
matcos- Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science

Koper, Slovenia, 13–14 October

Determining the expected runtime of an exact graph
coloring algorithm

Zoltán Ádám Mann
Budapest University of Technology and

Economics
Department of Computer Science and

Information Theory
Magyar tudósok körútja 2., 1117 Budapest,

Hungary
zoltan.mann@cs.bme.hu

Anikó Szajkó
Budapest University of Technology and

Economics
Department of Computer Science and

Information Theory
Magyar tudósok körútja 2., 1117 Budapest,

Hungary
szajko.aniko@gmail.com

ABSTRACT
Exact algorithms for graph coloring tend to have high vari-
ance in their runtime, posing a significant obstacle to their
practical application. The problem could be mitigated by
appropriate prediction of the runtime. For this purpose, we
devise an algorithm to efficiently compute the expected run-
time of an exact graph coloring algorithm as a function of the
parameters of the problem instance: the graph’s size, edge
density, and the number of available colors. Specifically, we
investigate the complexity of a typical backtracking algo-
rithm for coloring random graphs with k colors. Using the
expected size of the search tree as the measure of complex-
ity, we devise a polynomial-time algorithm for predicting
algorithm complexity depending on the parameters of the
problem instance. Our method also delivers the expected
number of solutions (i.e., number of valid colorings) of the
given problem instance, which can help us decide whether
the given problem instance is likely to be feasible or not.
Based on our algorithm, we also show in accordance with
previous results that increasing the number of vertices of the
graph does not increase the complexity beyond some com-
plexity limit. However, this complexity limit grows rapidly
when the number of colors increases.

1. INTRODUCTION AND PREVIOUS

WORK
Graph coloring1 is one of the most fundamental problems in
algorithmic graph theory, with many practical applications,
such as register allocation, frequency assignment, pattern
matching, and scheduling [22, 6, 19]. Unfortunately, graph
coloring is NP -complete [11]. Moreover, if P �= NP , then no
polynomial-time approximation algorithm with an approxi-
mation factor smaller than 2 can exist for graph coloring [10].

1See Section 2 for detailed definitions.

Exact graph coloring algorithms are often variants of the
usual backtrack algorithm. The backtrack algorithm has the
advantage that, by pruning large parts of the search tree, it
can be significantly more efficient than checking the whole
search space exhaustively. In the worst case, the backtrack
algorithm requires an exponential number of steps, but its
average-case complexity is O(1) [27]. The runtime can vary
significantly: both very short and very long runs have non-
negligible probability [16].

The probabilistic analysis of the coloring of random graphs
was first suggested in the seminal paper of Erdős and Rényi
[9]. Subsequent work of Grimmett and McDiarmid [13], Bol-
lobás [4], and Luczak [17], lead to an understanding of the
order of magnitude of the expected chromatic number of
random graphs. Through the recent work of Shamir and
Spencer [24], Luczak [18], Alon and Krivelevich [2], and
Achlioptas and Naor [1], we can determine almost exactly
the expected chromatic number of a random graph in the
limit: with probability tending to 1 when the size of the
graph tends to infinity, the expected chromatic number of a
random graph is one of two possible values.

In terms of the running time of the backtracking algorithm
on random graphs, much less is known. Bender and Wilf
gave lower and upper bounds on the runtime of backtrack-
ing in the non-k-colorable case [3]. Asymptotically, these
bounds are quite good, but in practical cases, there can
be several orders of magnitude difference between the lower
and upper bounds. In a recent paper, we improved these
bounds [20], but there still exists a range of the input pa-
rameters, in which there is a non-negligible gap between
the lower and upper bounds (see Figure 1, and note also
the exponential scale on the vertical axis). Hence, accurate
prediction of the algorithm’s runtime is still only partially
possible.

Predicting the runtime of the algorithm would greatly im-
prove its practical usability, by informing the user in ad-
vance about the estimated runtime. This would let the user
decide if the exact solution of the problem is realistic in
the available time frame, or a heuristic solution should be
used instead. More generally, it allows the manual or auto-
mated selection of the most suitable algorithm from an al-
gorithm portfolio [12]. It also enhances load balancing when

matcos- Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science

Koper, Slovenia, 13–14 October

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

10
22

edge probability: p

ex
pe

ct
ed

 tr
ee

si
ze

Bender�Wilf upper bound
best upper bound
best lower bound
Bender�Wilf lower bound

Figure 1: Lower and upper bounds on algorithm runtime of Bender and Wilf [3] and the best known bounds
from our recent paper [20]

several problem instances are solved in parallel on multiple
machines.

