Determining the expected runtime of exact graph coloring

*

Zoltan Adam Mann and Aniké Szajko

Budapest University of Technology and Economics
Department of Computer Science and Information Theory
Magyar tudosok korutja 2., 1117 Budapest, Hungary
e-mail: zoltan.mann@cs.bme.hu, szajko.aniko@gmail.com

Abstract

Exact algorithms for graph coloring tend to have high vari-
ance in their runtime, posing a significant obstacle to their
practical application. The problem could be mitigated by
appropriate prediction of the runtime. For this purpose, we
devise an algorithm to efficiently compute the expected run-
time of an exact graph coloring algorithm as a function of
the graph’s size, density, and the number of available colors.

1 Introduction and previous work

Graph coloring is one of the most fundamental problems in
algorithmic graph theory, with many practical applications
such as register allocation, frequency assignment, pattern
matching, and scheduling [16, 5, 15]. Unfortunately, graph
coloring is N P-complete [8]. Moreover, if P # NP, then no
polynomial-time approximation algorithm with an approxi-
mation factor smaller than 2 can exist for graph coloring [7].

Exact graph coloring algorithms are often variants of the
usual backtrack algorithm. The backtrack algorithm has
the advantage that, by pruning large parts of the search
tree, it can be significantly more efficient than checking the
whole search space exhaustively. Although in the worst case
the backtrack algorithm requires an exponential number of
steps, its average-case complexity is O(1) [19].

The probabilistic analysis of the coloring of random
graphs was first suggested in the seminal paper of Erdés and
Rényi [6]. Through subsequent work of several researchers,
the coloring and, in particular, the chromatic number of ran-
dom graphs is well understood [10, 4, 11, 17, 12, 2, 1]. In
terms of the performance of backtracking on random graphs,
only some lower and upper bounds are known on the mo-
ments of the distribution of the algorithm’s runtime [3].

*This paper was presented in: Mini-conference on Applied Theo-
retical Computer Science (MATCOS), Koper (Slovenia), 2010. It was
published in: Proceedings of the 13th International Multiconference
wInformation Society — IS 20107, Volume A, pages 3889-393, 2010.

However, as the difference between the known lower and
upper bounds is quite high, it is not possible to predict even
the order of magnitude of the runtime of backtracking on a
problem instance.

Predicting the runtime of the algorithm would greatly im-
prove its practical usability, by informing the user in ad-
vance about the estimated runtime. This would let the user
decide if the exact solution of the problem is realistic in
the available time frame, or a heuristic solution should be
used instead. More generally, it allows the manual or auto-
mated selection of the most suitable algorithm from an al-
gorithm portfolio [9]. It also enhances load balancing when
several problem instances are solved in parallel on multiple
machines.

Hence, our aim is to obtain accurate results on the ex-
pected runtime of the backtrack algorithm in coloring ran-
dom graphs. We restrict ourselves to the non-colorable case;
extension of our model to the colorable case remains as fu-
ture work. We use the size of the search tree as a measure
of complexity and analyze the expected size of the search
tree as a function of input parameters. Our contribution is
an algorithm for determining the expected size of the search
tree exactly. The algorithm uses dynamic programming, and
its runtime is polynomial in the size of the graph. We also
present our empirical findings on how the complexity of the
problem depends on the input parameters.

2 Preliminaries

We consider the decision version of the graph coloring prob-
lem, in which the input consists of an undirected graph
G = (V,E) and a number k, and the task is to decide
whether the vertices of G can be colored with £ colors such
that adjacent vertices are not assigned the same color. The
input graph is a random graph from G,, p, i.e. it has n ver-
tices and each pair of vertices is connected by an edge with
probability p independently from each other. The vertices
of the graph will be denoted by vq,...,v,, the colors by

1,...,k. A coloring assigns a color to each vertex; a partial
coloring assigns a color to some of the vertices. A (partial)
coloring is inwvalid if there is a pair of adjacent vertices with
the same color, otherwise the (partial) coloring is valid.

The backtrack algorithm considers partial colorings. It
starts with the empty partial coloring, in which no vertex
has a color. This is the root — that is, the single node on level
0 — of the search tree. Level t of the search tree contains the
kt possible partial colorings of v1,...,v;. The search tree,
denoted by T', has n levels, the last level containing the col-
orings of the graph. Let T; denote the set of partial colorings
on level t. If t < n and w € T}, then w has £ children in
the search tree: those partial colorings of vq,...,v;41 that
assign to the first ¢ vertices the same colors as w.

