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1 Introduction

Most of the world's ever growing demand for computational capacity is served by large data centers
(DCs). A DC contains a number of physical machines (PMs), also called servers or hosts. The number
of PMs of a DC can range from dozens to hundreds of thousands.

Traditionally, a major challenge for DCs was the �uctuation of the hosted workload. PMs had to
be sized so that they can serve the peak load of the accommodated applications. This is a problem
because for many applications, the typical resource requirement is much lower than the peak [15]. As a
consequence, PMs had very low utilization most of the time. Therefore, an unnecessarily high number
of PMs had to be purchased and operated, leading to high costs and considerable super�uous energy
consumption.

In order to overcome these issues, today's DCs typically use virtualization technology. With the help
of virtualization, multiple virtual machines (VMs) can be instantiated on a single PM. Applications are
accommodated by the VMs, not directly by the PMs. This way, the applications can share the PM's
resources in a safe and secure, logically isolated manner: for instance, a fault in one application may
crash its VM, but this does not impact other VMs on the same PM. Moreover, the load of one VM has
(in most cases) negligible impact on the performance of the co-located VMs [23].

Using virtualization, the applications can be consolidated on a smaller number of PMs. Unused PMs
can be switched to a low-power mode, thus saving energy.

Moreover, VMs can be migrated between PMs. In particular, live migration allows moving a VM
from one PM to another one without noticeable service down-time. This way, the DC operator can react
to changes in the workload: in times of low load, the VMs can be consolidated to relatively few PMs;
when the load increases, further PMs can be powered on and VMs can be migrated from overloaded

∗Research partially supported by the Hungarian Scienti�c Research Fund (Grant Nr. OTKA 108947)

1



PMs to others with low utilization. DC operators can thus dynamically balance between the resource
requirements of the VMs and physical resource consumption. This leads to an optimization problem that
we call the VM allocation problem.

By formulating the VM allocation problem in terms of packing the VMs into the minimal number
of PMs, taking into account the load of the VMs and the capacity of the PMs, the connection to bin
packing becomes evident: PMs play the role of bins and the VMs are the items that need to be packed
into the bins; the item sizes are the VM loads and bin sizes are the PM capacities [20].

This connection to bin packing has been recognized by several researchers who proposed applying also
to VM allocation the well-known packing heuristics First Fit (FF), Best Fit (BF), First Fit Decreasing
(FFD) etc. that had been shown to be constant-factor approximation algorithms for bin packing. For
a recent survey on these and other approaches to VM allocation, see [19]. However, it remains unclear
whether similar approximation guarantees can also be proven for the VM allocation problem.

In this paper, we review the aspects which make VM allocation more complicated than bin packing.
For each of these aspects, we discuss how an appropriate extension to bin packing can be formulated as a
proper optimization problem and review the resulting problems from the point of view of approximability.
Some of these problems have already been investigated; here we survey the existing results. For some
aspects, we derive approximability results. Others are posed as open problems.

2 Preliminaries

In the standard bin packing problem, we are given a multiset of n numbers S = {s1, . . . , sn}, where
0 < si ≤ 1 for each si. A valid packing is a partition of S into m multisets (bins) B1, . . . , Bm, such that∑
x∈Bj

x ≤ 1 for each Bj . The goal is to �nd a packing with minimal m.
Bin packing is known to be NP-hard in the strong sense. Moreover, an easy reduction from the

Partition problem shows that already the question whether 2 bins are su�cient is NP-complete. As a
consequence, no polynomial-time approximation algorithm with an approximation ratio better than 3/2
can exist for bin packing, unless P = NP .

On the positive side, the result of the FF algorithm is at most 1.7 times the optimum [12] and FFD
uses at most 11/9OPT +6/9 bins, where OPT denotes the optimal number of bins [11]. Moreover, there
is an APTAS (asymptotic polynomial-time approximation scheme) for bin packing, i.e., for large values
of OPT , 1 + ε-approximation is possible for any ε > 0 [10, 17].