Empirical study of the behaviour of search algorithms and
the complexity of graph coloring problem instances has lead
to the discovery of a phase transition phenomenon with an
accompanying easy-hard-easy pattern [7, 15, 14, 8]. Briefly,
this means that, given k colors, for small values of the edge
density (underconstrained case), almost all random graphs
are colorable. When the edge density of the graph increases,
the ratio of k-colorable graphs abruptly drops from almost 1
to almost 0 (phase transition). After this critical region, al-
most all graphs are non-k-colorable (overconstrained case).
In the underconstrained case, coloring is easy: even the sim-
plest heuristics usually find a proper coloring [26, 5]. In
the overconstrained case, it is easy for backtracking algo-
rithms to prove uncolorability because they quickly reach
contradiction [23]. The hardest instances lie in the criti-
cal region [7]. This phenomenon is exemplified in Figure 2,
showing our own empirical findings, experimenting with a
backtrack graph coloring algorithm [21].

Summarizing these results, one can state that we have a
good quantitative understanding of graph coloring in the
limit (when the size of the graph tends to infinity) and a
good qualitative understanding of it in the finite case. Our
aim in this paper is to study the hardness of graph coloring
quantitatively with accurate results for finite graphs.

Hence, our aim is to devise an algorithm for obtaining ac-

curate results on the expected runtime of the backtrack al-
gorithm in coloring random graphs. Like [3] and [20], we
restrict ourselves to the non-k-colorable case (see Section
2). More specifically, our complexity results are accurate in
the non-k-colorable case, but only an upper bound in the
k-colorable case. To use a machine independent measure of
algorithm complexity, we analyze the expected size of the
search tree as a function of problem instance paramteres:
the size of the graph, the edge density and the number of
available colors (Section 3). Our contribution is an algo-
rithm for determining the expected size of the search tree
exactly (Section 4). The algorithm uses dynamic program-
ming, and its runtime is polynomial in the size of the graph.
As a by-product, we also obtain the exact value of the ex-
pected number of solutions as a function of input parameters
(Section 5). We also present our empirical findings on how
the complexity of the problem and the number of solutions
depend on the input parameters (Section 6). Finally, Section
7 concludes the paper.

2. PRELIMINARIES
We consider the decision version of the graph coloring prob-
lem, in which the input consists of an undirected graph
G = (V,E) and a number k, and the task is to decide
whether the vertices of G can be colored with k colors such
that adjacent vertices are not assigned the same color. The
input graph is a random graph from Gn,p, i.e. it has n ver-
tices and each pair of vertices is connected by an edge with
probability p independently from each other. The vertices
of the graph will be denoted by v1, . . . , vn, the colors by

matcos- Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science

Koper, Slovenia, 13–14 October

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
01

0,
06

0,
11

0,
16

0,
21

0,
26

0,
31

0,
36

0,
41

0,
46

0,
51

0,
56

0,
61

0,
66

0,
71

0,
76

0,
81

0,
86

0,
91

0,
96

p : edge probability

S
o

lv
a

b
il

it
y

0

50000

100000

150000

200000

250000

300000

B
a

c
k

tr
a

c
k

s

Solvability

Backtracks

Figure 2: The runtime complexity of a backtrack algorithm (right y-axis: number of backtracks) and the
ratio of feasible problem instances (left y-axis: solvability) in the coloring of Gn,p random graphs for n = 70,
as a function of the edge probability (p). The number of colors is k = 8.

1, . . . , k. A coloring assigns a color to each vertex; a partial
coloring assigns a color to some of the vertices. A (partial)
coloring is invalid if there is a pair of adjacent vertices with
the same color, otherwise the (partial) coloring is valid.

The backtrack algorithm considers partial colorings. It starts
with the empty partial coloring, in which no vertex has color.
This is the root – that is, the single node on level 0 – of the
search tree2. Level t of the search tree contains the kt possi-
ble partial colorings of v1, . . . , vt. The search tree, denoted
by T , has n+ 1 levels (0, 1, . . . , n), the last level containing
the kn colorings of the graph. For simplicity of notation, we
use w ∈ T to denote that the partial coloring w is a node of
the search tree. Furthermore, let Tt denote the set of par-
tial colorings on level t of T . If t < n and w ∈ Tt, then w

has k children in the search tree: those partial colorings of
v1, . . . , vt+1 that assign to the first t vertices the same colors
as w.

