card based implementation. It is also important
as a possible alternative of RSA. This paper presents the authors’ research concerning ECC
and smart cards.

The authors introduce their ECC prototype implementation, that relies on Java Card
technology and is capable of running on smart cards. Test results with various cards are
attached. It is also analyzed, that in what extent can algorithms with the complexity of ECC
be executed in smart card environment with limited resources.

1 Introduction

Mathematic research on elliptic curves has a long tradition. However, this field attracted the
attention of cryptographers only in the 1980s, when it was discovered that elliptic curves can be
used to define finite groups in which the discrete logarithm problem is hard [19, 17]. One and a
half decades have passed and experience confirmed this assumption. But since no theoretic proof
is known, it is an open question whether elliptic curve cryptography (ECC) is mature enough for
industrial use. Therefore it is vital to gain as much practical experience as possible about the
security of ECC. The authors, too, hope to contribute to this research.

One has to be quick about it though. Basically, there are two factors to worry about. The
first problem is that actually only one public-key algorithm is widely used, namely RSA. No
theoretic guarantee is known as to the security of RSA either, however, the whole PKI (Public
Key Infrastructure) is based on RSA. If one an effective crack for RSA if found - which is not
impossible -, the impact on today’s cryptographic systems would be dramatic. This explains why
other public-key methods would be welcome. ECC is a probable candidate.

The other factor is the enormous growth in computation capacity that is available for cracking.
This is due to the wide spread of inexpensive and powerful workstations. Also, these computers
have almost always network connectivity. As a consequence, the most spectacular cracks of the
last years were not done by supercomputers but by thousands of cooperating workstations [6].

Another aspect in cryptography that has ever growing importance is the need for algorithms
with low resource requirements so that they can run on smart cards. A typical smart card has a
processor with clock frequency of about 3-5 MHz and about 4-32 KByte read-writable memory.
This constrains the use of public-key algorithms in smart cards heavily.

Elliptic Curve Cryptography might solve this problem, since - according to our current under-
standing - it provides the same level of security with significantly smaller keys than RSA. This is
caused by the fact that no sub-exponential time algorithm is known to solve the basis of ECC,
the Elliptic Curve Discrete Logarithm Problem (ECDLP), while there are some sub-exponential,
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although not polynomial algorithms to crack RSA. This also implies that the difference in key
size between the two algorithms will constantly increase as the augmenting computational power
will require higher levels of security. The relatively small keys of ECC open new possibilities
for ECC in areas like smart card and mobile commerce applications. However, the complicated
mathematical background of ECC results in more sophisticated algorithms so it is by no means
obvious that the required computational power would be smaller.

Despite these possibilities, there are hardly any practical implementations of ECC for low-
resource devices. The authors know of one ECC software implementation for smart cards [10].
However, this implementation can only deal with very limited key sizes (50 bit), which have no
cryptographic significance.

This paper presents the authors’ ECC prototype implementation on a smart card platform,
which can also handle ECC problems of cryptographically meaningful sizes. First, an overview is
given on the underlying mathematics and the theory of ECC. Next, the smart card environment
is presented that was used by the authors to implement ECC. Test results are presented for
three different smart cards and for PC as well. At the end of the paper, some possibilities for
improvement are discussed.

2 Theoretical background

In this section a short overview is given about the basic results that build the fundament for elliptic
curve cryptography. For the proofs of the referred theorems as well as for further information on
elliptic curves see e. g. [13].

2.1 Elliptic curves

An elliptic curve is defined in the general case by an equation of the form:
v +azy+by =23 +ca® +dr+e (1)

The coefficients a, b, ¢, d and e as well as the values of the variables x and y are elements of a
given field K. The solutions of (1) are the points of the elliptic curve E over the field K; their set
is denoted by E(K). First the case K = R (real elliptic curves) will be discussed. Although the
complex and rational cases (K = C and K = Q, respectively) also have theoretical significance,
they will not be covered here, emphasis will be laid on the cryptographically more interesting case
when K is a finite field.

2.1.1 Elliptic curves over R

In this case the terms azy and by on the left side of equation (1) can be eliminated using linear
substitution:

y? = f(x) (2)

where f(z) is a real polynom of order 3. It can even be assumed that
flz)=a%+ax+b

It is usually also required that f have no multiple roots. This actually means that the function
F(z,y) defining the elliptic curve with F(z,y) = 0 be smooth. Such a curve can be seen in figure
1.

The cryptographic applicability of elliptic curves is a consequence of the group structure that
can be defined on them. For this, one has to define an operation between the points of the curve.
The operation will be called addition since this is the usual notation for Abelian groups. Now
suppose two points P and () are given on the elliptic curve. In order to compute P + (), one has
to do the following. First, draw a straight line through P and . This line intersects the curve in



Figure 2: Adding two points of a curve

exactly one more point which will be denoted by —R. Then mirror —R on the x axis; the resulting
point is again on the curve, denote it by R. Let P + Q = R. Figure 2 shows an example.

Unfortunately, there are some problems with this definition. What happens if the line that
connects P and @ is vertical and thus it has no third intersection with the curve? (This is
only possible if the coordinates of the two points are (x;y) and (x;—y).) In order to correct
the definition, the set F(K) has to be extended with a new point, denoted by O, which can be
visualized as the point at infinity in the direction of the y axis. As it turns out, this point will be
the neutral element of the group.

In order to define the point O precisely, projective coordinates have to be introduced. The
points of the projective plane are the equivalence classes of real (z,y, z) tuples, where (x,y, z) #
(0,0,0), the equivalence relation being (x,y, z) ~ (Az, Ay, Az), YA # 0. If z # 0, then the projective
point (£, £, 1) representing the class (x,y, z) corresponds to the 'normal’ (affine) point (£, %), so
the affine plane can be embedded into the projective plane. But there are other points in the
projective plane, namely with z = 0. These points can be regarded as the points at infinity of
the affine plane; the projective point (x,y,0) is the point at infinity in the direction of the vector
(z,y), or equivalently, (—z, —y) [9].

