
A branch-and-bound approach to virtual machine
placement

Published in the Proceedings of the 3rd HPI Cloud Symposium “Operating the Cloud”, pages 49-63, 2015

Dávid Bartók
Budapest University of Technology and Economics

Department of Computer Science and Information Theory
Budapest, Hungary

Zoltán Ádám Mann
Budapest University of Technology and Economics

Department of Computer Science and Information Theory
Budapest, Hungary

Abstract—Finding the best mapping of virtual machines to
physical machines in cloud data centers is a very important op-
timization problem, with huge impact on costs, application per-
formance, and energy consumption. Although several algorithms
have been suggested to solve this problem, most of them are
either simple heuristics or use off-the-shelf, mostly integer linear
programming (ILP) solvers. In this paper, we propose a new
approach: a custom branch-and-bound algorithm that exploits
problem-specific knowledge in order to improve effectiveness. As
shown by empirical results, the new algorithm performs better
than state-of-the-art general-purpose ILP solvers.

I. INTRODUCTION

As cloud data centers (DCs) serve an ever-growing demand
for computation, storage, and networking capacity, their op-
eration is becoming a crucial issue. The energy consumption
of DCs is of special importance because of both its envi-
ronmental impact and its contribution to operational costs.
According to a recent study, DC electricity consumption in
the USA alone will increase to 140 billion kWh per year
by 2020, costing US businesses 13 billion USD annually in
electricity bills and emitting nearly 100 million tons of CO2

per year [16].
In order to reduce energy consumption, DC operators use a

combination of several techniques. Virtualization technology
enables the safe co-existence of multiple applications pack-
aged as virtual machines (VMs) on a single physical machine
(PM), thus allowing high utilization of physical resources.
Live migration makes it possible to move a working VM from
one PM to another without noticeable downtime. Since the
load of VMs fluctuates over time, this enables DC operators
to flexibly react to such changes. In times of low demand,
VMs can be consolidated to a low number of PMs, and the
remaining PMs can be switched to a low-power state, leading
to considerable energy savings. When load starts to rise, some
PMs must be switched back to normal mode again so that
VMs can be spread across a higher number of PMs.

Finding the best VM placement for the current load level is
a tough optimization problem. First of all, multiple resource
types must be taken into account, e.g., CPU, memory, disk,
and network bandwidth. PMs have given capacity and VMs
have given load along these dimensions, and this must be
taken into account in VM placement. Moreover, the migra-
tion of VMs has a non-negligible overhead in the form of

additional network traffic and additional load on the affected
PMs. Thus, excessive migrations should be avoided.

In the past couple of years, several different approaches
have been proposed for the VM placement problem. From an
algorithmic point of view, these can be mostly grouped into
two categories: (i) heuristics without any performance guar-
antees or theoretical underpinning and (ii) exact algorithms
using off-the-shelf mathematic programming – mostly integer
linear programming (ILP) – solvers [14]. It is dangerous to
rely solely on heuristics because in some cases they can lead
to extremely high costs or dramatic performance degradation
of the involved applications [15]. On the other hand, the exact
algorithms suggested so far all suffer from serious scalability
issues, limiting their applicability to small problem instances.

In this paper, we propose a new approach, with the aim of
finding a good compromise between practical applicability
and theoretical soundness. Our approach is based on branch-
and-bound, just like typical ILP solvers. However, in contrast
to general-purpose ILP solvers, we can make use of problem-
specific knowledge to make the search more effective. This
is achieved by crafting customized procedures for controlling
the branching behavior, custom bounding techniques etc.

II. PREVIOUS WORK

Several problem formulations have been suggested for
the VM placement problem. They almost always include
computational capacity of PMs and computational load of
VMs. In fact, in many works, this is the only dimension that
is considered [1]–[4], [6], [9], [10], [12], [22], [23]. Other
authors included, beside the CPU, also some other resources
like memory, I/O, storage, or network bandwidth [5], [7], [8],
[21], [25].

Different objective or cost functions have been proposed.
The number of active PMs is often considered because it
largely determines the total energy consumption [3], [4], [6],
[8], [23], [25]. Another important factor that some works
considered is the cost of migration of VMs [6], [8], [20],
[22].