A node w ∈ Tt is a partial coloring, i.e. it can also be
regarded as a function w : {v1, v2, . . . vt} → {1, 2, . . . , k}.
That is, for w ∈ Tt and v ∈ {v1, v2, . . . vt}, w(v) denotes the
color of vertex v in the partial coloring w. In other cases,
i.e. when t < i ≤ n, then w(vi) is undefined as w assigns no
color to vi.

2In order to avoid misunderstandings, we use the term ‘ver-
tex’ in the case of the input graph and the term ‘node’ in
the case of the search tree.

In each partial coloring w, the backtrack algorithm considers
the children of w and visits only those that are valid. Invalid
children are not visited, and this way, the whole subtree
under an invalid child of the current node is pruned. This is
correct because all nodes in such a subtree are also certainly
invalid.

T depends only on n and k, not on the specific input graph.
However, the algorithm visits only a subset of the nodes
of T , depending on which vertices of G are actually con-
nected. The number of actually visited nodes of T will be
used to measure the complexity of the algorithm on the given
problem instance. Moreover, the number of actually visited
nodes on the nth level of T yields the number of solutions.

Of course, this is a simplified algorithm model. In practice,
a backtracking graph coloring algorithm can be enhanced
with several techniques, e.g. heuristics for the choice of the
next vertex to color and the order in which the colors should
be considered, symmetry breaking, consistency propagation
etc. [25]. Nevertheless, this simplified model captures well
the main phenomena of any backtracking-style algorithm
(i.e., branching as well as pruning invalid subtrees of the
search tree), especially in the non-k-colorable case. This is
because in the non-k-colorable case, the search space to be
traversed is to a large extent given, and the algorithm must
traverse all of it (except for the pruned subtrees of the search
tree). In the k-colorable case, the ideas mentioned above for
speeding up the algorithm can be leveraged more intensively.

matcos- Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science

Koper, Slovenia, 13–14 October

E.g., with lucky choices of the vertices to color and the col-
ors to assign to them, the algorithm might manage to color
the graph with a very small amount of – or even zero – back-
tracking. In contrast, in the non-k-colorable case, the order
in which the colors to assign to a given vertex are tried does
not matter because all of them have to be tried anyway.
Therefore, our model is realistic in the non-k-colorable case;
in the k-colorable case, our complexity results can be seen
as upper bounds on real algorithm complexity.

3. THE EXPECTED NUMBER OF VISITED

NODES OF THE SEARCH TREE
For each w ∈ T , we define the following random variable
(the value of which depends on the choice of G):

Yw =

{

1 if w is valid,

0 else.

Let pw = Pr(Yw = 1). Moreover, we define one more ran-
dom variable (whose value also depends on the choice of G):
Y = the number of visited nodes of T .

Since the algorithm visits exactly the valid partial colorings,
it follows that Y =

∑

w∈T
Yw, and thusE(Y) =

∑

w∈T
E(Yw).

Moreover, it is clear that E(Yw) = pw. It follows that the
expected number of visited nodes in T is:

E(Y) =
∑

w∈T

pw.

For w ∈ Tt, let

Q(w) :=
{

{x, y} : x, y ∈ {v1, . . . , vt}, x �= y,w(x) = w(y)
}

be the set of pairs of vertices with identical colors, and let
q(w) := |Q(w)|. Clearly, w is valid if and only if, for all
{x, y} ∈ Q(w), x and y are not adjacent. It follows that

pw = (1 − p)q(w) and thus the expected number of visited
nodes of T is:

E(Y) =
∑

w∈T

(1− p)q(w)
.

Note that computing E(Y) directly through this formula is
not tractable since |T | is exponentially large in n. In the
following, we devise a way to overcome this hurdle by a
smart grouping of the terms of this sum.

4. EFFICIENT CALCULATION USING DY-

NAMIC PROGRAMMING
Before presenting our algorithm, we need to introduce some
further notions. Our first aim is to compute the maximum
possible value of q(w) within Tt.

We denote by s(w, i) (or simply si if it is clear which partial
coloring is considered) the number of vertices of G that are
assigned color i in the partial coloring w.