To obtain the equation of the elliptic curve on the projective plane, one has to substitute Z in
place of x and £ in place of y. After multiplication with 23, the following equation is obtained:

yiz = 2% + axz® + b2

Substituting z = 0, the equation yields indeed the point at infinity in the direction of the y
axis: (0,1,0). So the inclusion of the point O is natural, since the curve really contains such a
point in the projective plane.

Getting back to the definition of addition, the question of what to do if the line connecting



the two points P and @ is vertical, now can be answered. Namely, in this case O is the third
intersection of the line and the curve. And, if O is mirrored on the x axis, we get again O. So in
this case P+ @ = O. As already mentioned, O is the neutral element of the group, so in this case
P and @ are inverse to each other. This is why we used previously the notion —R and R when
describing the addition rule: those two points are indeed inverse to each other.

It has to be noted as well that a tangent counts as if it had a double intersection with the
curve. So, for example, if P = @), then ’the line connecting them’ is the tangent to the curve.
Similarly, if the line connecting P and (@ is tangent to the curve in, say, P, then P is also the
third intersection of the line and the curve.

P+ @ can also be defined in an algebraic way, with a formula. Let the two points be P(z1,y1)
and Q(x2,y2). Then the coordinates of P + Q are:

$3282—l‘1—l‘2
ys = s(x1 —x3) — 41

3)

where

{ yz:yl if P ?é Q
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is the slant of the line connecting the two points. It can be seen from this formula, that in the
case where the = coordinates of P and @) are the same, one has to divide by zero. This corresponds
to the fact that the result is the point at infinity O.

The existence of this formula is very important. First of all, we will not have to base our
cryptographic system on geometric insight only, but rather on precise algebraic definitions. This
is going to be vital in the case of finite fields where no such geometric view is known. Second,
since it is possible to derive a formula for the sum of the two points, this proves that addition is
well-defined. Third, since only addition and multiplication was used between field elements, this
means that if the coordinates of P and @ and the parameter a of the curve are elements of the
field K, then so are the coordinates of P + Q.

We have not proven that the resulting structure is an Abelian group. What we have seen is
the closure, the neutral element and the inverse. The Abelian property is trivial. The only thing
that should be proven is associativity. However, this is rather complicated, so we just refer to the
literature [13].

2.1.2 Elliptic curves over finite fields

From the point of view of cryptographic applications, infinite fields are of little interest because
of rounding and inaccuracy problems. That is why it is a good idea to use finite fields. In the
following, the finite field is denoted by GF(q), where the number of elements is ¢ = p”. Thus the
characteristics of the field is p. Of special interest are the cases r =1, 4. e. GF(p) and p = 2, i.
e. GF(2").

The method that was used to simplify equation (1) can only be used if the characteristics of
the field is neither 2 nor 3. The case p = 2 is the most complicated: here two sub-cases exist,
called supersingular and non-supersingular cases. The simplest form of (1) is as follows:

p = 2, supersingular case:

v +ay = +br+c

p = 2, non-supersingular case:

v 4oy =a% +ax® +0b

y?=a34+az® +br+c



p>3:

v =a>+ar+b

Since the formulas defining the addition were also derived from equation (2), these are also
invalid for the cases p = 2 and p = 3. So similar formulas have to be derived from the more general
equation (1). These are more complicated so we just note one difference: since the curve is now
rotated and translated, the inverse of the point (z,y) is not (z, —y) but — using the notations of
equation (1) — (x, —ax — b —y).

In the case of finite fields the number of the points of the curve is also finite; it is usually
denoted by N. The curve again has one (or more) point(s) at infinity. The number of non-infinite
(that is, affine) points is of course at most g2, but it is actually less. Since the equation of the
curve is an equation of degree 2 in the variable y for every possible value of z, and x can have ¢
different values, N < 2q. Actually N is only about ¢. Namely, by a theorem of Hasse (1934), the
difference of N and ¢ + 1 is less that 2,/7.

This makes it possible to find random points on an elliptic curve. Choose z randomly; there is a
chance of about 0.5 that the equation is solvable for that z, yielding a point of the curve. However,
no deterministic polynomial-time algorithm is known for finding points on a given elliptic curve.
Actually, there are algorithms that are deterministic polynomial-time bound if the generalized
Riemann-hypothesis is true.

There is indeed a deep connection between these results and the Riemann-hypothesis. The
curve E(GF(q)) may also be considered over GF'(¢*). In this case, the number of points is denoted
by N, (so Ny = N). From these numbers a formal power series can be constructed (zeta-function):

Z(E(GF(q)),T) = e=NT"/
Due to another theorem of Hasse, this is a rational function:

1— AT + qT?

ZEGCHOLT) = T a = gD

where only A depends on the actual curve. Moreover, N = ¢+ 1 — A, so A can be calculated
from N. As a consequence, every Ny is determined by N.

2.2 Cryptographic application of elliptic curves
2.2.1 ECDLP

The cryptographic application of the so-called Elliptic Curve Discrete Logarithm Problem (ECDLP)
was suggested independently by V. Miller and N. Koblitz in 1985 [19, 17].

An elliptic curve E is given over the finite field GF(q), as well as points P and @ on E. Let
n be the order of P, i. e. the smallest positive integer such that nP = O. (nP means: the point
P added to itself n times.) The task is to find an integer 0 < k < n such that Q = kP, provided
that such a £ exists.

This is really the discrete logarithm problem (DLP), only the notation is different. Namely, if
the operation between the points of the curve were called multiplication instead of addition, then
we would write Q = P* instead of Q = kP, so the task would be to find k = logp Q. The reason
why additive notation is used is that this is a convention for Abelian groups.

Of course it is more convenient to use the modulo classes for calculations than points of an
elliptic curve. So why would we bother with elliptic curves if we get the same discrete logarithm
problem? The answer is that although the DLP may be defined of course for arbitrary groups, its
hardness varies significantly. Elliptic curves seem to provide a group structure where the DLP is
really hard: no algorithm is known that could solve the general ECDLP in sub-exponential time.

Nevertheless, there are some sub-exponential algorithms for specific special cases of the ECDLP.
Therefore the elliptic curve E and the base point P have to be chosen carefully. For instance,
Menezes, Okamoto and Vanstone gave in 1993 a relatively efficient algorithm for the ECDLP on



supersingular curves. But most elliptic curves are not supersingular so it is still an open question
whether there is a sub-exponential algorithm for the general case. Currently, no such algorithm
is known so cryptographic systems based on ECC provide a high level of security with relatively
small key sizes. However, as we will see, the complicated calculations make ECC somewhat less
effective.