Concerning the used algorithmic techniques, most previous
works apply simple heuristics. These include packing algo-
rithms inspired by results on the related bin-packing problem,
such as First-Fit, Best-Fit, and similar algorithms [2]–[4], [9],

[11], [13], [22], [23], other greedy heuristics [17], [24] and
straight-forward selection policies [1], [18], as well as meta-
heuristics [7], [8].

Some exact algorithms have also been suggested. Most
of them use some form of mathematical programming to
formulate the problem and then apply an off-the-shelf solver.
Examples include integer linear programming [1] and its
variants like binary integer programming [5], [13] and mixed
integer non-linear programming [9]. Unfortunately, all these
methods suffer from a scalability problem, limiting their
applicability to small-scale problem instances.

III. PROBLEM MODEL

Let P denote the set of available PMs and V the set of
VMs hosted in the DC. We consider d dimensions or resource
types; e.g., if CPU capacity and memory are considered, then
d = 2. The capacity of each PM and the load of each VM
is a d-dimensional vector. For p ∈ P , its capacity is denoted
by cap(p) ∈ Rd

+, and for v ∈ V , its load is denoted by
load(v) ∈ Rd

+. Further, let |P | = m and |V | = n.
The DC operator regularly re-optimizes the placement of

the VMs in order to adapt to changes [20]. The current
placement is given by map0 : V → P . Our aim is to
determine a new mapping map : V → P , subject to capacity
constraints

∀p ∈ P :
∑

v:map(v)=p

load(v) ≤d cap(p), (1)

where ≤d is a relation between d-dimensional vectors;
(x1, . . . , xd)

T ≤d (y1, . . . , yd)
T if and only if for each

1 ≤ i ≤ d, xi ≤ yi. map0 may not satisfy the capacity
constraints; even if it satisfied them at the time it was
computed, the change in VM loads since then may have
rendered it invalid.

A PM is active if it hosts at least one VM, i.e., p ∈ P
is active if ∃v ∈ V,map(v) = p. The number of active PMs
is act(map). Since energy consumption is largely determined
by the number of active PMs, we should minimize act(map).

A migration of v ∈ V occurs if map(v) 6= map0(v).
The number of migrations caused by map is given by
mig(map). Because of the overhead caused by migrations,
we should minimize mig(map) as well. We combine the two
minimization objectives in a single cost function:

f(map) = α · act(map) + µ ·mig(map), (2)

where α and µ are given non-negative weights defining the
relative importance of the two optimization goals. In addition,
we require the number of migrations to be below a given limit:

mig(map) ≤ K, (3)

where K is a given non-negative number. This is sensible
because too many migrations make the solution practically
infeasible [19]; thus, mappings that would cause too many
migrations must be excluded even if they lead to few active
PMs and thus to good overall objective value.

To sum, our aim is to determine a new mapping map that
minimizes (2), subject to constraints (1) and (3).

IV. INTEGER PROGRAMMING SOLUTION

As a baseline, we formulate the problem as an integer
program and solve it with an off-the-shelf ILP solver.

Indexing VMs as vi (i = 1, . . . , n) and PMs as pj (j =
1, . . . ,m), the following binary variables are introduced:

Alloci,j =

{
1 if vi is allocated on pj
0 otherwise

Activej =

{
1 if pj is active
0 otherwise

Migri =

{
1 if vi is migrated
0 otherwise

Using these variables, the integer program can be formu-
lated as follows (i = 1, . . . , n and j = 1, . . . ,m):

min α ·
m∑
j=1

Activej + µ ·
n∑

i=1

Migri (4)

s. t.
m∑
j=1

Alloci,j = 1 ∀i (5)

Alloci,j ≤ Activej ∀i, j (6)
n∑

i=1

load(vi) ·Alloci,j ≤d cap(pj) ∀j (7)

Migri = 1−Alloci,map0(vi) ∀i (8)
n∑

i=1

Migri ≤ K (9)

Alloci,j , Activej ,Migri ∈ {0, 1} ∀i, j (10)

The objective function (4) is the same as before, consisting
of the number of active PMs and the number of migrations.
Equation (5) ensures that each VM is allocated to exactly one
PM, whereas constraint (6) ensures that for a PM pj to which
at least one VM is allocated, Activej = 1. Together with the
objective function, this ensures that Activej = 1 holds for
exactly those PMs that accommodate at least one VM.