Proposition 1. For all w ∈ Tt, q(w) ≤
(

t

2

)

.

Proof.

q(w) =

k
∑

i=1

(

si

2

)

=
1

2

(

k
∑

i=1

s
2
i −

k
∑

i=1

si

)

≤

≤
1

2

⎛

⎝

(

k
∑

i=1

si

)2

−
k

∑

i=1

si

⎞

⎠ =
1

2

(

t
2 − t

)

=

(

t

2

)

.

We will denote this value as qmax(t) or simply qmax. It is
also possible to derive a formula for the minimum of q(w)
[20], depending on the value of t and k. This value will be
denoted by qmin(t, k) or simply qmin. The exact formula for
qmin(t, k) is not necessary for our purposes.

Let R(q, t, k) := |{w ∈ Tt : q(w) = q}| denote the frequency
of value q among the q(w) values of the nodes in Tt, given
k colors. (The right-hand-side of the definition of R(q, t, k)
does not seem to depend on k. However, w inherently de-
pends on k.)

In the sum
∑

w∈Tt
(1 − p)q(w), we can group the terms ac-

cording to the q values. Since R(q, t, k) is the frequency of
the value q among the q(w) values of nodes in Tt, we obtain

∑

w∈Tt

(1− p)q(w) =

qmax(t)
∑

q=qmin(t)

R(q, t, k)(1− p)q.

Therefore,

E(Y) =
∑

w∈T

(1− p)q(w) =
n
∑

t=0

qmax(t)
∑

q=qmin(t)

R(q, t, k)(1− p)q.

If we could determine all the R(q, t, k) values explicitly, this
would enable us to efficiently calculate the exact value of
E(Y) using this formula. Determining the R(q, t, k) values
is possible with the following recursion (we write ℓ instead
of k as third parameter, so that the meaning of k is not
affected):

Proposition 2.

R(q, t, ℓ) =

t
∑

j=0

(

t

j

)

R

(

q −

(

j

2

)

, t− j, ℓ− 1

)

.

Proof. Assume that color class 1 contains j vertices.
There are

(

t

j

)

possibilities to choose these j vertices. The
remaining t − j vertices must be colored with ℓ − 1 col-
ors. Moreover, the j vertices of color 1 already account for
(

j

2

)

vertex pairs with identical colors. Hence, the remain-
ing t − j vertices must be colored in such a way that the
number of vertex pairs with identical colors out of these
t − j vertices equals q −

(

j

2

)

. For this, there are exactly

R
(

q −
(

j

2

)

, t− j, ℓ− 1
)

possibilities.

Based on this recursive formula, we can use dynamic pro-
gramming to compute the R(q, t, ℓ) values and store them in

matcos- Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science

Koper, Slovenia, 13–14 October

Algorithm 1 Dynamic programming algorithm to compute
E(Y)

//Set R values for ℓ = 1
for t=0 to n

{
R
((

t

2

)

, t, 1
)

= 1
}

//Set R for higher values of ℓ
for ℓ=2 to k

{
for t=0 to n

{
for q=qmin to qmax

{
//Use the recursive formula to compute R

R(q, t, ℓ) = 0
for j=0 to t

{
//Consider the current term only if non-zero
if q −

(

j

2

)

≥ qmin(t− j, ℓ− 1)
{

term =
(

t

j

)

R
(

q −
(

j

2

)

, t− j, ℓ− 1
)

R(q, t, ℓ) = R(q, t, ℓ) + term

}
}

}
}

}

//Compute E(Y)
result=0
for t=0 to n

{
for q=qmin to qmax

{
result=result+R(q, t, k)(1− p)q

}
}
E(Y)=result

a 3-dimensional table. We fill this table according to increas-
ing values of ℓ. This works because computing R(q, t, ℓ) re-
quires only already computed values of the form R(q′, t′, ℓ−
1). For a given ℓ, we must iterate through the possible val-
ues of t from 0 to n, and for each such t, we must fill the
table for all possible values of q from qmin to qmax. See
Algorithm 1 for details.

As a starting point, if ℓ = 1, then for all values of t, Tt

consists of a single partial coloring in which all vertices
are assigned the same single color. Therefore, if ℓ = 1,
then qmin = qmax =

(

t

2

)

and for this value of q we have
R(q, t, 1) = 1. As additional boundary conditions, we have
R(q, t, ℓ) = 0 in all cases when t < 0 or q < qmin.