3 Approximability of VM allocation

Despite the obvious similarity, there are several aspects that make VM allocation more complex than bin
packing. In the following subsections, these di�erences and their impact on approximability are discussed.

3.1 Multi-dimensionality

In reality, PM capacities and VM sizes are not one-dimensional, but must account for the di�erent
resource types, e.g., CPU, memory, and disk.

Thus we can assume that there are d dimensions, where d ∈ Z+ is a small constant. The capacity of
each bin in each direction is 1. The items are d-dimensional vectors: si ∈ (0, 1]d (1 ≤ i ≤ n). A valid
packing is a partition of the set of items into m bins B1, . . . , Bm, such that

∑
x∈Bj

x ≤ 1 for each Bj .
(Boldface symbols denote d-dimensional vectors. In particular, 1 is the d-dimensional vector with all 1
coordinates. x ≤ y means that the relation holds for each dimension.) The goal is to �nd a packing with
minimal m.

The resulting problem is the vector bin packing problem, one of the well-known multi-dimensional
generalizations of bin packing. It should not be confused with multi-dimensional bin packing though, in
which the aim is to pack d-dimensional geometric objects into d-dimensional bins.
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The approximability of vector bin packing seems to depend on whether d is a �xed constant or part
of the input. Let us �rst consider the case when d is a �xed constant. It is fairly easy to devise an
asymptotic d+ ε-approximation algorithm based on the APTAS for bin packing [10]. Signi�cantly better
approximation can be achieved by means of LP relaxation. In particular, Chekuri and Khanna devised
an O(log d)-approximation algorithm [6], which was improved by Bansal et al. to ln d+1+ ε [4], yielding
the best result currently known. On the negative side, Woeginger showed by means of a reduction from
the 3-dimensional matching problem that no APTAS can exist for vector bin packing already for d = 2
unless P = NP [24]. There is still a signi�cant gap between this negative result and the best known
approximation, which remains an important open problem.

In the case when d is part of the input, the work of Chekuri and Khanna gives an asymptotic
ε · d + 1 + O(ln ε−1)-approximation algorithm for any ε > 0 [6]. Moreover, Chekuri and Khanna also
proved, by means of a reduction from graph coloring, that no approximation within a factor of d1/2−ε

can exist for any ε > 0, unless NP = ZPP [6]. The latter result can be improved as follows:

Theorem 1 The vector bin packing problem cannot be approximated within a factor of d1−ε for any
ε > 0, unless P = NP .

Proof: We use a reduction from the graph coloring problem. The input is a graph G = (V,E) and the
aim is to �nd its chromatic number. Let |V | = n and V = {v1, . . . , vn}. We construct an input to the
vector bin packing problem with n items and d = n dimensions. The size of item i in dimension j is
given by

si,j =


1 if i = j

1/n if i 6= j and vivj ∈ E
0 otherwise

Item i corresponds to vertex vi. A set of items can be packed into one bin if and only if the corresponding
vertices form an independent set. This is because the item sizes in dimension j guarantee that the item
corresponding to vertex vj cannot be packed into the same bin with any item corresponding to a neighbor
of vj , but it does not prohibit anything else. As a consequence, G can be colored with k colors if and
only if the items can be packed into k bins. The theorem follows from the hardness of approximating the
chromatic number [25]. �

3.2 Migration costs

Another important characteristic of the VM allocation problem is that typically the packing is not created
from scratch, but rather an existing allocation is to be optimized by means of migrations. Migrations
incur some costs.

The input now consists of the set S of n items with sizes from (0, 1], as well as an initial packing into
m non-empty bins B1, . . . , Bm, satisfying the constraints of a valid packing. We can freely move items
between bins; the result must be also a valid packing into m′ ≤ m bins. Let M denote the set of items
that have been moved during the process. We consider two models for capturing migration costs. In the
�rst model, the number of migrations is considered, i.e., the cost function is m′ + α|M |, where α ≥ 0 is
a given constant. In the second model, the cost of migrating a VM is proportional to its size; thus, the
cost function is m′ + β

∑
x∈M x, where β ≥ 0 is a given constant. In both cases, the aim is to �nd a

new packing that minimizes the cost function. To our knowledge, these problem variants have not yet
been considered in the literature. Clearly, both include bin packing as special case (for α = 0 and β = 0,
respectively).