Constraint (7) is a straight-forward formulation of con-
straint (1) in terms of the binary variables Alloci,j . Equa-
tion (8) determines the values of the Migri variables and
constraint (9) corresponds to constraint (3).

V. BRANCH-AND-BOUND ALGORITHM

Our algorithm does not use the binary variables introduced
for the ILP approach, but operates directly on the map
function. It works with partial solutions, in which map(v)
is defined for a subset of the VMs, and traverses the space of
partial solutions in a tree-like manner. For a partial solution,
its children in the tree are obtained by selecting a VM that
is not mapped yet and trying to map it to all PMs that have
sufficient free capacity to host it: for each such PM, a different
child partial solution is obtained.

The search starts with all VMs unmapped (the root of the
tree), and goes down the tree by mapping one more VM in
each step. If all VMs are mapped, then a solution has been
found, corresponding to a leaf of the tree. The best solution

that has been found so far (best_so_far), along with its cost
(best_cost_so_far), is maintained throughout the algorithm. If
the current branch of the search tree cannot be continued or
there is no point in doing so, then the algorithm backtracks.
This happens in the following cases:
• A leaf has been reached.
• The current partial solution has become infeasible, i.e.,

– either there is a VM for which no PM has sufficient
free capacity,

– or the number of migrations exceeds the limit.
• All children of the current partial solution have been

processed.
• The cost of any solution that extends the current partial

solution is surely not lower than the cost of the best
solution found so far.

In each of these cases, the algorithm backtracks by undoing
the last VM mapping decision, i.e., going back to the parent
node in the tree, essentially unallocating the last VM. After-
wards, the next child of the parent is tried, i.e., a new PM
is selected for the unallocated VM. When the search would
need to backtrack from the root, the algorithm terminates.

loop
if all VMs mapped and cost < best_cost_so_far
then

update best_so_far and best_cost_so_far;
end
if all VMs mapped or infeasible or all children
visited or min_cost ≥ best_cost_so_far then

// backtrack
if we are in the root then

return best_so_far
end
move back to parent;

end
if no VM selected yet then

select VM;
end
move to next child;

end

Algorithm 1: Branch-and-bound procedure

The skeleton of the branch-and-bound procedure is shown
in Algorithm 1. In the following, the non-trivial parts are
described in more detail.

A. Incremental computations
During the algorithm, many details of the current partial

solution are needed, e.g., its cost. Such characteristics can
be simply computed directly from the partial solution itself.
However, it is much more efficient to compute them incre-
mentally. For example, we maintain the cost of the current
partial solution in a variable, and whenever we go up or
down in the tree, the necessary change is made to the stored
cost value. This way, determining the cost of the current
partial solution takes O(1) steps instead of O(n), which is
an important difference as this is needed many times.

Beside the cost of the current partial solution, the following
characteristics are maintained and incrementally updated:
• The number of migrations.
• The remaining free capacity of each PM.
• For each VM, the set of PMs that still have enough free

capacity to host it.

B. VM selection

VMs can be selected in any order, but this order may have
considerable impact on the running time of the algorithm.
As the primary criterion for selecting the next VM, we
use the first-fail principle, a common approach in constraint
satisfaction algorithms: we select the VM with the lowest
number of PMs that can host it. This helps to keep the number
of children of the nodes of the tree (the branching factor) low
and thus the whole tree relatively small.

There can be several VMs with the same number of
possible hosting PMs, so we also apply a secondary strategy
for tie-breaking: VMs with higher load are preferred. Just like
in bin-packing, where sorting the items in decreasing order
is known to improve the performance of packing algorithms,
here it is also sensible to place the biggest VMs first.

In our case, VM loads are multi-dimensional, so it is not
clear what is “bigger.” We implemented multiple strategies
for sorting d-dimensional vectors:
• Using the lexicographic order of the vectors
• According to the maximum of the dimensions (L∞

norm)
• According to the sum of the dimensions (L1 norm)

C. PM selection

After having selected a VM v, the PMs that can host it must
be tried one after the other. Again, the order in which the PMs
are tried may impact the performance of the algorithm.