Since t = O(n), j = O(n), qmax = O(n2), and ℓ = O(k),
the runtime of Algorithm 1 is O(kn4). This is polynomial
in the size of the graph, though quite high. On the other
hand, the calculation of the R(q, t, ℓ) values is the most
time-consuming part of the algorithm, and these values can
be pre-computed and stored. Afterwards, we can compute

E(Y) more quickly – namely in O(n3) steps – for different
values of n, p, k.

5. THE EXPECTED VALUE OF THE NUM-

BER OF SOLUTIONS
As a by-product of the presented model for algorithm per-
formance, we also obtain results on the expected number
of solutions. This is because the number of solutions is ex-
actly S =

∑

w∈Tn
Yw, and thus the expected number of

solutions is E(S) =
∑

w∈Tn
(1 − p)q(w). As previously, this

sum has exponentially many terms, but again, the terms can
be grouped according to the value q among the q(w) values.
With the notation introduced previously, we can write it as

E(S) =

qmax
∑

q=qmin

R(q, n, k)(1− p)q.

Thus we can compute E(S) with a slight modification of Al-
gorithm 1 in O(kn4) time. If the R(q, t, k) values are already
pre-computed, then computing E(S) takes only O(n2) time,
since the above formula for E(S) has less than qmax terms
and qmax = O(n2).

Recalling that our runtime prediction is accurate for non-
k-colorable graphs only, the expected number of solutions
can help us to decide, in what range of the parameters our
runtime prediction is accurate. If the expected number of
solutions is very small, then probably there is no solution
and hence our runtime estimation is accurate, whereas if
the expected number of solutions is high, then probably the
graph is k-colorable, and our runtime prediction is only an
upper bound on the real value. More precisely, knowing the
expected number of solutions allows us to estimate the prob-
ability that a problem instance is solvable using Markov’s
inequality:

Pr(solvable) = Pr(S ≥ 1) ≤ E(S).

What is more, the probability of solvability can also be
bounded from below using the first and second moments
of S [1]. Practically, if the problem instance parameters are
such that E(S) is significantly less than 1, then such prob-
lem instances are probably unsolvable. If, on the other hand,
E(S) is significantly above 1, then the problem instances are
probably solvable. That is, the phase transition will be near
the point where E(S) ≈ 1.

6. NUMERICAL RESULTS
This section shows some simulation results based on the pre-
sented method.

6.1 Size of the search tree
The method presented in Section 4 enables us to gain some
insight as to how the complexity of graph coloring changes
for different values of the parameters n, k, and p. Figure 3
shows an example: E(Y) as a function of n and k, for fixed
p. We can conclude from the figure that for small values of k,
the problem is easy, even if n becomes large. This is consis-
tent with previous results on the relatively low average-case
complexity of graph coloring [27, 26]: although the com-
plexity is exponential in n in the worst case, but it is O(1)

matcos- Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science

Koper, Slovenia, 13–14 October

5
10

15
20

25
30

35
40

45
50

3

4

5

6

7

8
10

0

10
5

10
10

10
15

number of

colors: k

Treesize

number of

vertices: n

Figure 3: Expected size of the search tree for p = 0.5, as a function of n and k.

in the average case. However, as k increases, this increases
the complexity of the problem dramatically (note the expo-
nential scale on the vertical axis). It is still true that the
complexity saturates, i.e. increasing n does not increase the
complexity significantly after some threshold. However, this
saturation takes place at a much higher value than in the
case of small k.

The same phenomenon is depicted in Figure 4 from a dif-
ferent perspective. Here, n is fix, and p and k are varied.
Again, it can be seen from the figure, that the complexity
is in many cases quite low and hardly increasing with grow-
ing k. However, there is again a range of the parameters in
which the complexity explodes. This is in line with the prac-
tical experience of high variability in the runtime of the algo-
rithm. It is also clear that the curve must be monotonously
decreasing in p: this is because in the non-k-colorable case,
where our algorithm model is accurate, increasing p makes
it easier for the algorithm to prove uncolorability, as more
edges are likely to make the contradiction apparent earlier
on (at a higher level of the search tree).