Note that elliptic curves are not the only mean to create groups where the DLP is hard. In
fact, the elliptic curve is just the first member of a bigger family of groups, defined as a group
structure on the Jacobi-surface of specific curves. The next one is called hyperelliptic. But it
seems that these constructions do not add as much in security as in complexity.

2.2.2 The underlying finite field

From the implementation point of view, the choice of the underlying finite field is crucial. It is
almost always GF(p) or GF(2") (for some prime p or some integer r, respectively) that is chosen.
The former case is more straight-forward to handle: it is the usual arithmetic that can be used, the
only difference is that numbers bigger than p— 1 must be cut back in the interval [0, ...,p—1]. The
latter case requires more sophisticated algorithms, however, it fits better to the binary arithmetic
supported by most computer systems, therefore it can provide better performance.

There are a few different ways to represent the elements of GF(2"). The most widely used
is the polynom-based representation. For this, an irreducible polynom of degree r is chosen over
GF(2) first; let this be denoted by f. Now the elements of GF(2") can be regarded as polynoms
of degree at most r — 1 over GF'(2). Addition is done as usual; the only difference is that because
of being in characteristics 2, any number (or polynom) added to itself is zero. This also implies
that subtraction is the same as addition. In order to multiply two elements of the field, one has to
multiply them with polynom multiplication modulo f. That is, the product of the two polynoms
is divided through f, and the remainder — which is again a polynom of degree at most r — 1 —
is the product of the two field elements. It can be proven that this construction gives indeed a
field and of course it has 2" elements. (Note that a polynom is often represented as a 0-1 vector
of length r of its coefficients.)

Another approach is to regard GF(2") as an extension field of GF(2) and thus as a vector
space over it. Again, the elements of the field are 0-1 vectors of length r but this time the vectors
have different semantics. Incidentally, addition is done in the same way as with polynoms, i. e.
component-wise. However, multiplication is different: it must be defined on the r base elements
of the vector space. This requires r x r x r coefficients, where coefficient (i, j, k) specifies the k.
coordinate of the product of the 7. and j. base vector.

Multiplication can be speeded up significantly if this ’cube’ is sparse, i. e. it contains few 1-s.
In the case of a so-called optimal normal base there are only about 2r? 1-s (out of the possible
r3). There are some constructions for optimal or nearly optimal normal bases [21]; unfortunately
they work for special values of r only and those special values would degrade security.

2.2.3 Some protocols based on ECDLP

Most traditional public-key protocols have an equivalent based on elliptic curves. As a last station
of our theoretic excursion, let us see some of them.

As a first example, the Diffie-Hellman key exchange protocol will be examined. As usual,
is an elliptic curve over GF(q) and P is a point on E. E and P are publicly known. Each user
chooses a secret key k which is a positive integer, and compute their public key kP. Suppose that
Alice and Bob would like to exchange secret messages using some symmetric cryptographic scheme
and need a key that is known to both of them but to nobody else. If their secret keys are k4 and
kp respectively, then they can use the point k kg P. Alice can compute this point by multiplying
her secret key and Bob’s public key. Similarly, Bob multiplies his secret key and Alice’s public
key and gets the same result. But nobody else can compute this point unless he either knows the
secret key of Alice or Bob or he can solve the ECDLP to calculate them.



The ElGamal protocol also has an elliptic version. The same setup is assumed but now Bob
wants to send a message to Alice. It is assumed that the message is encoded as a point M of the
curve; the encoding and also the decoding of messages as points of the curves is publicly known.
Now Bob chooses an arbitrary positive integer | and sends the points [P and M +1(kaP) to Alice.
Without the knowledge of [ and k4 nobody can learn the message M. On the other hand, if Alice
multiplies the first point with k4 and subtracts it from the second point, she receives exactly M.

As a last example, the digital signature algorithm using elliptic curves, ECDSA, the elliptic
curve equivalent of DSA, is presented. Again, F is an elliptic curve, P is a point on FE, its order
is n which is now assumed to be a prime. Alice’s private key is the integer k4, her public key is
the point k4 P. Suppose now that Alice would like to sign a message M or actually its hash value
h. In order to do this, she will have to do the following. First, she chooses an arbitrary integer
[ such that 1 <[ < n —1 and computes [P = (z,y). Let r = z (mod n). She also computes
s=1"Yh+kar) (mod n). Then her signature is the pair of integers (r, s).

If Bob wants to check Alice’s signature (r,s) on the message M, then he will have to do
the following. First, he also computes the hash value h of the message. Then he computes the
point hs P + rs~1(kaP) = (2/,9'). Let 7' = 2’ (mod n). If everything is alright, then s~ =
I(h+kar)~! (mod n), so (2/,y') = hs 1P +rs Y (kaP) = l(h+kar) " (h+ kar)P =P = (x,y).
That is, Bob will accept the signature if and only if r» = 7.

Remark: if either r or s is 0, then the above algorithm does not work properly. Namely, if
r = 0, then Alice’s private key does not contribute to the signature; if s = 0, then Bob will not be
able to compute s~!. So if either of this happens, Alice should generate a new integer [ and retry.

Of course it is vital for all of the above (and similar) schemes to be secure that the underlying
field, the number of points on the curve and the order of the point P be large enough.

2.3 Cracks

The main motivator of ECC cracks is 'ECC challenge’, sponsored by Certicom. This company
has ECC-based products, and posed the ECC challenge to improve confidence in ECC technology.
Certicom offered altogether $500,000 as prizes for the challenge. Challenges are offered in different
categories (problem lengths), and at least one GF(p) and one GF(2™) problem represents each
category.

"Excersises’ were easy challenges with the length of 79-97 bits. All of these have been solved.
The second category was the category of 'Level I Challenges’ which contained ECC challenges
of 108-131 bits. The highest category was ’Level II Challenges’ with problems of 163-358 bits.
Solving these with a single computer would last, according to the estimations of Certicom, 102 —
10*! years.

