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Abstract—In fog computing, end devices can benefit from
low-latency access to computing capacity provided by nearby
fog nodes. However, an adversary controlling some fog nodes
may infer information about the location of end devices that
engage with these fog nodes. The goal of this paper is to analyze
the severity of this threat to location privacy. We analyze how
precise the information leaked by fog nodes about the location
of end devices may be, and how this depends on the ratio
of compromised fog nodes and on the adversary’s background
knowledge. We present the simulator LocPrivFogSim, which
extends the existing fog computing simulator MobFogSim with
the constructs necessary to model location privacy threats. The
findings from preliminary simulations of various attack scenarios
show that an attacker controlling even a modest ratio of the fog
nodes may be able to infer precise information about the location
and trajectory of end devices.

Index Terms—fog computing, edge computing, location privacy

I. INTRODUCTION

In the Internet of Things (IoT), a rapidly growing number
of devices produce data that needs to be processed. Fog
computing uses geographically distributed devices called fog
nodes, which offer cloud-like services, so that end devices can
benefit from the processing capacity of a nearby fog node with
low latency [1], [2], [3].

Fog computing is associated with security and privacy
challenges, from which location privacy is one of the most
critical [4]. We consider a user’s personal mobile device, e.g.,
smartphone or smartwatch. A key feature of fog computing
is that the mobile device can always connect to a nearby fog
node. Thus, the provider of the fog node learns that the end
device is near to the fog node. The provider gains information
about the user’s location, violating location privacy. Beside the
provider, also an adversary that successfully compromises the
fog node can gain access to user location information [5].

This is known as a potential problem in fog computing,
but it is not clear how much an adversary can actually infer
about the location or the trajectory of a user based on the
information leaked by fog nodes. Also, it is not clear how
this depends on parameters like the ratio of compromised fog
nodes and the adversary’s background knowledge. Designers,
operators, and users of fog systems currently have no tool to
quantitatively assess the threats to location privacy. However,
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it would be very important to assess these threats, so that
informed decisions can be made to handle the risk.

In this paper, we propose a tool for assessing threats to
location privacy in fog computing and we analyze how these
threats depend on key parameters. We use a simulation-based
approach because simulation gives us the possibility to quickly
assess the implications of different parameter settings [6]. We
make the following two key contributions:

• We present the simulator LocPrivFogSim, which extends
the existing fog simulator MobFogSim [7] with the con-
structs necessary to model location privacy threats.

• Using LocPrivFogSim, we evaluate the impact of differ-
ent attack scenarios on location privacy.

Our preliminary findings show that an adversary controlling
even a modest ratio of the fog nodes may be able to infer
precise information about the location and trajectory of end
devices, especially if the adversary knows the location of all
fog nodes.

II. PROBLEM DESCRIPTION AND ASSUMPTIONS

We consider a fog system in a designated region (e.g., a
city). We assume that all fog nodes are active and connected
to the network at all times, and that the regions covered by the
fog nodes altogether cover the entire region. Mobile devices
are assumed to always connect to the closest fog node.

An adversary compromised some of the fog nodes. If a mo-
bile device connects to one of these fog nodes, the adversary
can determine the approximate location of the mobile device.
In addition, the adversary can link the device to a person
[8]. From multiple observations, the adversary can also try
to reconstruct the path of the person [9], [10]. We investigate
what the adversary can learn when a mobile device traverses
a path through the fog system.

As shown in Table I, we consider four scenarios with
different levels of background knowledge. On the one hand,
we consider what the adversary knows about the location of
the fog nodes: either the adversary only knows the location of
the compromised fog nodes, or he knows the location of all fog
nodes. On the other hand, we consider what can be assumed
about the state of the mobile device: either the mobile device
is on and remains connected to the fog computing system at
all times, or it is allowed to be turned off / disconnect.