One possibility is to sort the PMs according to their remain-
ing capacity. Again, these are multi-dimensional vectors, so
we implemented the same sorting strategies as for VMs, with
the single difference that empty PMs are put at the end in
order to foster better utilization of PMs that are already on.

Another idea is to start with the PM on which v resides
according to map0. Since this strategy only defines the PM
that should be tried first, it can also be combined with any
of the sorting strategies, which will then determine the order
of the remaining PM candidates.

D. Lower bound on the cost

In Algorithm 1, min_cost denotes a lower bound on the
cost of any solution that can arise as an extension of the
current partial solution. If min_cost is not less than the best
cost found so far, then we can backtrack from the current
subtree. The question is how to compute a (non-trivial) lower
bound.

Let us consider a partial solution, in which a subset V1 ⊂ V
of the VMs have already been allocated to a subset P1 ⊂ P
of the PMs. Let k1 denote the number of migrations that been
made when allocating the VMs of V1. We have to allocate the
remaining VMs of V2 := V \ V1 with at most K ′ := K − k1

migrations. Ideally, we would like to find the minimal cost
according to equation (2), given the constraints (1) and (3) and
given the current partial allocation. This is a tough problem.
Luckily, we just need a lower bound. This can be achieved
by considering a relaxation of the problem: constraint (1) –
the capacity constraints – will be disregarded.

The resulting problem is: given the current partial solution,
what is the best cost in terms of the objective (2) that can
be achieved by the allocation of V2, if at most K ′ further
migrations are allowed? A cost of α · |P1|+µ ·k1 has already
been incurred. For the remaining VMs, since the number
of migrations is constrained, this limits how much the new
mapping can differ from map0.

Let C0 be the cost of mapping each remaining VM as in
map0. If P2 is the set of PMs in P \P1 that are used by map0
for mapping V2, i.e., P2 = {p ∈ P \P1 : ∃v ∈ V2 map0(v) =
p}, then C0 = α · (|P1|+ |P2|) + µ · k1. For a mapping with
lower costs, some PMs must be emptied, i.e., all their VMs
migrated to other PMs. This decreases the cost if the number
of VMs that have to be migrated is less than α/µ. In order
to empty the maximum number of PMs, PMs with the least
number of VMs should be emptied. Therefore, Algorithm 2
delivers optimal result for the relaxed problem.

foreach p ∈ P2 do
a(p) := |{v ∈ V2 : map0(v) = p}|;

end
sort P2 in ascending order of a(p);
i = 1;
mig = 0;
loop

let p be the ith element of P2;
if a(p) ≥ α/µ or mig + a(p) > K ′ then

return
end
// empty p
mig += a(p);
i ++;
if i > |P2| then

return
end

end

Algorithm 2: Optimal solution for the relaxed problem

This can be simplified with the following ideas: (i) the
actual mapping1 delivered by the algorithm is not interesting,
only its cost; (ii) the a(p) values are typically small non-
negative integers. For any non-negative integer j, let bj denote
the number of PMs in P2 with a(p) = j, i.e., bj := |{p ∈
P2 : a(p) = j}|. Let J denote the highest j for which bj > 0.

Algorithm 3 is the simplified version. We just have to
iterate through the (j, bj) numbers. For the first couple of
j values, all bj PMs with a(p) = j can be emptied, followed

1What the algorithm returns is actually not a real mapping because it
does not determine where to place the migrated VMs. Since the capacity
constraints do not have to be observed now, this does not matter: they could
be placed on any of the used PMs.

cost = C0;
mig = 0;
j = 0;
while j ≤ J and j < α/µ and mig < K ′ do

t := min(bj , b(K ′ −mig)/jc);
mig += t · j;
cost −= (α · t− µ · t · j);
j ++;

end

Algorithm 3: Simplified algorithm for the relaxed prob-
lem

by a case in which only some t < bj PMs can be emptied,
resulting in mig = K ′. Using Algorithm 3, the lower bound
on the cost can be easily and quickly computed, if the values
of C0, J , and the bj numbers are maintained.

E. Trading off running time and solution quality

All techniques so far help to reduce the running time of the
algorithm on typical problem instances, without sacrificing
optimality. However, the running time may still be too high
for practical applicability. The following techniques reduce
the running time further, but without guaranteeing optimality.