Certicom offered these challenges in 1997. Since then, all of the exercises and one 108-bit-long
"Level I Challange’ were solved. The effort required for this latter was 50 times higher than the
one taken to break the 512-bit RSA. The above facts show that the approximations of Certicom
were basicly correct, which means that a 150-bit ECDLP is practically impossible to solve.

3 Technical background

In the previous section the basics of ECC were presented. In this section a brief introduction to
smart card and Java Card technology will be given, to introduce a new platform for ECC.

3.1 What is a smart card?

Smart cards are tiny devices with the shape and size of a credit card. However, these objects
yield much more. They are called ’smart’ because of the microchip, that is integrated onto them.
Inside this chip these cards have a CPU, non-volatile memory, and I/O peripherals. In fact, they
are standardized secure portable microcomputers.



3.2 Security

Figure 3 shows the block diagram of the inside architecture of smart cards. As can be seen, smart
cards are very similar to computers of von Neumann architecture. The main difference is that in
case of smart cards the internal buses cannot be driven by I/O ports directly. This is an important
principle of security, that ensures that outside activities cannot affect the state of the card directly
[22].
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Figure 3: Physical architecture of a smart card

Smart cards are secure microcomputers designed with tamper-resistance as top priority. Infor-
mation is stored in the special secure EEPROM and can only be accessed using the well-defined
interface of the card with permission of the card OS and software.

Although they are inferior to personal computers in terms of speed, memory and I/0 devices,
they are made superior by their sophisticated security features. The interface to the outside is nar-
row and well defined (ISO-7816), and is a key issue of smart card security [14]. The responsibility
of the on-card software is to monitor this narrow interface and grant or deny access to various data
fields or pre- or post-process the output (e.g. using certain cryptographic keys). [22, 31] Since
the access control logic is situated behind the gateway of the card in the ROM or EEPROM, this
logic is also able to protect itself.
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Figure 4: Logical architecture of a smart card application



Although powerful security mechanisms can be implemented on PCs as well, the sensitive data
and the access control logic can be separated from each other in the case of a PC, resulting in a
security hole. For instance, the hard drive can be removed and inserted into a different machine
with different access control rules. In contrast, in the case of smart cards the secure data storage
and the access control logic are implemented on the same microchip. The encapsulation of data
storage, access control and business logic provides a secure, tamper-resistant architecture (see
Figure 4).

The other main power of smart cards lies in their size. They can be easily carried in a wallet
or put into the users’ pocket. Since their interface is standardized, they can be connected to
any ISO-7816-compatible terminal, and more and more smart cards start to appear in the life of
everyday people.

The security and portability of smart cards open new possibilities for security-sensitive app-
lications, especially in the area of key management. Cards with cryptographic potential can —
besides storing users’ keys — perform encryption/decryption, while the secret key does not leave
the card. This can be easily ensured since the key could only be accessed through the narrow
and configurable hardware firewall of the card. Some cards contain good quality random number
generators, and the most advanced cards are even capable of generating 1024 bit RSA keys. Using
on-board key generation it can be ensured that the key spends its entire lifecycle on the card. This
means that it is generated, used and destroyed behind the secure hardware firewall, without any
possibility to read it out.

Smart cards enable users to carry their secret key in their pocket and using it without exposing
it to the insecure environment of the terminal. Many people consider the smart card the ultimate
digital signature tool. The areas of access control and authentication also yield great perspective
for smart cards.

However, the exact area where smart cards can be used is still subject to intensive research.
While the narrow interface of the card to the outside world is a powerful security feature, in certain
situations it may cause an enormous security hole. Although smart cards could be especially useful
in case of untrusted terminals, their inability to communicate with the user on a secure channel
may make them a ’handicapped security device’. (See e.g. [25, 1, 27]).

3.3 The three generations of smart cards

Smart cards vary in size of memory and capabilities. However, three generations can be differen-
tiated.

1. The generation of memory cards is the earliest one. In this case a simple memory chip was
placed on the card, where cells could be read or written directly. Functionally it was not a
breakthrough compared to magnetic cards. Memory cards gave logical security equivalent
to a floppy disk. Later on, these cards were equipped with more and more security features
designed for certain applications.

2. The appearance of so-called generic cards opened new dimensions for smart cards. They
were called ’generic’, because they possessed a set of security tools that could be adjusted
to the need of the each application by personalizing the card.

These cards possessed a complex file system similar to that of a modern operating system
of a PC. Data on these cards were stored in structures like files and folders. Users could
be defined on these cards with various rights to different files. Users had to authenticate
themselves by PIN code. The processors of more sophisticated generic cards supported
cryptographic functions which enabled the utilization of challenge and response mechanisms
in user authentication. A good example for this category is the Bull TB-100 card.

At the beginning, generic cards were thought to be too expensive to be used widely. However,
as their number increased, mass production made it possible to produce them cheaper. At
present day, generic cards are often used even if their services are not needed. They have
become cheap enough for general use.



3. Many programmable cards exist on the market today, but they are still too expensive. How-
ever, they are considered to be the cards of the future. Beside possessing a complex operating
system in their ROM like their ancestors, they are capable of executing programs from their
EEPROM. New programs can be loaded onto them, even after the issuance of the card.
However, in this case special security methods should be used (see e.g. [29]).

If their specification is open, the card manufacturer and the software manufacturer [25] do
not need to have any connection. If multiple cards conform to the same specification, the
same applications can run on them (see section 4.3). These cards have a functionality similar
to a PC. All cards that the authors used for testing their ECC implementation (see table 1
in section 4.3) belong to this category.

Today’s programmable smart cards are relatively expensive. However, being even more
generic than the so-called generic cards, mass production may lower their prices in a similar
way it has happened in case of generic cards. It is likely, that in the future programmable
cards will be used for purposes their services are not needed. [4] Good examples for this
process are certain Oberthur AuthentIC cards (generic cards) that are implemented by an
applet on an Oberthur GalactIC card (programmable card).

In the forthcoming sections programmable smart cards and their possible applications shall
be discussed.