TABLE I: Overview of the considered scenarios

Adversary knows
location of compromised

fog nodes only

Adversary knows
location of all fog

nodes
Mobile device is always
connected to the fog
system

Scenario 1.0 Scenario 2.0

Mobile device is al-
lowed to disconnect

Scenario 1.1 Scenario 2.1

III. SIMULATION ENVIRONMENT

This section presents LocPrivFogSim1, which we developed
for simulating attacks on location privacy in fog computing.
LocPrivFogSim is an extension of the existing fog simulator
MobFogSim [11], [7]. MobFogSim itself is based on iFogSim
[12], extending it with support for location and mobility.

To simulate threats to location privacy, MobFogSim had to
be extended in several respects, as described below.

Roles. To simulate attacks on location privacy, various roles
are needed. Thus we introduced the new classes Owner,
User, and Attacker. Each FogDevice has an Owner.
For a MobileDevice, the User needs to be distinguished
from the Owner (e.g., the owner of a business smartphone is a
company but the user is an employee). The User is assumed
to carry the MobileDevice with them. The adversary is
represented by the Attacker class.

Locations. MobFogSim stores locations of devices as Carte-
sian coordinates. This is not appropriate for storing the lo-
cation information that the adversary gains about a mobile
device, which is not an exact location, but rather a region
of possible locations. Therefore, a new class Position was
created to store this information. The Position contains
the fog node that provided the information, a flag whether the
mobile device entered or left the range of the fog node, and
the timestamp.

Obtaining knowledge. The process how an adversary ob-
tains knowledge was implemented using the Observer design
pattern. The FogDevice manages registered observers. The
adversary is registered as an observer for all compromised fog
nodes. When a mobile device connects to or disconnects from
a compromised fog node, the Attacker’s update method
is triggered, giving the adversary new information about the
mobile device. The class MobileDeviceInformation
represents the information that the adversary obtains about
a connected mobile device by listening on a fog node. The
adversary stores this information in his knowledge base.

Regions of the fog nodes. The coordinates of each fog node
are stored in the class DeviceMap, which provides a method
to determine the closest fog node to a mobile device, based
on Euclidean distance. Based on which the closest fog node
is, the map can be divided into regions, as shown in Fig. 1.
Each region contains exactly one fog node. For points within
the region, the fog node in the region is the closest one. More

1The source code of LocPrivFogSim is publicly available from
https://git.uni-due.de/snthwett/locprivfogsim

Fig. 1: Paths of a mobile device through a fog system

formally, we are given a set of fog nodes {F1, . . . , Fm} in a
subset of the plane S. The region of fog node Fi is defined as
R(Fi) = {s ∈ S | d(s, Fi) ≤ d(s, Fj) ∀j ∈ {1, . . . ,m}}. If
the mobile device is in R(Fi), it connects to Fi.

Computing areas. For quantifying the location information
that the adversary can infer, the area of different regions of
the plane, bordered by a combination of straight and circular
lines, needs to be computed. We approximate the area of an
arbitrary region by defining a dense lattice of equidistant points
and counting the number of lattice points in the given region.

Trace comparison. For quantifying the leaked location
information, we define two metrics [13]. The first is the trace
comparison value.

In trajectory attacks, the adversary aims at determining the
path of the mobile device [9]. The adversary’s success can be
characterized by the level of his uncertainty about the path of
the mobile device. To capture uncertainty of the adversary, the
size of the “anonymity set” is a useful metric [14]. Here, the
“anonymity set” is the set of paths that are consistent with the
adversary’s observations. The real path of the mobile device is
among these paths, but the adversary cannot know which one.
The larger this set, the larger the uncertainty of the adversary.

The set of all possible paths is given as {p1, . . . , pn}. For
example, this can be the set of all paths that have been recorded
in the past in a given city. The trace of a path p, denoted as
tr(p), is the sequence of indexes of fog nodes to which a
mobile device traversing p connects.