1) Symmetry breaking: In a real DC, it is common to
have many PMs of the same type. As long as they do not
host any VMs, their capacity is the same, introducing some
symmetry in the problem. When looking for a host for the
current VM v, of course the one on which map0 maps v
must be handled separately, but all others that have the same
capacity are equivalent choices – at least “almost equivalent,”
as we will see. Hence, it suffices to try just one of them. For
example, if there are 100 PMs, all of the same type, then
two of them must be tried (map0(v) and one of the others)
instead of 100, yielding a speedup of a factor 50.

Unfortunately, the PMs in question are not fully equivalent
because they host different VMs initially (i.e., according to
map0). Placing v on one of the PMs may require one of
the VMs that was initially on that PM to be migrated to
another PM, whereas placing v on another PM may not lead
to migrations, for example. By considering only one of these
PMs for v, the search is not complete anymore: optimality is
not guaranteed. Nevertheless, it can be a good heuristic.

2) Discarding small improvement possibilities: If we do
not strive for optimality, then a sensible goal is to strive for a
solution with cost at most γ times the optimum, where γ > 1
is some given constant. Recall from Algorithm 1 that we
backtrack if min_cost ≥ best_cost_so_far. Now, this con-
dition can be changed to min_cost ≥ best_cost_so_far/γ,
resulting in more aggressive pruning. The justification is
that either best_cost_so_far is already within γ times the
optimum, in which case we do not need any further search,
or otherwise the condition min_cost ≥ best_cost_so_far/γ
implies that min_cost is higher than the optimum, so that
pruning this part of the search tree does not remove the
optimum.

3) Limiting the runtime: The most drastic measure is to
simply stop the search after some given time limit, and return
the best allocation found so far.

F. Further remarks

The algorithm can be easily extended to accommodate
further constraints in the form of additional pruning rules.
E.g., colocation or anti-colocation requirements may exist for
certain sets of VMs. These can be ensured by removing the
non-compliant options from the list of PM candidates for each
VM. E.g., if VMs v1 and v2 must not be colocated and the
algorithm decides to map v1 to PM p, then p must be removed
from the list of possible PMs of v2.

The algorithm works with an arbitrary number of dimen-
sions d. Considering the impact on the running time, the steps
of the algorithm are either agnostic of the value of d, or have
a linear runtime in d. Further, d is small in practice. Thus,
there is no combinatorial explosion with respect to d.

VI. EVALUATION

We compare, by means of simulation experiments, three
algorithms. The first two methods use off-the-shelf ILP
solvers on the ILP formulation of Section IV, as suggested
so far in the literature. The solvers are: lp_solve2 5.5.2, one
of the leading free open-source packages and Gurobi3 6.0.5,
a successful commercial product. The third method is our
branch-and-bound (BB) algorithm. All measurements were
carried out on a desktop PC with 2.6 GHz Pentium E5300
Dual-Core CPU and 3 GB DDR2 800MHz RAM, running
MS Windows 7.

Problem instances were generated in the following way.
The number of dimensions, d, is set to 2. There are 4 PM
types; each PM belongs to a randomly selected PM type.
In each dimension, the capacity of PM types is randomly
generated between 8 and 14, whereas the load of each VM
is randomly taken between 1 and 5. The number of PMs
and VMs was determined for each experiment separately (see
below), varying between 25 and 4000. The number of allowed
migrations, K, is set to 10% of the number of PMs. The
weights in the cost function are α = 10 and µ = 1.

The initial allocation of VMs to PMs is generated in two
steps. First, each VM is randomly mapped on one of the PMs.
Such a random mapping may lead to an unrealistically high
number of overloaded PMs that cannot be repaired with the
limited number of migrations. Hence, in a second step, the
First-Fit heuristic is used to pack the VMs into the PMs, with
the extension that VMs that did not fit into any PM remain on
the PM determined by the random placement. The result is a
mapping that has likely few overloaded PMs and some room
for consolidation; hence, it models well the typical initial
mapping for a VM placement re-optimization algorithm.