It must be mentioned that the boundaries between the above three categories are not sharp.
For example a memory card that is protected by a single PIN code could be situated between
generation 1 and 2. The third generation appeared gradually too, as the access control logic
of generic cards became more and more customizable. In generation 3, a business logic can be
implemented with pure software.

Many cards are much more intelligent than generic cards but still do not reach the level of
programmable cards. E.g. the Gemplus MPCOS-EMYV card (which is commonly used in Hungary
as student ID card) has strong cryptographic capabilities and can be programmed too. However,
its specification is not open, and its language is not standardized, so parties independent from the
manufacturers cannot write applications for it.

Some other cards are fully programmable (like Bull Odyssey I which conforms to the Java Card
specification), but they are still inferior to certain generic cards because they lack crypto-support.

3.4 Java Card

Today three platforms exist for programmable smart cards on the market: Java Card, MULTOS
and Windows for Smart Cards. The authors used Java Card [28] in their development since it is
a widespread and fully open specification with platform-independence as top priority.

Java Card utilizes a subset of the Java programming language for card-side application deve-
lopment. It relies on the portability of the Java byte code, thus making applications transferable
between Java Card compliant cards of different architecture.

Smart cards are security oriented platforms, and Java Card supports them with powerful
security features. [8, 10, 28] As a base it relies on the security features offered by Java, with
several additions. Apart from the powerful access control mechanisms, extensive type-checking is
performed. Java Card supports transaction handling (to guarantee the atomicity of smart card
transactions), that can be used to prevent card-removal attacks. In case multiple applications
share the same card, the specification provides applet firewalling to isolate applets and to organize
secure cooperation. Modern Java Cards make use of the Visa Open Platform [29] to ensure secure
applet loading and deletion on the card.

Being a fully open and widespread specification, several reference implementations exist (see
e.g. the cards in table 1 in section 4.3). Java Card managed to create a class-file level compatibility
between different card hardwares. However, there are still certain compatibility problems (see
section 4.3), especially where cryptographic support is involved.

The literature provides numerous examples for research or even formal analysis concerning the
security of Java Cards. The Java Card specification was subject to both formal and semi-formal
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analysis. A large part of this analysis focused on proving the soundness of the Java Card Virtual
Machine, especially its correctness concerning namespaces and type safety. However, certain works
address problems like the possibilities of applet certification, or monitoring various communication
channels between applets. (See e.g. [5, 20, 23].)

4 The implementation

Since ECC operates with keys significantly shorter than RSA, while providing the same security, it
could be a considerable alternative for RSA on low-resource platforms, such as a smart card. This
section is based on the authors’ work in [3], describing a smart card based ECC implementation.

4.1 General remarks, aims of development

The authors’ ECC implementation had a dual aim. On one hand they wanted to study ECC and
perform certain measurements and calculations, on the other hand, they wanted to create a smart
card based prototype ECC implementation.

Naturally, a software-based solution cannot have the performance required for commercial use.
One of the authors’ aims was to prove that a complex algorithm like ECC can be implemented on
today’s weak smart cards. The other aim was to create a solution that later could be used as a base
for designing hardware acceleration. It was definitely not the goal of the authors to manifest an
ECC implementation fast enough for commercial use, since pure software implementations cannot
compete with hardware-acceleration. The top priority of the development was to implement
efficient algorithms (with polynomial complexity) on low-resource smart cards.

The program is capable to run on PC and on Java Card. That means that the same source
code and the same Java classes are running on both platforms. That means the authors’ aim
was not to optimize the program for any platform (not even on a Java VM), but to implement a
portable solution capable of running on both platforms. Due to the limited amount of memory of
the card, speed often had to be traded for memory.

4.2 Architecture of the program
4.2.1 Structure

The program was designed in a modular form taking advantage of object orientation in Java. This
enabled the authors to experiment with various finite fields and various representations in the
card’s memory. It is easy to switch to another Galois field because of the structure of the ECC
engine. (Figure 5).

ECCCurve 1 y ECCFE
T 2 /\
ECCPoint
/ ECCBitVector
ECCPoint2m ECCPointp ECCLong

Figure 5: Simplified UML diagram of the ECC engine
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The arithmetic of field elements is independent from the curve and can easily be replaced by
another arithmetic. The point-arithmetic layer situated on the top of the field arithmetic layer
implements operations between points of the curve (Figure 6). The ECC engine is the top-level
layer which implements ECDLP-based protocols (see section 2.2.3), totally independent of the
chosen field.

ECC
engi ne

Curve
arithnetics

Fi el d
arithnetics

_ Java _
virtual nmchine

smart card
har dwar e

Figure 6: Layer structure

Applications using the engine can only access this upper layer, that grants access only to public
data (the curve, the public point, the user’s public key) and denies access to private data (e.g. the
user’s private key). Naturally, this layer offers services like initialization, encryption, decryption
and signing described in section 2.2.3. The responsibility of this layer is to ensure that the engine
works securely and consistently and with correct parameters only.

On the top, application specific layer could be placed by developers wishing to use the engine.
The responsibility of this layer would be to implement application-specific functionality relying on
the operations of the ECC engine:

e Define various principals who may access the ECC engine (e.g. user and administrator)

e Perform authentication of the above principals (e.g. the user is authenticated using a
PIN code, while the administrator should be authenticated using a challenge and response
method)

e Assign operations of the ECC engine to the above principals (e.g. only the administrator
may modify system-wide parameters, while only the user may access his or her own public
key)

e Manage application-specific data (e.g. personal information of the user)

4.2.2 Memory management

Memory appeared to be the main bottleneck in two ways. Physically, the amount of memory in
the card was a strict limitation. Logically, the memory management of the Java Card platform is
much less flexible than the memory management in Java.

The development was done using the Bull Odyssey I card with 7048 bytes of memory. This
small amount of memory had to contain the data required for the calculations and the code of the
ECC engine too. Consequently, in order to enable cryptographically meaningful problems, only
simple algorithms could be implemented.

The memory management of the Java Card platform is rather weak in the software engineering
sense, since there is no possibility to reuse memory. Memory allocated for objects cannot be freed,
only if the entire applet is removed from the card. According to the specification, all memory
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reservations should be made in the constructor of the Java Card applet, to guarantee that the
applet will not run out of memory. This is an important security principle. A critical attack would
be against the card to bring it into an inconsistent state by filling its memory, and making it stop
at an unpredictable point [28, 7].