The observed trace of a path p, denoted as otr(p), is what
the adversary can observe from the trace. If the mobile device
is switched on and connected to the fog system at all times
(scenarios 1.0 and 2.0 in Table I), the observed trace consists
of the compromised fog nodes in the trace. Periods in which
the mobile device is connected to a non-compromised fog node
are marked with the symbol “∗” in the observed trace. That
is, otr(p) is obtained from tr(p) by replacing contiguous sub-
sequences of non-compromised fog nodes with “∗”.

Fig. 1 shows an example. Path 1 passes the regions of fog
nodes F6, F2, F4, F8; thus, tr(p1) = [6, 2, 4, 8]. From these
fog nodes, F6 and F8 are compromised, leading to otr(p1) =
[6, ∗, 8]. Path 2 passes the regions of the fog nodes F1, F3,



F9, F8; thus, tr(p2) = [1, 3, 9, 8] and otr(p2) = [1, ∗, 9, 8].
If the mobile device may temporarily switch off or discon-

nect from the fog system (scenarios 1.1 and 2.1), also periods
in which the mobile device is not connected to the fog system
are marked by a “∗” in the observed trace. We use the same
symbol because the adversary cannot distinguish whether the
mobile device is connected to a non-compromised fog node
or not connected to any fog node.

We assume the adversary knows the observed trace otr(pi)
of each possible path pi. E.g., the adversary could record this
information by walking pi with his own mobile device.

For a mobile device following a path p, the adversary
records its observed trace otr(p). The adversary checks which
of the otr(pi) the observed otr(p) is consistent with, i.e.,
which of the pi could lead to the same observed trace.
Determining if otr(p) and otr(pi) are consistent, denoted as
otr(p) ∼ otr(pi), is different depending on the scenario. If
the mobile device is always connected to the fog system, two
observed traces are consistent if and only if they are the same.
Otherwise, a “∗” in the observed trace might mean that the
mobile device was connected to a non-compromised fog node
or that it was not connected to any fog node. Therefore, any
occurrence of a “∗” is removed from the observed trace. If this
leads to multiple consecutive occurrences of the same index
in the observed trace, those occurrences are replaced by a
single occurrence of that index. In scenarios 1.1 and 2.1, two
observed traces are considered consistent if and only if, after
these changes, they are equal.

For example, path 2 in Fig. 1 has otr(p2) = [1, ∗, 9, 8]. If a
mobile device traverses this path but briefly disconnects in the
region of fog node F1, this leads to otr(p) = [1, ∗, 1, ∗, 9, 8].
Performing the above changes transforms both sequences to
[1, 9, 8], showing that the two observed traces are consistent.

Let K = {pi | 1 ≤ i ≤ n, otr(p) ∼ otr(pi)} be the set of
paths consistent with the observations. The adversary knows
that the mobile device followed one of the paths in K. The
adversary’s success can be measured by the trace comparison
value, defined as TrC = |K|. The lower the value of TrC,
the more successful the adversary is in learning the path of the
mobile device. The best case for the adversary is TrC = 1,
when the exact path of the mobile device was determined. The
worst case for the adversary is TrC = n, when no information
could be inferred about the path of the mobile device.

Accuracy value. Another way of measuring the adversary’s
knowledge of the mobile device’s location is by the area to
which the adversary can narrow down the position of the
mobile device. This is also referred to as the size of the
uncertainty region [14] or the cloaking granularity [9].

As the mobile device moves, the size of the uncertainty
region varies. For an overall view of the adversary’s knowledge
of the device’s location, we average the size of the uncertainty
region over time. For this purpose, time is divided into
intervals of size ∆t, leading to the points in time t1, . . . , tr
where tj = tj−1 + ∆t. For a point in time tj , Qtj denotes
the area to which the adversary can narrow down the location
of the mobile device. The total time is T = r · ∆t, and the

total considered area is V . The accuracy value is defined as
Acc = (

∑r
j=1 Qtj ·∆t)/(T · V ).