It should be noted that our notion of migrations is similar to the notion of repacking used in the
�relaxed online bin packing model� introduced by Gambosi et al. [14]. The di�erence is that in relaxed
online bin packing, repacking is used only to improve the packing after the arrival of new elements; in the
case of VM placement, there can be also other reasons for migration, e.g., it is possible that the size of
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some VMs changes. In this sense, our model is not online, in contrast to the one considered by Gambosi
et al. See also Section 3.7 for more discussion on the connection with online settings.

Let us investigate approximability in our �rst model, where the number of migrations is to be mini-
mized as part of the objective function. Let A0 denote the trivial algorithm of leaving all items in their
initial bins. As it turns out, already this algorithm o�ers constant-factor approximation guarantee:

Theorem 2 (a) If α ≥ 1, then A0 delivers optimal result.
(b) If 0 < α < 1, then the cost of the solution of A0 is at most 1

α ·OPT .

Proof: Assume that the optimal solution uses mOPT ≤ m bins. To achieve this, m−mOPT bins must
be emptied, which requires at least m−mOPT migrations. Hence,

OPT ≥ mOPT + α · (m−mOPT ). (1)

If α ≥ 1, then (1) implies OPT ≥ m. Since the cost of A0 is m, this proves (a).
Now assume that 0 < α < 1. Then, (1) implies

OPT ≥ α ·m+ (1− α) ·mOPT ≥ α ·m,

which proves (b). �

Now consider the second model, in which the aim is to minimize m′+β
∑
x∈M x. It can be seen easily

that for this model, the cost of A0 can be arbitrarily far from the optimum, so we cannot use the same
very simple idea.

Let A be an approximation algorithm for the standard bin packing problem with asymptotic approx-
imation guarantee 1+ ε. We show that A yields also constant-factor approximation for the more general
problem involving migration costs.

Theorem 3 The asymptotic cost of the solution delivered by A is at most (1 + ε+ β) ·OPT .

Proof: Let OPT ′ denote the optimum of the pure bin packing problem that remains when the migration
cost is ignored. Clearly, OPT ′ ≤ OPT , and A delivers a packing with at most (1+ε)·OPT ′ ≤ (1+ε)·OPT
bins.

Since each packing requires at least
∑n
i=1 si bins and the cost of migrations is non-negative, OPT ≥∑n

i=1 si.
Moving the items from their initial place to the new one dictated by A leads to at most β ·

∑n
i=1 si

migration costs. Hence, the total cost of the solution delivered by A is at most (1+ε)·OPT+β ·
∑n
i=1 si ≤

(1 + ε) ·OPT + β ·OPT . �

3.3 Overload costs

Unlike traditional bin packing, VM allocation allows a PM to host a set of VMs with somewhat higher
total load than the PM's nominal capacity. However, this tends to lead to performance degradation,
resulting in a penalty.

To model this phenomenon, we extend the normal bin packing problem with the notion of overload. A
bin B is considered overloaded if

∑
x∈B x > τ , where 0 < τ < 1 is a given constant. (In most applications,

τ is between 0.7 and 0.9.) That is, bin capacities are represented by two thresholds: a bin should ideally
not contain more than the lower threshold (τ), but if necessary, it can be overloaded to accommodate
more, up to the higher threshold (1). More than 1 is not possible. Let t denote the number of overloaded
bins. The aim is to �nd a packing that minimizes m+ γ · t, where γ ≥ 0 is a given constant.

Similarly to the case of the second model used in Section 3.2, let A be an asymptotic (1 + ε)-
approximation algorithm for standard bin packing. We show that it is a constant-factor approximation
algorithm for this generalized problem as well.
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Theorem 4 The asymptotic cost of the solution delivered by A is at most (1 + ε) · (1 + γ) ·OPT .