Naturally, the amount of memory required by the applet is a function of the key size used. It
could be given as:

0S + JCV M + Package + Engine + (K + Keysize) x n
Where:

e OS is the amount of memory required by the card operating system. This may vary from
card to card. While the OS of the Odyssey I card is less then a kilobyte, in case of cards
with crypto-support this is larger. The Oberthur Simphonic card is also a SIM card, with
additional services, so in this case OS is over 20k.

e JCV M is the memory required by the Java Card Virtual Machine.

e Package is the amount of memory required by the code of the program in the chosen card’s
byte code language. Although the specification ([28]) strictly specifies the format of the Java
Card byte code file, card manufacturers often modify it, so this is card-dependent too. It is
approximately 5k.

e Engine is the amount of memory required by the non-static variables of the applet. This is
relatively small (<200bytes). Due to the above reasons this is card-dependent too.

e Keysize is the size of a GF(2™) field element. The authors’ applet is able to deal with
109-bit-long keys (Keysize = 14 Bytes) on Odyssey 1.

e K is the amount of memory used by a field element object apart form the key itself. This
means the memory required for object construction. This is relatively small, but may vary
from card to card. (<10 bytes)

e n means the number of field element (FE) objects required by the applet. In this implemen-
tation, the GF(2™) arithmetic requires 5 FE objects. 9 more are needed for the Euclidean
algorithm and inversion. For curve arithmetics 13 more were required. Altogether 27 FE
objects are needed for the ECC calculations.

Unfortunately, several values are card-dependent and kept secret by card manufacturers. In many
cases these can only be approximated. Performing the above calculations and approximating
the unknown values gives the result that after uploading the applet with a 109-bit-long key,
the Odyssey I card still has a significant amount of free memory (approximately 2 kilobytes).
However, the authors were unable to upload the applet with larger keys to Odyssey I. Perhaps,
some temporary memory while installing the applet. Unfortunately, the documentation does not
mention this.

Naturally, in case of cards with more memory, larger keys could be used. However, similar
undocumented features were experienced with other cards too. It seems that the Java Card
technology is not yet prepared for programs of this complexity. Therefore, the authors tried to
compare the performance of these smart cards using the same key size (109 bit).

4.2.3 Algorithmic solutions

In practice, ECC is used both above GF(p) and GF(2™). The decision of the authors was to
implement ECC on the card above GF(2™). The main reason for this was that computers can
deal much easier with bit-vectors than numbers in GF(p). Apart from making calculations faster
and more simple, this decreased the size of the program too.

The following operations were implemented between GF(2™) elements (m denotes the length
of the field elements):
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e addition: In GF(2™) this means bitwise xoring of the two field elements. This is the trivial
and optimal solution, which can be done in O(m) steps.

e obtaining the remainder (in modular calculations): Our aim is to obtain the value of P
modulo M. This can be done in GF(2™) using one single addition if deg(P) = deg(M). If
deg(P) < deg(M), there is no need to calculate the remainder, but if deg(P) > deg(M),
calculating the remainder is a complex operation. The authors’ decision was to exclude this
latter case by not allowing the case deg(P) > deg(M). If the size of P would grow above the
size of M by one bit, the remainder is calculated immediately. The size of polinoms stored
in the system are m + 1 bit. If the MSB is zero, the poinom P is a valid element of the field.
However, if the MSB would become 1, M has to be subtracted from P. In case of M the
MSB has to be 1. This is not the most efficient method, since the aforementioned calculation
has to be made every time the length of P would increase. However, this method consumes
only a little amount of memory. So, obtaining the remainder is an addition with the cost of
O(m).

o multiplication was implemented like the script multiplication. In worst case m additions
(O(m)) are performed. The total cost of the algorithm is O(m?). Naturally, this could be
made faster with more memory available. (see section 5.2 and [24])

o division (with residue): The script division was implemented here with shiftings and addi-
tions at the total cost of O(m?).

o division (multiplication with the inverse): This means two operations; obtaining the inverse
using the Euclidean algorithm [12], then a multiplication (O(m?)). The Euclidean algorithm
contains O(m) divisions (with residue) (cost: O(m?)). Thus, the total cost is O(m?).

e negation: In GF(p), negation would be a much more difficult operation than in GF(2™),
where the negate of a binary polynom is itself.

The above are operations between the elements of the field. The following operations are defined
in the group of the points of the curve:

e Addition of P and @ points (where P # @)). The operation with the highest cost is division
(multiplication by the inverse), so the total cost is O(m?).

e Duplication of point P (i.e. calculating P + P). O(m?) is the cost for similar reasons.

e Multiplication of point P by a number & (this is the cryptographically important operation):
The naive algorithm (k additions) would be too slow. With a method similar to ’the method
of repeated squaring’ used e.g. in RSA [12], O(log(k)) additions are enough.

4.3 Smart cards used for testing

The authors developed their ECC engine using the Bull Odyssey I smart card. The applet was
written and optimized in order to be able to run using the limited resources of that card. Later
on the engine was tested on two other smart cards too (see table 1). The applet was not rewritten
to make use of the additional memory available.

Naturally, choosing a card with more memory would have given more freedom to implement
faster but more complex algorithms. However, at the time of the development only the Odyssey I
card was available. Moreover, Odyssey I has the best performance in those cases when the built-in
crypto coprocessor cannot be used (see table 2).
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Card Odyssey Cyberflex Simphonic
Manufacturer Bull Schlumberger Oberthur
Version I V3C V3
Memory 8k 16k 64k
Crypto Support No Yes Yes

Java Card 2.1 2.0 2.11

Table 1: Smart cards used for testing

4.4 Results
4.4.1 Java cards

As described in section 4.2.2, memory management was the key issue. The engine was optimized
so that it could run on the Odyssey I card with the largest possible keys. Certicom’s ECC2-109
challenge was chosen to be implemented on the card, since:

e It is practically strong enough since no one has broken an ECC problem with this difficulty
by today.

e It is theoretically strong enough since its strength is similar to that of 1024 bit RSA.
e The challenge uses GF(2™) arithmetic.

e The key size is small enough to fit on the Odyssey card.