6.2 Number of solutions
Using the method presented in Section 5, we can also look at
the expected number of solutions, and thus the picture can
be further refined. Figure 5 depicts the expected number of
solutions together with the expected size of the search tree
for fix n and k, as a function of p. Since the complexity
is exactly the number of all valid partial colorings in the

search tree, and the number of solutions is the number of
valid colorings on the nth level of the search tree, the figure
shows clearly the changing contribution of the nth level of
the search tree to the total search tree size. As can be seen,
for small values of p, the search tree is dominated by the nth
level.

However, as p increases, the contribution of the nth level
decreases rapidly. This is again a consequence of the fact
that the increased number of edges let the algorithm de-
tect inconsistencies earlier on, thus it becomes rare that the
algorithm actually reaches the nth level.

As mentioned earlier, our results are only accurate for non-k-
colorable graphs, and the transition between k-colorability
and non-k-colorability occurs roughly where the expected
number of solutions is 1. Figure 5 also shows where this
happens: for the used parameters, it is around p ≈ 0.5.
Hence, for the given values of n and k, our results are ac-
curate in the p > 0.5 region. In other words, the curve in
Figure 5 that shows the expected size of the search tree is
accurate only in the right half of the diagram; in the left
half, is is only an upper bound on the algorithm’s runtime
complextiy.

Finally, Figure 6 depicts the expected number of solutions
together with the expected size of the search tree for fix p

and k, as a function of n. As can be seen, for small val-
ues of n (in the range of 2k . . . 3k), the expected number of
solutions is relatively high, i.e. the contribution of the nth

matcos- Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science

Koper, Slovenia, 13–14 October

3
4

5
6

7
0

0.2
0.4

0.6
0.8

1

10
0

10
10

10
20

10
30

10
40

Treesize

edge
probability: p

number of colors: k

Figure 4: Expected size of the search tree for n = 40, as a function of p and k.

level of the search tree is high. In this region, increasing n

significantly increases the algorithm’s runtime. This is logi-
cal, because if n increases, then the algorithm will also visit
many nodes on level n+1 of the search tree. However, after
a while, the already mentioned saturation takes place. The
expected number of solutions becomes very small, indicating
that the algorithm rarely gets to the nth level of the search
tree, as it usually finds a contradiction much earlier, without
descending that far in the search tree. Accordingly, further
increasing n does not significantly increase the complexity
anymore, because the algorithm visits the lower parts of
the search tree rarely anyway. This phenomenon reveals an
interesting and quite complex connection between the algo-
rithm’s runtime complexity and the number of solutions.

7. CONCLUSION AND FUTURE WORK
In this paper, we have investigated the runtime complex-
ity of a typical backtracking algorithm for coloring random
graphs of the class Gn,p with k colors. Using the expected
size of the search tree as the measure of complexity, we de-
vised a polynomial-time algorithm for predicting the back-
track algorithm’s runtime complexity. As a by-product, our
method also delivers the expected number of solutions of
the given problem instance, which is interesting in its own
right, but also helps to quantify when our model of runtime
complexity is accurate.

Using the developed methods, we analyzed numerically how
the algorithm’s runtime complexity depends on the input

parameters n, p, and k. We obtained a rich picture with
regions of very low and very high complexity, and varying
sensitivity with respect to changes in the input parameters.
This way, our model can explain several of the phenom-
ena that had been discovered before about the behaviour of
backtrack-style optimization algorithms on graph coloring
and related problems.

We also showed the multifaceted connection between the ex-
pected complexity of the problem and the expected number
of solutions.

The most important limitation of the approach presented
in this paper is that it is only accurate for non-k-colorable
problem instances. Our future work will focus on extend-
ing the presented results to k-colorable problem instances.
The main challenge of this is to take into account the order
in which the algorithm visits the children of a node of the
search tree, because this can have significant impact on the
algorithm’s running time. This difference might make it nec-
essary to use different and/or more sophisticated methods
to derive similar results for the case of k-colorable graphs as
well.

Acknowledgements
This work was partially supported by the Hungarian Na-
tional Research Fund and the National Office for Research
and Technology (Grant Nr. OTKA 67651).

matcos- Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science

Koper, Slovenia, 13–14 October

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

�250

10
�200

10
�150

10
�100

10
�50

10
0

10
50

10
100

p: edge probability

Treesize

Number of solutions

Figure 5: Expected number of solutions and expected search tree size for n = 75 and k = 10, as a function of
p.

8. REFERENCES
[1] D. Achlioptas and A. Naor. The two possible values of

the chromatic number of a random graph. In 36th
ACM Symposium on Theory of Computing (STOC
’04), pages 587–593, 2004.