In each partial coloring w, the backtrack algorithm con-
siders the children of w and visits only those that are valid.
T depends only on n and k, not on the specific input graph.
However, the algorithm visits only a subset of the nodes of
T, depending on which vertices of G are actually connected.
The number of actually visited nodes of T" will be used to
measure the complexity of the given problem instance.

3 The expected number of visited
nodes of T

For each w € T, we define the following random variable
(the value of which depends on the choice of G):

1
Y, =
t

Let p, = Pr(Yy, = 1). Moreover, we define one more
random variable (whose value also depends on the choice of
G): Y = the number of visited nodes of T'.

Since the algorithm visits exactly the valid partial col-
orings, it follows that ¥ = 3 Y, and thus E(Y) =
> wer E(Yw). Moreover, it is clear that E(Y,) = py. It
follows that the expected number of visited nodes in T is:

= > Pu
weT
Let Q(w) := {{z,y} € V2 : x # y,color(x) = color(y)},
where V2 is the set of unordered pairs of elements of V. Let
q(w) = |Q(w)|. Clearly, w is valid if and only if, for all
{z,y} € Q(w), z and y are not adjacent. It follows that
pw = (1— p)4®) and thus the expected number of visited

nodes of T is:
Z (1- p)q(w).
weT

if w is valid,

else.

E(Y)=

Note that computing E(Y) through this formula is not
tractable since |T| is exponentially large in n.

4 Efficient calculation using dy-
namic programming

Before presenting our algorithm, we need to introduce some
further notions. Our first aim is to compute the maximum
possible value of ¢(w) within T;. We denote by s(w,4) (or
simply s; if it is clear which partial coloring is considered)
the number of vertices of G that are assigned color ¢ in the
partial coloring w.

Proof.

Ma-

Proposition 1. For all w € T}, q(w) < (2).
k
i = 2 (3) -5 (Lt 2w) <

(t?—t) = <;>

(Z)Z _
O

N)I»—l

o
Il

IA
N =
N =

=1 i=1

It is also possible to derive a formula for the minimum of
g(w) [13], but it is not necessary for our purposes.

Let R(q,t, k) := {w € T} : q(w) = q}| denote the fre-
quency of value ¢ among the g(w) values of nodes in T;.

If we could determine all the R(q,t,k) values explicitly,
that would enable us to calculate the exact value of E(Y):

> (-

weT

n dmax (t)

p)i®) = Z Z

t= Oq ‘bnzn(t)

E(Y) = R(g,t,k)(1 — p)e.

Determining the R(q,t,k) values is possible with the fol-
lowing recursion:

Proposition 2.

£ (el Qese)

Proof. Assume that color class 1 contains j vertices. There
are () possibilities to choose these j vertices. The remaining
t — 5 vertices must be colored with k — 1 colors. Moreover,
the j vertices of color 1 already account for (;) vertex pairs
with identical colors. Hence, the remaining ¢ — j vertices
must be colored in such a way that the number of vertex

pairs with identical colors out of these ¢t — j vertices equals
¢—(3)- O

Based on this recursive formula, we can use dynamic pro-
gramming to compute the R(q,t,k) values and store them

in a 3-dimensional table. We fill this table according to in-
creasing values of k. For a given k, we must iterate through

R(q,t,k)

Algorithm 1 Dynamic programming algorithm to compute
E(Y)

for t=0 to n

R((),61) =1

for k=2 to number of colors
for t=0 to n

for g=qmin t0 Gmax

R(q,t, k) =0
for j=0to ¢
{

i{qu () = gmin(t —j,k—1)

R(q,t, k) = R(q, t, k) + (;‘.)R(qf (;‘),tfj,kfl)

}
}
}
}

}
k=number of colors
result=0
for t=0 to n

for g=qmin t0 qmax

result=result+R(q, t, k)(1 — p)?
}

}
E(Y)=result

the possible values of ¢ from 0 to n, and for each such ¢, we
must fill the table for all possible values of ¢ from g, to
Gmaz- As a starting point, when k = 1, then for all values
of t, Gmin = Gmaz = (é) and for this value of ¢ we have
R(q,t, k) = 1. As additional boundary conditions, we have
R(q,t,k) = 0 in all cases when ¢ < 0 or ¢ < Gmin. See
Algorithm 1 for details.

Since t = O(n), j = O(n) and ¢naz = O(n?), the runtime
of Algorithm 1 is O(kn?*). This is polynomial in the size of
the graph, though quite high. On the other hand, the cal-
culation of the R(q,t, k) values is the most time-consuming
part of the algorithm and these values can be pre-computed
and stored. Afterwards, we can compute F(Y') more quickly
for different values of n, p, k.