Proof: Let OPT ′ denote the optimum of the pure bin packing problem that remains when the overload
cost is ignored. Clearly, OPT ′ ≤ OPT , and A delivers a packing with m ≤ (1+ε) ·OPT ′ ≤ (1+ε) ·OPT
bins. The overload cost is at most γ · m, so that the total cost of the resulting solution is at most
(1 + γ) ·m ≤ (1 + γ) · (1 + ε) ·OPT . �

3.4 Heterogeneous PMs

Standard bin packing assumes that the bins are homogeneous. In VM allocation though, PMs are typically
characterized by di�erent capacities and di�erent operational costs (e.g., di�erent power consumption).
More precisely, there are typically multiple PM types in a data center, and capacity and costs are equal
within a type but di�er across types.

Bins of di�erent size have been considered previously, leading to the so-called variable-sized bin packing
problem. In this formulation, the input contains, beside the items to pack, a �nite set of available bin
sizes. From each bin size, an arbitrary number of bins can be used. The objective is to minimize the
total size of the used bins; in other words, the cost of using a bin is equal to its size and the aim is to
minimize the total cost of used bins. This problem is known to admit an APTAS [21].

Also the extension of this problem with di�erent costs has been considered. That is, the input contains,
beside the items to pack, a �nite set of available bin sizes and associated bin costs. From each bin size,
an arbitrary number of bins can be used. The objective is to minimize the total cost of the used bins.
Recently, also this more general problem has been proven to admit an APTAS [13].

Unfortunately, these models are not realistic for VM allocation because in a DC, the number of
available PMs is limited for each type. This has dramatic impact on approximability:

Theorem 5 The bin packing problem with variable bin type costs and limited number of bins per type
does not admit a polynomial-time constant-factor approximation, unless P = NP . (This holds even in
the special case when bin capacities are all equal.)

Proof: Assume indirectly that a c-approximation exists for some constant c > 1. We use a re-
duction from the NP-complete Partition problem, in which the input consists of a set of n numbers
A = {a1, . . . , an} and the aim is to decide whether A can be partitioned into two subsets with equal sum.

Let H = 1
2

∑n
i=1 ai. We generate a bin packing instance with two bin types. The capacity of each

bin is 1. The cost of the �rst bin type is 1, the cost of the second bin type is V > 1. From the �rst type,
only two bins are available; from the second, a su�cient number is available. There are n items with
sizes a1/H, . . . , an/H.

If the answer to the original Partition instance is �yes�, then the items can be packed into the two bins
of the �rst type, thus OPT = 2 and the assumed approximation algorithm returns a solution with cost
at most 2c. On the other hand, if the answer to the original Partition instance is �no�, then the items
require at least 3 bins; hence OPT ≥ 2 + V , and so the cost of the result of the assumed approximation
algorithm will also be at least 2+V . Setting V high enough, one can di�erentiate between the two cases.
�

On the positive side, if bin costs are the same but bin capacities can be di�erent, then the problem
does admit polynomial-time constant-factor approximation (even with limited number of PMs of given
capacity). Let the input contain, beside the items to pack, m bins with capacities c1, . . . , cm. The aim
is to pack the items into the minimum number of bins so that for all bins, the total size of the items it
accommodates does not exceed its capacity. (It is assumed that the set of all PMs would be su�cient to
do this.)

Theorem 6 The �rst-�t (FF) algorithm, using the bins in non-increasing order of capacity, is a 2-
approximation algorithm for this problem.
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Proof: Let us consider the packing created by FF. FF uses k bins and we assume indirectly that
k > 2 ·OPT . Let fi =

∑
x∈Bi

x denote the total size of the items packed into the ith bin.
We have fOPT+1 + f1 > c1, otherwise FF would not have opened BOPT+1 because its contents could

have been packed into B1. Similarly, we have fOPT+2+f2 > c2, and so on, up until f2·OPT+fOPT > cOPT .
As a consequence,

n∑
i=1

si =

k∑
j=1

fj ≥
2·OPT∑
j=1

fj >

OPT∑
j=1

cj ,

which means that the OPT biggest bins do not o�er enough total capacity to accommodate all items,
contradicting the fact that OPT bins are su�cient. �

3.5 Dynamic energy consumption

The number of active PMs is a good �rst approximation of overall energy consumption. However, the
real power consumption of a PM depends on its load; hence, a more accurate power model must take this
into account. Usually, a linear dependence on system load can be assumed [22].