Certicom’s ECC2-109 challenge was installed on the Bull Odyssey I card. According to the au-
thors’ measurements, an elementary operation (addition of two points) required approximately 10
minutes.

As described in section 4.2.3, approximately log k additions are needed to multiply a point
with k. According to the theorem of Hasse that the number of points of a curve above GF(¢) can
be approximated by ¢ (see section 2.1.2), it can be supposed that k < ¢, since a higher k£ would
have no cryptographic significance. That means that log k can be approximated by m. So in this
case, approximately 109 additions are needed for a cryptographic operation (a multiplication of
a point by a scalar). This would require many hours, which would be unacceptable in case of a
commercial product.

However, with proper hardware acceleration it could be increased dramatically. The RSA algo-
rithm with 1024-bit keys can be executed on a smart card with crypto-coprocessor (e.g. Schlum-
berger’s Cyberflex) in less than 1 second. According to the literature, an RSA and an ECC
encryption (with similar strength) takes similar amount of time [11]. Since ECC above GF(2™)
can be parallelized easier than RSA (especially because of the low complexity of field element
addition and obtaining the remainder [30]), a hardware acceleration would decrease the time-cost
even below that of RSA. For more improvement possibities, see section 5.2.

The authors welcome the smart card manufacturers’ uprising interest in ECC technology,
such as the Atmel AT90SC6464C microcontroller or Oberthur’s recent announcement of the ECC
support for Authentic cards. Unfortunately they do not know of any existing card on the market
with hardware ECC support.

Table 2 shows the test results with three different Java Cards. Although the program was not
optimized for Odyssey, its results were significantly better than those of other cards. However,
unlike its own PC-side emulator, Simphonic was not able to execute certain parts of the program.
This latter card also showed certain features incompatible with the Java Card standard.

Field element operations with one operand were performed on the a parameter of the challenge,
those with two operands were performed between the a and b parameters of the challenge. Point
operations were performed between the P and @) points of the appropriate challenge. Table 3
shows the results for the group operations on Oberthur I for three different curves.
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| Card | Odyssey | Cyberflex | Simphonic ]

A+ B 0:01.1 0:02.8 0:02.8
AxB 0:48.2 3.05.2 3:37.5
Adiv B 0:02.0 0:06.5 0:06.6
AT 8:11.2 29:15.0 27:19.2
P+ P 9:32.1 33:53.2 N.A.
P+Q 9:57.3 36:45.1 N.A.

Table 2: Test results with three different cards. (A,B € GF(2™), P,Q € E, where FE is the
ECC2-109 elliptic curve. The meaning of z : y is = minutes and y seconds.)

| | ECC2-79 | ECC2-89 | ECC2-109 ]

P+ P 3:08.8 4:23.2 9:32.1
P+Q 3:23.6 4:58.1 9:57.3

Table 3: Test results with three different curves on Odyssey 1.

The ECC system described in this paper is able to perform ECC encoding on a Java Card,
but its speed is so low that it can only be applied in laboratory experiments. The authors hereby
emphasize, that this applet is not a commercial product, but rather a prototype of a future
hardware accelerated ECC. For some imporvement possibilities, see section 5.2.

4.4.2 PC

Although the program was developed for Java cards, the same source code and byte code is able
to run on a PC too. It can be compiled using JDK, and encapsulated in any Java program. On a
PC, the speed and memory limitations of smart cards are not to be considered, so that a field of
practically any size can be applied.

The system was tested with the ECC2-109 problem on PC too, to be a valid comparison.
The system performed the most complex cryptographic operation (multiplication of a point by a
scalar) in 28 seconds (on a Pentium IT 233MHz running Linux and JDK1.1.7). Since this is by far
the most complex operation in all ECC-based protocols (see section 2.2.3) and is performed only
once (or twice in the case of ElGamal encryption and ECDSA verification algorithms — however,
in both cases the two calculations can be made fully parallel), this is approximately the amount
of time required by encryption, decryption, signing and signature verification as well.

In a PC environment, the program is ready for practical use too. However, it was not
specifically prepared for PC, so it is by far not optimal. Replacing the finite field with the
java.math.BigInteger class (that is implemented in native code) would give the program tremen-
dous performance boost in a PC environment. Unfortunately, the java.math.BigInteger class
does not exist for smart cards.

5 Evaluation

5.1 Security

Although the test results of the above section clearly show the PC’s superiority in speed, the smart
card’s main advantage does not lie in the numbers. In case of the PC the secret key is stored on
the hard drive, loaded into the memory and used by the processor. An attacker has thousands of
possibilities to get access to it. They do not even need direct access to the machine itself to tap
the internal buses or steal the hard drive: if the computer is connected to a network, a virus or a
Trojan horse may also get access to the key in the machine.

However, if the encryption engine is running on a smart card, the above methods do not work:
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e The internal buses cannot be tapped, because there are not any. The whole smart card is
one single microchip [22].

e The data storage device cannot be separated from the access control logic (see section 3.2).

e If the card is stolen, it is protected by a PIN code, which cannot be accessed due to the
above reasons.

o After a certain amount of tries (typically 3) the PIN is blocked, and the card renders itself
totally useless.

e Certain securely guarded keys are needed to load applications onto the card. This excludes
malicious programs (e.g. viruses or Trojan horses) [29].

e If malicious applications are uploaded, the Java Card applet firewall still prevents them to
access the secret key or the ECC application [8].

e The secret key never leaves the secure area behind the smart card’s hardware firewall (see
section 4.2.1).

Although the secret key can be used much faster on a PC, using it on the smart card has significant
security advantages. If a message is signed with a secret key residing securely on a smart card,
the receiver of the message can be absolutely sure that the card was present when the message
was signed. If a message is encrypted with a public key, the sender can be sure that the message
can only be opened when the smart card (with the secret key) is present. This way, smart
cards transfer the meaning of security from the physical world to the electronic one, thus making
electronic security more understandable to non-professionals. Naturally, the above is true for a
smart card with any kind of public key cryptography.