[2] N. Alon and M. Krivelevich. The concentration of the
chromatic number of random graphs. Combinatorica,
17(3):303–313, 1997.

[3] E. A. Bender and H. S. Wilf. A theoretical analysis of
backtracking in the graph coloring problem. Journal of
Algorithms, 6(2):275–282, 1985.

[4] B. Bollobás. The chromatic number of random graphs.
Combinatorica, 8(1):49–55, 1988.

[5] D. Brélaz. New methods to color the vertices of a
graph. Communications of the ACM, 22(4):251–256,
1979.

[6] P. Briggs, K. D. Cooper, and L. Torczon.
Improvements to graph coloring register allocation.
ACM Transactions on Programming Languages and
Systems, 16(3):428–455, 1994.

[7] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where
the really hard problems are. In 12th International
Joint Conference on Artificial Intelligence (IJCAI
’91), pages 331–337, 1991.

[8] J. Culberson and I. Gent. Frozen development in
graph coloring. Theoretical Computer Science,

265(1-2):227–264, 2001.

[9] P. Erdős and A. Rényi. On the evolution of random
graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl,
5:17–61, 1960.

[10] M. R. Garey and D. S. Johnson. The complexity of
near-optimal graph coloring. Journal of the ACM,
23:43–49, 1976.

[11] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer.
Some simplified NP-complete graph problems.
Theoretical Computer Science, 1:237–267, 1976.

[12] C. P. Gomes and B. Selman. Algorithm portfolios.
Artificial Intelligence, 126(1-2):43–62, 2001.

[13] G. R. Grimmett and C. J. H. McDiarmid. On
colouring random graphs. Mathematical Proceedings of
the Cambridge Philosophical Society, 77(2):313–324,
1975.

[14] T. Hogg. Refining the phase transition in
combinatorial search. Artificial Intelligence,
81(1-2):127 – 154, 1996.

[15] T. Hogg and C. P. Williams. The hardest constraint
problems: A double phase transition. Artificial
Intelligence, 69(1-2):359–377, 1994.

[16] H. Jia and C. Moore. How much backtracking does it
take to color random graphs? rigorous results on
heavy tails. In Principles and Practice of Constraint
Programming (CP 2004), pages 742–746, 2004.

matcos- Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science

Koper, Slovenia, 13–14 October

10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8
x 10

5

n: number of vertices

Treesize
Number of solutions

Figure 6: Expected number of solutions and expected search tree size for p = 0.5 and k = 5, as a function of n.

[17] T. Luczak. The chromatic number of random graphs.
Combinatorica, 11(1):45–54, 1991.

[18] T. Luczak. A note on the sharp concentration of the
chromatic number of random graphs. Combinatorica,
11(3):295–297, 1991.

[19] Z. Mann and A. Orbán. Optimization problems in
system-level synthesis. In 3rd Hungarian-Japanese
Symposium on Discrete Mathematics and Its
Applications, pages 222–231, 2003.

[20] Z. Mann and A. Szajkó. Improved bounds on the
complexity of graph coloring. In 12th International
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, 2010.

[21] Z. Mann and T. Szép. BCAT: A framework for
analyzing the complexity of algorithms. In 8th IEEE
International Symposium on Intelligent Systems and
Informatics, pages 297–302, 2010.

[22] N. K. Mehta. The application of a graph coloring
method to an examination scheduling problem.
Interfaces, 11(5):57–65, 1981.

[23] R. Monasson. On the analysis of backtrack procedures
for the coloring of random graphs. In E. Ben-Naim,
H. Frauenfelder, and Z. Toroczkai, editors, Complex
Networks, pages 235–254. Springer, 2004.

[24] E. Shamir and J. Spencer. Sharp concentration of the
chromatic number on random graphs Gn,p.
Combinatorica, 7(1):121–129, 1987.

[25] T. Szép and Z. Mann. Graph coloring: the more colors,
the better? In 11th IEEE International Symposium on
Computational Intelligence and Informatics, 2010.

[26] J. S. Turner. Almost all k-colorable graphs are easy to
color. Journal of Algorithms, 9(1):63–82, 1988.

[27] H. S. Wilf. Backtrack: an O(1) expected time
algorithm for the graph coloring problem. Information
Processing Letters, 18:119–121, 1984.

