
1

Component-Based Hardware/Software Co-Design
Péter Arató, András Orbán, Zoltán Ádám Mann

Abstract— The unbelievable growth in the complexity of
computer systems poses a difficult challenge on system de-
sign. To cope with these problems, new methodologies are
needed that allow the reuse of existing designs in a hierar-
chical manner, and at the same time let the designer work
on the highest possible abstraction level.

Such reusable building blocks are called components in
the software world and IP (intellectual property) blocks in
the hardware world. Based on the similarity between these
two notions the authors propose a new system-level design
methodology, called component-based hardware-software
co-design, which allows rapid prototyping and functional
simulation of complex hardware-software systems. More-
over, a tool is presented supporting the new design method-
ology and a case study is shown to demonstrate the applica-
bility of the concepts.

I. INTRODUCTION

The goal of this research was to enable the design of
embedded systems using a component-based methodol-
ogy. A typical embedded system consists of both hardware
and software components, therefore our methodology has
to support them both. Moreover, the design of embedded
systems is typically constrained in several non-functional
aspects: the design has to respect costs and timing require-
ments such as hard real-time constraints.

In order to cope with the complexity of the designed
system, the design methodology has to allow the designer
to work at a sufficiently high level of abstraction. This
means that the designer works with behavioral compo-
nents, focusing mainly on functionality, while implemen-
tation issues are handled automatically. This also implies
that components are handled regardless of whether they
are implemented in hardware or in software. Moreover,
the methodology has to be supported by powerful tools that
provide a high-level view on the design while hiding and
automating lower-level implementation issues.

II. BASIC CONCEPTS

Our methodology is based on the following concepts.
We define a component as a functional unit. The composi-
tion of components is based on their functionality. This
functionality is captured by the interface of the compo-
nent, which is completely decoupled from its implemen-
tation. It is also possible to have more than one implemen-
tation for the same interface. What is more, it is possi-
ble that there is a hardware implementation and a software

implementation for the same interface. An important fea-
ture is hardware/software transparency, which means that
a change between the two implementations is transparent
to the rest of the system.

Thus we can identify three different kinds of compo-
nents. There can be components for which there is only a
software implementation. For instance, GUI elements or
a database component are typically implemented in soft-
ware. Similarly, there can be components for which there
is only a hardware implementation. For example, it does
not make sense to implement a video card in software. And
finally, there can be components for which there is both a
hardware and a software implementation. For instance, a
cryptographic algorithm can be realized either by a pro-
gram or by a special-purpose hardware unit [1].

During the design process, we face two consistency
problems that are special to hardware/software co-design.
We call the first one interface inconsistency. The question
to answer here is whether or not two implementations can
form a partitionable component. The other consistency
problem, called state consistency, relates to partitioning.
Namely, it is possible that repartitioning the system results
in swapping the two implementations for a given compo-
nent, and this way the state of a component can change.

III. TOOL SUPPORT

We have also developed a prototype tool for component-
based hardware/software co-design. It is an extension of
the Component Workbench [7]. Beside software com-
ponents, the extended workbench also handles hardware
component models by means of wrappers. Moreover, it
also supports partitionable components. We have also in-
tegrated a partitioning algorithm that is based on integer
linear programming [6] and we implemented the discussed
consistency check mechanisms.

IV. DEMO DESCRIPTION

The demo is concerned with frequency measurement,
which has a number of important applications including
mobile devices, car electronics, hard disk drives and so on.

In the demo, the frequency measurer is a partitionable
component. That is, we have a cheap software imple-
mentation for it, which works on a micro-controller, and
a more expensive hardware implementation based on a
Field Programmable Gate Array. The software realization



2

is much slower, enabling it to measure frequency values
under 25kHz, whereas the FPGA realization even works
in the MHz domain appropriately.

The partitionable frequency measurer is part of a bigger
application. The architecture consists of a signal gener-
ator that can generate signals of different frequency, the
two implementations of the frequency measurer, as well
as a PC, which is responsible for displaying the measured
frequency values over time.

The demo shows the easy composition of the differ-
ent software, hardware, and partitionable components in
the Component Workbench. It also demonstrates consis-
tency checking mechanisms, as well as automated parti-
tioning between hardware and software implementations
of a component.

V. RELATED WORK

System-level design issues are addressed in [3], [4], [5].
In [9] a fast prototyping approach of complex systems is
considered. Another related issue is interface synthesis
(see [2] and references therein). For automatic component
matching, see [10].

Our approach is different from these works in that it pro-
vides the designer with a very high-level view on the sys-
tem, in which implementation details are completely hid-
den. Moreover, our system provides several automation
possibilities.

VI. INTEGRATION

The methodology and tool presented here is an exten-
sion of the Component Workbench and the underlying Vi-
enna Component Framework [8].

VII. SUMMARY

Our methodology supports hardware and software com-
ponents in a uniform way. It can also handle partitionable
components, which can be partitioned between hardware
and software using the developed algorithms. We also de-
veloped methods for checking both interface consistency
and state consistency. Our methodology is also supported
by a graphical tool, which is an extension of the Compo-
nent Workbench.

REFERENCES

[1] P. Arató, S. Juhász, Z. Á. Mann, A. Orbán, and D. Papp. Hard-
ware/software partitioning in embedded system design. In Pro-
ceedings of the IEEE International Symposium on Intelligent Sig-
nal Processing, 2003.

[2] A. Basu, R. Mitra, and P. Marwedel. Interface synthesis for em-
bedded applications in a co-design environment. In 11th IEEE
International conference on VLSI design, pages 85–90, 1998.

[3] P. Chou, R. Ortega, K. Hines, K. Partridge, and G. Borriello.
Ipchinook: an integrated ip-based design framework for dis-

tributed embedded systems. In Design Automation Conference,
pages 44–49, 1999.

[4] Ph. Coussy, A. Baganne, and E. Martin. A design methodology
for integrating ip into soc systems. In Confrence Internationale
IEEE CICC, 2002.

[5] S. J. Krolikoski, F. Schirrmeister, B. Salefski, J. Rowson, and
G. Martin. Methodology and technology for virtual component-
driven hardware/software co-design on the system level. In IS-
CAS, 1999.

[6] Z. Á. Mann and A. Orbán. Optimization problems in system-
level synthesis. In Proceedings of the 3rd Hungarian-Japanese
Symposium on Discrete Mathematics and Its Applications, 2003.

[7] Johann Oberleitner and Thomas Gschwind. Composing dis-
tributed components with the Component Workbench. In Pro-
ceedings of the 3rd International Workshop on Software Engi-
neering and Middleware, volume 2596 of Lecture Notes in Com-
puter Science. Springer-Verlag.

[8] Johann Oberleitner, Thomas Gschwind, and Mehdi Jazayeri. The
Vienna Component Framework: Enabling composition across
component models. In Proceedings of the 25th International
Conference on Software Engineering (ICSE 2003), pages 25–35.
IEEE, May 2003.

[9] F. Pogodalla, R. Hersemeule, and P. Coulomb. Fast protoyping:
a system design flow for fast design, prototyping and efficient IP
reuse. In CODES, 1999.

[10] P. Roop and A. Sowmya. Automatic component matching using
forced simulation. In 13th International Conference on VLSI De-
sign. IEEE Press, 2000.