The value of Acc is between 0 and 1. The adversary’s
knowledge increases with decreasing value of Acc.

The area Qtj to which the adversary can narrow down the
mobile device’s location depends on the adversary’s back-
ground knowledge, as shown in Table I. Qtj also depends on
whether the mobile device is connected to a compromised or
a non-compromised fog node at time tj . These two situations,
together with the four scenarios, lead to eight cases. However,
some of these cases result in the same area Qtj , leading to
four possible outcomes regarding Qtj . These are summarized
in Fig. 2 and explained below.

Fig. 2a: the adversary only knows the position of compro-
mised fog nodes (scenarios 1.0 and 1.1), and the mobile device
is connected to a compromised fog node F . The adversary
knows that the mobile device is in the region of F (here: the
circle around F8). The adversary also knows that the mobile
device is nearer to F than to other compromised fog nodes
(here: nearer to F8 than to F9). Thus, some segments can be
cut off from the circle. Although the adversary also knows that
the mobile device is nearer to F than to any non-compromised
fog node, this information does not help him, since he does
not know the location of non-compromised fog nodes.

Fig. 2b: the adversary either only knows the position of
compromised fog nodes (scenarios 1.0 and 1.1) or knows
the position of all fog nodes but the mobile device is not
guaranteed to be always on (scenario 2.1), and the mobile
device is not connected to a compromised fog node. In this
case, the adversary cannot narrow down the region in which
the mobile device may be. In scenarios 1.0 and 1.1, the
adversary knows that the mobile device is nearer to one of
the non-compromised fog nodes than to any other fog node,
but he does not know the position of non-compromised fog
nodes, so this does not help him. In scenario 2.1, the adversary
cannot infer anything about the location of the mobile device,
since the mobile device may be offline and could be anywhere.

Fig. 2c: the adversary knows the position of all fog nodes
(scenarios 2.0 and 2.1), and the mobile device is connected
to a compromised fog node F . This is the best case for the
adversary. Knowing the position of all fog nodes, he can build
a Voronoi diagram of the regions of each fog node, and he
knows that the mobile device is in the region of F . This region
is a subset of the region identified in the case of Fig. 2a.

Fig. 2d: the adversary knows the position of all fog nodes,
the mobile device is always on (scenario 2.0), and the mobile
device is not connected to a compromised fog node. The
adversary infers that the mobile device is connected to a non-
compromised fog node. Knowing the position of all fog nodes,
he narrows down the possible location of the mobile device
to the union of the regions of non-compromised fog nodes.

IV. SIMULATION EXPERIMENTS

We created a test system in LocPrivFogSim, based on a
rectangular field of size 50 ∗ 50 (e.g., representing a city).
This field contains 20 fog nodes, which are the same for each



(a) Scenarios 1.0 and 1.1; mobile device is connected to a compromised
fog node. The adversary can narrow down the device’s location to the
coloured circle section.

(b) Scenarios 1.0, 1.1 and 2.1; mobile device is not connected to a
compromised fog node. The adversary is not able to narrow down the
mobile device’s location.

(c) Scenarios 2.0 and 2.1; mobile device is connected to a compromised
fog node. The adversary can narrow down the device’s location to the
region of this fog node (the coloured polygon).

(d) Scenario 2.0; mobile device is not connected to a compromised fog
node. The adversary can narrow down the device’s location to the region
of the non-compromised fog nodes (coloured region).

Fig. 2: The adversary’s knowledge about a mobile device’s position

test run. Each fog node covers a circle with radius 15. An
adversary controls a given ratio of the fog nodes. For every
test run, the compromised fog nodes are determined randomly.

50 possible paths are defined. Each path consists of up to 50
steps through the test system. One of these paths is randomly
selected for every test run as the path of the mobile device.

To examine the effect of the adversary’s background knowl-
edge, we perform simulations according to each of the four
scenarios of Table I. In addition, we vary the number of
compromised fog nodes from 1 to 20, so that the ratio of
compromised fog nodes varies from 5% to 100%. To cope
with random variations, the simulation is repeated 100 times
for each parameter configuration.