5 Numerical results

The presented method enables us to gain some insight as to
how the complexity of graph coloring changes for different
values of the parameters n, k, p. Fig. 1 shows an example:
E(Y) as a function of n and k, for fixed p. We can conclude
from the figure that for small values of k, the problem is
easy, even if n becomes large. This is consistent with pre-
vious results on the relatively low average-case complexity

of graph coloring [19, 18]. However, as k increases, this in-
creases the complexity of the problem dramatically (note the
exponential scale on the vertical axis). It is still true that
the complexity saturates, i.e. increasing n does not increase
the complexity significantly after some threshold. However,
this saturation takes place at a much higher value than in
the case of small k.

A more detailed empirical analysis using the tool BCAT
[14] will be part of a future extended version of this paper.

6 Conclusion and future work

We have investigated the complexity of a typical backtrack-
ing algorithm for coloring random graphs of the class Gy, ;
with k& colors. Using the expected size of the search tree
as the measure of complexity, we devised a polynomial-time
algorithm for predicting complexity.

In this paper, we only dealt with uncolorable problem
instances. Our future work will focus on extending the pre-
sented results to colorable problem instances.

Acknowledgements

This work was partially supported by the Hungarian Na-
tional Research Fund and the National Office for Research
and Technology (Grant Nr. OTKA 67651).

References

[1] Dimitris Achlioptas and Assaf Naor. The two possible
values of the chromatic number of a random graph. In
36th ACM Symposium on Theory of Computing (STOC
04), pages 587-593, 2004.

[2] Noga Alon and Michael Krivelevich. The concentration
of the chromatic number of random graphs. Combina-
torica, 17(3):303-313, 1997.

[3] Edward A. Bender and Herbert S. Wilf. A theoretical
analysis of backtracking in the graph coloring problem.
Journal of Algorithms, 6(2):275-282, 1985.

[4] Béla Bollobas. The chromatic number of random
graphs. Combinatorica, 8(1):49-55, 1988.

[5] Preston Briggs, Keith D. Cooper, and Linda Torc-
zon. Improvements to graph coloring register alloca-
tion. ACM Transactions on Programming Languages
and Systems, 16(3):428-455, 1994.

[6] Pal Erdss and Alfréd Rényi. On the evolution of ran-
dom graphs. Magyar Tud. Akad. Mat. Kutato Int. Koz,
5:17-61, 1960.

7]

18]

19]

[10]

[11]

[12]

[13]

15

10

1010

Treesize

10°

number of g
colors: k

number of
vertices: n

Figure 1: Expected size of the search tree for p = 0.5, as a function of n and k.

Michael R. Garey and David S. Johnson. The com-
plexity of near-optimal graph coloring. Journal of the
ACM, 23:43-49, 1976.

Michael R. Garey, David S. Johnson, and L. J. Stock-
meyer. Some simplified NP-complete graph problems.
Theoretical Computer Science, 1:237-267, 1976.

Carla P. Gomes and Bart Selman. Algorithm portfolios.
Artificial Intelligence, 126(1-2):43-62, 2001.

G. R. Grimmett and C. J. H. McDiarmid. On colour-
ing random graphs. Mathematical Proceedings of the
Cambridge Philosophical Society, 77(2):313-324, 1975.

Tomasz Luczak. The chromatic number of random
graphs. Combinatorica, 11(1):45-54, 1991.

Tomasz Luczak. A note on the sharp concentration of
the chromatic number of random graphs. Combinator-
ica, 11(3):295-297, 1991.

Zoltan A. Mann and Aniké Szajko. Improved bounds on
the complexity of graph coloring. In 12th International
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, 2010.

[14]

[15]

[16]

[17]

[18]

[19]

Zoltan A. Mann and Tamas Szép. BCAT: A frame-
work for analyzing the complexity of algorithms. In 8th
IEEE International Symposium on Intelligent Systems
and Informatics, 2010.

Zoltan Adam Mann and Andras Orban. Optimization
problems in system-level synthesis. In 3rd Hungarian-
Japanese Symposium on Discrete Mathematics and Its
Applications, pages 222-231, 2003.

Nirbhay K. Mehta. The application of a graph coloring
method to an examination scheduling problem. Inter-
faces, 11(5):57-65, 1981.

Eli Shamir and Joel Spencer. Sharp concentration of
the chromatic number on random graphs G,, ,. Combs-
natorica, 7(1):121-129, 1987.

Jonathan S. Turner. Almost all k-colorable graphs are
easy to color. Journal of Algorithms, 9(1):63-82, 1988.

Herbert S. Wilf. Backtrack: an O(1) expected time
algorithm for the graph coloring problem. Information
Processing Letters, 18:119-121, 1984.