Each algorithm is run on each problem instance with
a timeout of 60 seconds. All presented numbers are the
median of 10 measurements. Moreover, we also present lower
bounds for the optimum; these were obtained by applying the

2http://lpsolve.sourceforge.net/5.5/
3http://www.gurobi.com/

TABLE I
CONFIGURATION OF THE BRANCH-AND-BOUND ALGORITHM

Technique Used variant

VM selection First-fail; tie-breaking: sorting according to
the maximal dimension

PM selection Initial PM first; rest sorted lexicographically
Lower bound Used as described
Symmetry breaking Used as described
Pruning small improve-
ments

Not used (γ = 1)

0

200

400

600

800

1000

1200

1400

50 100 150 200 250 300 350 400

C
o

st

Nr. of VMs

Lower bound Branch-and-bound Gurobi lp_solve

Fig. 1. Scalability results on small problem instances

bounding method of Section V-D before any branching has
taken place.

A. Parameter tuning

First, we aimed at finding good settings for the parameters
of the BB algorithm. We used randomly generated problem
instances with m varying between 25 and 450 and n varying
between 50 and 900. Most of the techniques built into the
algorithm proved to be indeed useful. The only exception was
the technique described in Section V-E2 to cut off branches
with small improvement possibilities. The reason why this did
not help is probably that – as shown below – the algorithm
quickly finds solutions that are quite near the optimum, so
that only small improvements are possible afterwards.

The configuration that turned out to be best and was used
for the later experiments is shown in Table I.

B. Comparison

Our main objective was to assess the scalability of the three
algorithms. To that end, we considered problem instances of
increasing size. For this experiment, we fixed the ratio of
VMs to PMs to 2, and increased the number of PMs from 25
to 2000, with the number of VMs ranging from 50 to 4000.

To enhance visibility, the results are split into two figures.
Fig. 1 shows results for problem instances with n ≤ 400,
whereas Fig. 2 shows the results for bigger problem instances.

In Fig. 1, all algorithms perform very similarly for the
smallest problem instances. For n ≥ 150, lp_solve fails to
deliver a solutio. The other two algorithms continue to deliver
solutions, with Gurobi performing slightly better than BB
for 150 ≤ n ≤ 300. However, BB closes in on Gurobi
at around n = 350 . . . 400. In Fig. 2 we see that for
n ≥ 600, BB already consistently outperforms Gurobi, with
the latter increasingly drifting away from the optimum. After

0

2000

4000

6000

8000

10000

12000

600 1000 1400 1800 2200 2600 3000 3400 3800

C
o

st

Nr. of VMs

Lower bound Branch-and-bound Gurobi

Fig. 2. Scalability results on big problem instances

0

1000

2000

3000

4000

5000

500 600 700 800 900 1000 1100 1200 1300 1400 1500

C
o

st

Nr. of VMs

Lower bound Branch-and-bound Gurobi

Fig. 3. Instances with different density (m = 500 is constant)

n ≥ 2600, Gurobi fails to find a valid solution within the
given time limit. BB on the other hand continues to deliver
results.

The quality of the results found by BB is excellent: they are
in most cases within 10% of the lower bound, and therefore,
also within 10% of the optimum.

Finally, we assessed the effect of the load density (the n/m
ratio). With 500 PMs, we varied the number of VMs from
500 (lightly loaded DC) to 1500 (highly loaded DC). As can
be seen in Fig. 3, BB consistently outperforms Gurobi for
all densities (lp_solve did not produce valid results in this
range).

In our future work, we plan to undertake a more detailed
empirical analysis of the algorithm’s performance, also com-
paring it with other algorithms on more realistic test data.
Unfortunately, lacking generally accepted benchmarks, this
must be done in an ad-hoc manner.

ACKNOWLEDGMENT

This work was partially supported by the Hungarian Sci-
entific Research Fund (Grant Nr. OTKA 108947).

REFERENCES

[1] D. M. Batista, N. L. S. da Fonseca, and F. K. Miyazawa. A set
of schedulers for grid networks. In Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC’07), pages 209–213, 2007.

[2] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing. Future Generation Computer Systems, 28:755–768, 2012.

[3] A. Beloglazov and R. Buyya. Energy efficient allocation of virtual
machines in cloud data centers. In 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pages 577–578,
2010.

[4] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual
machines for managing SLA violations. In 10th IFIP/IEEE Interna-
tional Symposium on Integrated Network Management, pages 119–128,
2007.