Results – trace comparison value. For the trace compari-
son, it is irrelevant whether the adversary knows the location
of all fog nodes. However, whether the mobile device is
assumed to be always connected to the fog system influences
the precision of the observed trace and thus also the trace
comparison value. Fig. 3 shows that the number of paths
possible for the observed trace decreases rapidly as the number
of compromised fog nodes increases. If the mobile device
is allowed to disconnect, 5% compromised fog nodes hardly
allow the adversary to limit the possible paths. With 15%
compromised fog nodes, usually only a few of the paths are
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Fig. 3: Results in terms of the trace comparison value

still possible, and 20% compromised fog nodes allow almost
always an exact statement about the path of the mobile device.

If the mobile device is always on, 5% compromised fog
nodes allow the adversary to limit the device’s path to in
most cases less than 40% of the possible paths. With 10%
compromised fog nodes, only a few of the possible paths are
consistent with the recorded trace, and with 15% compromised
fog nodes, the adversary can assign the observed trace of the
mobile device to one of the known paths. Thus it can be
seen that if the mobile device is allowed to disconnect, about
5% more compromised fog nodes are needed to get the same
results as if the mobile device is always on.
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Fig. 4: Accuracy values in scenario 1.0
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Fig. 5: Comparison of the accuracy value between scenarios

Results – accuracy value. Fig. 4 shows the results in terms
of the accuracy value for scenario 1.0. The results for the other
scenarios are similar and omitted to save space.

With increasing ratio of compromised fog nodes, the accu-
racy value decreases steadily, i.e., the accuracy with which
the adversary can determine the mobile device’s location
increases constantly. With 5% compromised fog nodes, hardly
any information about the location of the mobile device can be
obtained. But when all nodes are compromised, the accuracy
value reaches a minimum of about 1

20 = 0.05.
To better visualize the impact of the different scenarios,

Fig. 5 shows the average accuracy value of each scenario in
a single plot. We can see that scenarios 1.0, 1.1 and 2.1 lead
to a similar, roughly linear dependence of the accuracy value
on the ratio of compromised fog nodes. From Fig. 2a and
2b, it is clear that the accuracy value is actually the same
for scenarios 1.0 and 1.1. From Fig. 2b, it is also clear that,
when the mobile device is not connected to a compromised fog
node, also scenario 2.1 leads to the same area as scenarios 1.0
and 1.1. Comparing Fig. 2a and 2c, it can be seen that, when
the mobile device is connected to a compromised fog node,
scenario 2.1 leads to a slightly smaller area than scenarios 1.0
and 1.1. The difference becomes insignificant when there are
many compromised fog nodes because of the overlaps between
the ranges of the compromised fog nodes. This explains why
in Fig. 5 the average accuracy value of scenario 2.1 is slightly
lower than that of scenarios 1.0 and 1.1, as long as the ratio
of compromised fog nodes is not too high.

It is clear from Fig. 5 that scenario 2.0 leads to the best
accuracy. Fig. 2b and 2d show that the adversary can more
accurately locate the mobile device in scenario 2.0 than in
the other scenarios, if the mobile device is not connected

to a compromised fog node. With many compromised fog
nodes, this happens infrequently, hence the improvement in the
accuracy value is not so significant. With few compromised
fog nodes, the difference in the area between Fig. 2b and 2d
is not so high, hence again the improvement in accuracy is not
so significant. This is why the difference between scenario 2.0
and the other scenarios in Fig. 5 is biggest when the ratio of
compromised fog nodes is neither too low nor too high.

V. RELATED WORK

Location privacy was investigated already before the advent
of fog computing, e.g., in wireless networks, mobile comput-
ing, and online services [15]. Two different settings can be
differentiated: the adversary may be located on the network
infrastructure layer or on the application layer.