For a bin Bj , let fj =
∑
x∈Bj

x denote the total size of the items packed into it. The corresponding
cost (power consumption) is 1+ % · fj , where % > 0 is a given constant. Then the cost of a packing using
m bins is

m∑
j=1

(1 + % · fj) = m+ % ·
m∑
j=1

fj = m+ % ·
n∑
i=1

si.

Note that % ·
∑n
i=1 si does not depend on the packing. As a consequence, a c-approximation algorithm

for the standard bin packing problem is also a c-approximation algorithm for this extended problem: the
additive constant of % ·

∑n
i=1 si will only improve the approximation ratio.

3.6 Non-allocation of VMs

In bin packing, all items must be mapped to a bin and we have an unconstrained number of bins to make
sure this is possible. However, in a data center, the set of available PMs is limited; if too many VMs
are requested, some of them may have to be dropped (i.e., not allocated to a PM). The provider must
decide based on the VMs' size and value which ones to drop. The value of a VM can be some kind of
priority or importance, but it can also be the pro�t that the provider would realize by provisioning the
VM. Thus, we are given n items, each with a positive size si and a positive value vi, and we have m bins,
each with a positive capacity. The capacities of the bins are all 1 in the simpler version of the problem, or
characterized by the numbers c1, . . . , cm in the more general version. The aim is to select a subset of the
items with maximum total value so that they can be packed into the bins without violating the capacity
constraints. This is a generalization of the knapsack problem, called multiple knapsack problem.

In this case, the usual reduction from the Partition problem shows that no fully polynomial-time
approximation scheme can exist for multiple knapsack, even for m = 2 and equal capacities, unless
P = NP . However, a PTAS was devised by Kellerer for the case of equal capacities, using a combination
of grouping and rounding of elements and linear and integer programming techniques [18]. Later, Chekuri
and Khanna presented a PTAS for the case of arbitrary capacities [7]. Chekuri and Khanna argue that
this problem is considerably more di�cult than the case of equal capacities, requiring several new ideas.
Moreover, they show that some slight generalizations of the multiple knapsack problem are already APX-
hard. Note that the PTAS of Kellerer and of Chekuri and Khanna are not fully polynomial-time schemes:
they yield (1 + ε)-approximation algorithms, the runtime of which is polynomial in n and m, but not in
1/ε.

Recently, Baldi et al. investigated a common generalization of bin packing and multiple knapsack,
called generalized bin packing problem, in which some items are compulsory whereas others may be
dropped [1]. In terms of approximation, they showed only that the FFD and BFD algorithms do not
yield constant-factor approximation for this problem.
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3.7 Time dependence

A further important characteristic of the VM allocation problem is its time-dependent nature: new VMs
may be requested and old VMs may have to be removed, the resource requirements of VMs may change
over time, new PMs can be started, and PMs may become permanently or temporarily unavailable.

In terms of bin packing, online versions of the problem and the analysis of their competitive ratios
have received a lot of attention. However, VM allocation is not a classical online problem: the issue is
not that we only gradually get to know the input, but that the input is changing.

Some of these aspects have been considered in the context of some generalizations of bin packing. In
dynamic bin packing, items arrive and depart over time. In fully dynamic bin packing, items arrive and
depart over time, and repacking (moving an item from one bin to another) is also allowed.

Dynamic bin packing was considered by Co�man, Garey, and Johnson, who proved that a modi�ed
First-Fit algorithm achieves an asymptotic competitive ratio of at most 2.897 [8]. In this setting, cost is
measured as the maximal number of bins used. In the same paper, the authors proved a lower bound of
2.388 on the competitive ratio of any algorithm for this problem. This was improved later by others; the
currently known best lower bound is 2.5, due to Chan, Wong, and Yung [5].