[5] R. v. d. Bossche, K. Vanmechelen, and J. Broeckhove. Cost-optimal
scheduling in hybrid IaaS clouds for deadline constrained workloads. In
IEEE 3rd International Conference on Cloud Computing, pages 228–
235, 2010.

[6] D. Breitgand and A. Epstein. SLA-aware placement of multi-virtual
machine elastic services in compute clouds. In 12th IFIP/IEEE
International Symposium on Integrated Network Management, pages
161–168, 2011.

[7] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu. A multi-objective
ant colony system algorithm for virtual machine placement in cloud
computing. Journal of Computer and System Sciences, 79:1230–1242,
2013.

[8] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Resource pool
management: Reactive versus proactive or let’s be friends. Computer
Networks, 53(17):2905–2922, 2009.

[9] M. Guazzone, C. Anglano, and M. Canonico. Exploiting VM migration
for the automated power and performance management of green cloud
computing systems. In 1st International Workshop on Energy Efficient
Data Centers, pages 81–92. Springer, 2012.

[10] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu.
Mistral: Dynamically managing power, performance, and adaptation
cost in cloud infrastructures. In IEEE 30th International Conference
on Distributed Computing Systems, pages 62–73, 2010.

[11] A. Khosravi, S. K. Garg, and R. Buyya. Energy and carbon-efficient
placement of virtual machines in distributed cloud data centers. In
Euro-Par 2013, pages 317–328. Springer, 2013.

[12] D. G. do Lago, E. R. M. Madeira, and L. F. Bittencourt. Power-
aware virtual machine scheduling on clouds using active cooling control
and DVFS. In Proceedings of the 9th International Workshop on
Middleware for Grids, Clouds and e-Science, 2011.

[13] W. Li, J. Tordsson, and E. Elmroth. Virtual machine placement for
predictable and time-constrained peak loads. In Proceedings of the 8th
International Conference on Economics of Grids, Clouds, Systems, and
Services (GECON 2011), pages 120–134. Springer, 2011.

[14] Z. Á. Mann. Allocation of virtual machines in cloud data centers
– a survey of problem models and optimization algorithms. ACM
Computing Surveys, 48(1), 2015.

[15] Z. Á. Mann. Rigorous results on the effectiveness of some heuristics
for the consolidation of virtual machines in a cloud data center. Future
Generation Computer Systems, 51:1–6, 2015.

[16] Natural Resources Defense Council. Scaling up energy efficiency
across the data center industry: Evaluating key drivers and barriers. http:
//www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf,
2014.

[17] M. A. Salehi, P. R. Krishna, K. S. Deepak, and R. Buyya. Preemption-
aware energy management in virtualized data centers. In 5th Interna-
tional Conference on Cloud Computing, pages 844–851. IEEE, 2012.

[18] L. Shi, J. Furlong, and R. Wang. Empirical evaluation of vector
bin packing algorithms for energy efficient data centers. In IEEE
Symposium on Computers and Communications, pages 9–15, 2013.

[19] W. Song, Z. Xiao, Q. Chen, and H. Luo. Adaptive resource provisioning
for the cloud using online bin packing. IEEE Transactions on
Computers, 63(11):2647–2660, 2014.

[20] P. Svärd, W. Li, E. Wadbro, J. Tordsson, and E. Elmroth. Continuous
datacenter consolidation. Technical report, Umea University, 2014.

[21] L. Tomás and J. Tordsson. An autonomic approach to risk-aware data
center overbooking. IEEE Transactions on Cloud Computing, 2(3):292–
305, 2014.

[22] A. Verma, P. Ahuja, and A. Neogi. pMapper: power and migration
cost aware application placement in virtualized systems. In Middleware
2008, pages 243–264, 2008.

[23] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari. Server
workload analysis for power minimization using consolidation. In
Proceedings of the 2009 USENIX Annual Technical Conference, pages
355–368, 2009.

[24] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Sandpiper:
Black-box and gray-box resource management for virtual machines.
Computer Networks, 53(17):2923–2938, 2009.

[25] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal,
B. McKee, C. Hyser, D. Gmach, R. G., T. Christian, and L. Cherkasova.
1000 islands: an integrated approach to resource management for
virtualized data centers. Cluster Computing, 12(1):45–57, 2009.