In the case of ECC, key generation also needs careful investigation, since the keys are not
just random numbers, but special numbers (which is also quite true for RSA). Key generation
may also include the generation of system parameters, such as the curve E, and the base point
P along with its order n. E has to be chosen in such a way that curves for which an efficient
attack is known — e.g. anomalous curves — should be avoided. For the generation of the base point
P we have already described a randomized algorithm in Section 2.1.2. However, there are more
sophisticated algorithms for this, which guarantee that P will have a high order. The generation
of k is simple, because it is just an integer in [0, ..., n — 1] (however, it should be statistically unique
and unpredictable). The user’s private key is then k, and the corresponding public key is either
kP if the other parameters (E, P and n) are system-wide, or (F, P,n, kP).

In the first case, key generation is simple and can be realized on-board. This provides for
maximum security and also avoids key injection requirements at manufacturing time. In the
other case, off-board key generation seems to be the right choice because of the complexity of the
process.[15]

5.2 Improvement possibilities
5.2.1 Algorithmic improvements

Two points were found to possess extremely critical influence on the performance of the algorithm.
One of them was division in the underlying field (multiplication with the inverse), the other was
the multiplication of a point with a scalar (see section 4.2.3). Unfortunately these two operations
are encapsulated into each other in ECC.

Division of field elements has two components: obtaining the inverse and multiplication. The
former was performed using the Euclidian algorithm, which is a highly efficient algorithm. How-
ever, it also contains multiplications, divisions (with remainder), and additions. If these operations
could be accelerated, the whole process of obtaining the inverse would be faster. Addition is un-
likely to be accelerated since 2(m) steps are necessary. However, the speed of multiplication and
division with remainder could be improved significantly. For example while shifting, large areas
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of 0-s could be shifted in one step, and not one by one. It would also be possible not to perform
multiplication modularly, only converting the result to a valid field element. Multiplication would
also be faster with the optimal normal base representation, however, it would decrease the speed of
addition and it would also reduce security (see section 2.2.2). Another way of acceleration would
be possible if the generator element of the multiplicative group of the base field would be known.
Multiplication would boil down to simple addition.

Accelerating the multiplication of a point by an integer would be an even more difficult problem.
Since no algorithm is known to calculate k x P directly, multiplication can only be implemented
as a sequence of additions. Taking this into consideration, the alorithm used by the authors is
quite effective. A constant acceleration would be possible with some preprocessing, if the points
of the form 2% . P were stored in a table. The complexity of the operation would still be O(log k),
but the number of steps would decrease to its half. This table could be precalculated when the
system is installed, since P is a public system-wide parameter. However, this would comsume an
amount of memory which can only be taken into consideration on cards with more memory than
Odyssey or on the PC.

The literature describes several other tricks to optimize ECC for performance [24]. Unfortu-
nately, the authors could not apply them due to the lack of memory on the card.

5.2.2 Technical improvements

The authors focused on functionality: making the ECC algorithm work on a smart card platform.
Thus, the implementation is not protected against various side channel attacks ([16]) such as
the analysis of key-size dependent execution times or analysis of power consumption ([18]) or
electromagnetic field ([2]). Naturally, these would require optimization for a specific smart card.

5.2.3 Further possibilities

As already noted, the implementation described in this paper is handicapped (concerning speed)
in many ways:

e it is pure software;

e it is implemented in Java Card, which does not enable direct access to the smart card
hardware;

e several known improvement methods had to be omitted because of the very little amount of
memory available.

Therefore it is not fair to assess the applicability of ECC in a smart card setting based on the above
numbers. Commercial availability would definitely require hardware acceleration, for instance in
the form of an ECC-coprocessor.

Experience with Java programs has shown that their direct machine code implementation yields
generally at least one order of magnitude acceleration. Moreover, the experience with the hardware
acceleration of RSA has shown that a crypto coprocessor can give an additional factor of 20-100
performance boost [26]. In the case of ECC, this ratio can be even better since ECC requires
less multiplication units and memory than RSA, which enables even stronger parallelization and
pipelining. Hardware acceleration ratios for ECC are estimated to be about 2!? (see [30] for more
detail). This would place the time required for ECC calculations below the 1 second line, even
considering the restricted possibilities of smart cards.

5.3 Comparison with another Java Card ECC implementation

A similar development took place on the Helsinki University of Technology (HUT) in parallel
with the authors’ development, unknown by the authors at that time. The aim of that project
was to create an ECDSA-based authentication system, using the Java smart card as a device for
encryption and key generation [10].
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There are a lot of similar and different features between the two engines. Both are pure
software implementations of ECC using Java Card technology. The engineers of HUT also faced
the dilemma of GF(p) vs. GF(2™) (see section 4.2.3), but unlike the authors of this paper, they
chose GF(p), since they already possessed a well-tested Java ECC GF(p) implementation that
they wanted to port to the Java Card platform. They, too, claimed memory management and the
lack of garbage collection to be the most severe problems.

The engineers of HUT developed their implementation for a Java Card with 16KB of storage.
The maximum key size they could use to perform an inversion of a field element (that takes
approximately as much time as addition between points of the curve) was 50 bit. Of course,
such key sizes are cryptographically insignificant. In contrast, the authors of this paper created
their implementation for a Java Card with only 8KB of storage and the maximum key size they
could handle was 109 bit. An ECC with this key size has never been cracked, so it is indeed
cryptographically significant.

6 Conclusion

Elliptic curve cryptography is a young part of public key cryptography. Although it is based on
a more than fifteen-year-old theory, it is less widespread than RSA. However, ECC has several
advantages to its adversary. Also, it is very important to have an alternative to RSA. Accordingly,
the role of ECC has increased in the past significantly. Several standards include now ECC in
company with RSA.

Because ECC is able to provide the same grade of security as RSA with significantly smaller
keys, it has great potential in a smart card or mobile environment. The authors created the first
ECC implementation that is able to deal with cryptographically significant problems on a Java
Card. They hope that their research will contribute to a better understanding of ECC. With their
smart card implementation they would like to demonstrate the significance of ECC, and the power
of Java Card technology, which is now capable of executing more complex operations.

However, the aim of the research was not to create a commercial product. The authors’ work
could rather be regarded as a prototype, to be a base of a future hardware-supported smart card
implementation of ECC.
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