In fully dynamic bin packing, also repacking of previously packed items is allowed; however, it is com-
mon to restrict the number of allowed migrations or the total size of migrated items, and investigate the
compromise between the amount of allowed repacking and the achievable competitive ratio. This model
was �rst studied by Ivkovi¢ and Lloyd [16], who presented an algorithm with asymptotic competitive
ratio 5/4 and an amortized number of O(log n) so-called shifting moves. A shifting move involves either
one item or a set of items from the same bin with total size at most 1/5. For the case when the number
of items that may be repacked in each step is bound by a constant k, Balogh et al. proved a lower bound
of 1.3871 on the competitive ratio [2]. In a more recent paper, the same authors presented an algorithm
with competitive ratio converging to 3/2 as k →∞ [3].

4 Summary and future work

In this paper, we made a �rst attempt at systematically analyzing the di�erences between bin packing
and VM allocation in terms of problem models and approximability. As we could observe, VM allocation
is more complex than bin packing in several aspects, and some of these make approximation considerably
harder, whereas others do not.

Table 1 summarizes the state of the art � both the surveyed existing results (with citation) and the
results of this paper (without citation). '?' means that such a result is not known yet, '�' means that
such a result is not expected. As can be seen from the table, the e�ect of the investigated aspects on
approximability varies widely: for some of the considered generalizations, a PTAS, APTAS, or AFPTAS
can be given, whereas for others not even a constant-factor approximation is possible under standard
assumptions of complexity theory.

Several important questions remain open for future research. In most rows of Table 1, there is
still a signi�cant gap between the tightest known positive and negative results; in some cases, one of
them is missing completely. However, from the point of view of VM allocation, the most important
question is how these aspects can be combined with each other. For example, what can be stated
about the approximability of d-dimensional vector packing with migration costs and overload costs? The
corresponding rows of Table 1 tell us that each of these aspects admits constant-factor approximation,
but their interdependencies have not been explored yet. VM allocation is an important application that
will justify research about this and similar questions.

Another important future research direction concerns special cases relevant for VM allocation. For
example, it is well known that bin packing becomes easy if the number of di�erent item sizes is constant
[10] or the item sizes are all powers of 2 [9]. In VM allocation, bin and item sizes are not arbitrary
numbers (for instance, they are often indeed powers of 2), hence it is important to investigate how such
restrictions impact the results of Table 1.
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Table 1: Summary of approximability results for the di�erent aspects that make VM allocation more
complex than bin packing

Positive result Negative result

d dimensions (d is a given
constant)

(ln d+ 1 + ε)-approximation [4] No APTAS [24]

d dimensions (d is part of the
input)

(εd+ 1 +O(ln ε−1))-
approximation [6]

No polynomial approximation
within d1−ε, unless P = NP

Cost of a migration is α
(0 < α < 1)

1/α-approximation ?

Cost of migrating an item with
size s is βs

(1 + β + ε)-approximation ?

Cost of an overloaded bin is γ (1 + γ)(1 + ε)-approximation ?

Di�erent size and cost per bin
type, unlimited number of bins
per type

APTAS [13] �

Di�erent cost per bin type,
limited number of bins per type

� No constant-factor
approximation, unless P = NP

Di�erent size per bin type,
limited number of bins per type

2-approximation ?

Dynamic energy consumption AFPTAS �

Maximum value packing
(multiple knapsack)

PTAS [7] No FPTAS [7]

Items arrive and depart over
time (no repacking)

2.897-competitive algorithm [8] No competitive ratio better
than 2.5 [5]

Items arrive and depart over
time (O(log n) shifting moves)

Asymptotically 5/4-competitive
algorithm [16]

?

Items arrive and depart over
time (at most k migrations)

Competitive ratio tending to
3/2 as k →∞ [3]

No competitive ratio better
than 1.3871 [2]
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