Adversary on the network infrastructure layer. When
an end device connects to a network, the network operator
learns something about the device’s location [16]. In mobile
telecommunication networks, the network operator knows in
which cell the mobile phones are located. In wireless local
area networks (WLANs), the operator of a WLAN access
point knows that connected devices are in the vicinity of the
access point. An adversary that can eavesdrop on the messages
between end devices and base stations or access points may
also be able to infer similar information [17].

The protection of location privacy in mobile and wireless
networks received significant research attention. E.g., [18]
proposed frequently changing the network identifier of mobile
devices to protect privacy. To hinder linkability between a
mobile device’s sessions with different base stations, [19]
proposed using identifier changes and silent periods. [20]
addressed location privacy in WLANs and proposed frequent
pseudonym changes, silent periods, and a reduction of the de-
vices’ transmission range. [16] used blind signatures to create
authorized anonymous IDs for mobile devices. [21] devised
different policies for changing the identifiers of devices or
swapping identifiers between devices.

While these technical measures make it more difficult for
an adversary to infer location information about users, they do
not offer sufficient protection, and need to be combined with
other measures like legislative provisions [15].

Adversary on the application layer. Location-based ap-
plication services are popular and often very useful. However,
they require access to the user’s location, thus threatening
location privacy [9], [10]. Several approaches were proposed to
achieve location privacy while using location-based services.
Typical approaches use some obfuscation technique to hide
the user’s real location or real identity from the provider of
the location-based service. The obfuscation logic is typically
running in a trusted environment. [22] proposed a location
protection broker running on a trusted server that guarantees
location k-anonymity by means of message perturbation. [23]
also used a broker running on a trusted server to obfuscate
location information, also taking into account the movement of
devices and the possible continual observation of their location
information by adversaries. [24] proposed a set of elementary



location obfuscation operators that can be combined to several
different types of location obfuscation operators. [25] proposed
the use of a trusted location anonymizer component, which
blurs exact locations to cloaked spatial areas. [26] proposed
to use historical location information of other end devices to
conceal the real location of an end device.

Another possibility is to generate, in addition to real location
information, fake or dummy location information, to confuse
potential adversaries. For example, [27] proposed an approach
in which dummy trajectories are generated to hide users’ real
trajectories. Similarly, [28] devised an algorithm for creating
dummy trajectories based on real ones to ensure k-anonymity.

Location privacy in fog computing. Existing surveys
on security and privacy in fog computing feature location
privacy as a key issue [4], [5]. Location privacy is particularly
challenging in fog computing because an adversary controlling
some fog nodes combines the characteristics of the two types
of adversaries considered in previous research. An adversary
that controls some fog nodes is similar to adversaries on the
network layer considered previously, since providers of fog
nodes also have to know about the end devices connecting to
their fog nodes. Hence, adopting solutions for location privacy
from location-based application services, like concealing the
real location of end devices or generating dummy locations, is
challenging in fog computing. On the other hand, an adversary
controlling some fog nodes is also the provider of a location-
based service, since fog computing is inherently location-
based. Hence, it is not clear how solutions ensuring location
privacy in the context of network operators, like changes of
identifiers, could be applied in fog computing.

VI. CONCLUSIONS

We presented LocPrivFogSim, a simulator to assess threats
to location privacy in fog computing. We introduced two
metrics to measure the location information that an adversary
can obtain. Our preliminary simulations showed quantitatively
how the ratio of compromised fog nodes, the adversary’s
knowledge about the fog nodes’ position, and whether the
mobile device can be assumed to be always connected to the
fog system, impact the leaked location information. The results
show that a small number of compromised fog nodes suffice
to leak precise information about the path taken by a mobile
device.

As future work, further simulations with more realistic
setups are planned. LocPrivFogSim could be extended with
different techniques for preserving location privacy, so that
their effect can be evaluated. Moreover, it could be investi-
gated how location privacy can be taken into account in the
deployment of fog applications [29].
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