
Optimization problems in system-level synthesis∗

Zoltán Ádám Mann

Department of Control Engineering and
Information Technology

Budapest University of Technology
and Economics

Magyar tudósok körútja 2,
H-1117 Budapest, Hungary
zoltan.mann@cs.bme.hu

András Orbán

Department of Control Engineering and
Information Technology

Budapest University of Technology
and Economics

Magyar tudósok körútja 2,
H-1117 Budapest, Hungary
andras.orban@cs.bme.hu

Abstract

System-level synthesis aims at partially automating the design and synthesis process
of complex systems that consist of both hardware and software. This involves the usage
of formal methods such as graph theory, as well as the formulation of some design steps
explicitly as optimization problems.

This paper describes such a graph-theoretic model, and presents three important op-
timization problems: scheduling, allocation, and partitioning. All of these turn out be
NP-hard. However, some important sub-cases can be efficiently solved.

1 Introduction

This paper presents a graph-theoretic model and some related optimization problems in System-
Level Synthesis (SLS, [1, 9]). The goal of SLS is to automatically design the optimal hardware
and/or software structure from the high-level (yet formal) specification of a system. The opti-
mality criteria may differ according to the particular application; in our model we will use the
number of required processing units (PUs) in the case of hardware and the execution time in
the case of software as main cost factors.

The central data structure is the elementary operation graph (EOG), which is an attributed
data-flow graph. Its nodes represent elementary operations (EOs). An EO might be e.g. a
simple addition but it might also be a complex function block. Each EO has a given duration
di ∈ IN. The edges of the EOG represent data flow—and consequently precedences—between
the operations.

One important problem is partitioning: deciding which EOs should be realized in hardware
and which ones in software, taking into account hardware, software and communication costs.
The EOs that should be realized in hardware are then scheduled—i.e. their starting times are
determined—and allocated in physical PUs. (The goal of scheduling is to enable an efficient
allocation in our case. The standard approach in the literature handles scheduling and alloca-
tion together [6, 7, 10]. Since both problems are computationally hard in our case, it can be
advantageous to separate them.)

The above problems are complicated by the fact that we consider pipeline hardware to achieve
maximum throughput. A pipeline system is characterized by two numbers: latency (denoted

∗Published in the Proceedings of the 3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its
Applications, Tokyo (Japan), 2003

1

by L) is the time needed to process one data item, while restart time (denoted by R) is the
period of time before a new data item is introduced into the system. Generally R ≤ L. Thus,
non-pipeline systems can be regarded as a marginal case of pipeline systems, with R = L.

2 Scheduling and Allocation

As can be seen below, scheduling and allocation are tightly coupled. This is why we handle
them in the same section. First we present the basic definitions; the results can be found in
Section 2.2.

2.1 Definitions

Definition 1 Let TYPE denote the set of all possible EO types. dur : TY PE → IN specifies
the duration of EOs of a given type.

Definition 2 An Elementary Operation Graph (EOG) is a 4-tuple: EOG = (G, type, L,R),
where G = (V,E) is a directed acyclic graph (its nodes are EOs, the edges represent data flow),
type : V → TY PE is a function specifying the types of the EOs, L specifies the maximal latency
of the system, and R is the restart time. The number of EOs is denoted by n.

Definition 3 The duration (execution time) of an EO is: d(EO) = dur(type(EO)).

Note that L must not be smaller than the sum of the execution times on any execution path
from input to output.

The following four axioms [1] provide a possible description of the correct operation of the
system:

Axiom 1: EOj must not start its operation until all of its direct predecessors (i.e. all EOi-s, for
which (EOi, EOj) ∈ E), have ended their operation;

Axiom 2: The inputs of EOi must be constant during the total time of its operation (d(EOi));

Axiom 3: EOi may change its output during the total time of its operation (d(EOi));

Axiom 4: The output of EOi remains constant from the end of its operation until its next
invocation.

Definition 4 asap : V → IN and alap : V → IN denote the ASAP (As Soon As Possible) and
ALAP (As Late As Possible) starting times of the EOs.

As a consequence of Axiom 1, the ASAP and ALAP values satisfy the following equations:

asap(EOi) = max
(EOj ,EOi)∈E

(asap(EOj) + d(EOj)) (1)

alap(EOi) = min
(EOi,EOj)∈E

alap(EOj) − d(EOi) (2)

The ASAP starting time of the inputs of the system is 0. (Note that the system is assumed
to work synchronously, and clock cycles are numbered starting with 0.) Similarly, if EOi is a
system output, then alap(EOi) = L− d(EOi). Based on this, and on the above equations, the
ASAP and ALAP values can be easily calculated. This is done in another phase of the synthesis
process, before scheduling.

2

Definition 5 The mobility domain of an EO is: mob(EO) = [asap(EO), alap(EO)] ∩ IN. The
starting time of an EO is denoted by s(EO).

The mobility domain is the set of possible starting times from which scheduling has to choose,
i.e. s(EO) ∈ mob(EO).

Definition 6 A scheduling σ assigns to every EOi a starting time sσ(EOi) ∈ mob(EOi). The
EOG together with the scheduling σ is called a scheduled EOG, denoted by EOGσ.

Definition 7 A valid scheduling is a scheduling that fulfills the above four axioms.

As we will show in Section 2.2, not every scheduling is valid. Consequently, the starting
times of the EOs cannot be chosen arbitrarily in their mobility domains, but the axioms have
to be assured explicitly.

Remark 8 The scheduling defined by the ASAP starting times is valid (per definition, see also
equation 1 above). Similarly, the scheduling defined by the ALAP starting times is also valid
(see also equation 2 above).

Definition 9 Let Σ denote the set of all schedulings, and Σ′ ⊂ Σ the set of all valid schedulings.

The scheduling problem should be defined as an optimization problem over Σ′. But in order
to clarify the objective function, we first have to take a look at the allocation problem.

The aim of allocation is to map the EOs to the mimimum number of PUs. Clearly, EOs
whose operation does not overlap in time, can be realized in the same PU. This depends on the
restart time and the scheduling. More precisely:

Definition 10 The busy time interval of an EO is (in a scheduled EOG): busy(EOi) = [s(EOi),
s(EOi) + d(EOi) + max({1} ∪ {d(EOj) : (EOi, EOj) ∈ E and s(EOj) = s(EOi) + d(EOi)})].

If node i has no successor immediately scheduled after itself, then its busy time interval
has length d(EOi) + 1, otherwise d(EOi) + d(EOj), where node j is the node with the highest
duration scheduled directly after node i. This definition is the consequence of Axioms 2, 3, and
4. (For an explanation, see [1].)

Definition 11 Two closed intervals [x1, y1] and [x2, y2] intersect modulo R, iff ∃z1 ∈ [x1, y1]
and z2 ∈ [x2, y2], such that z1 ≡ z2 (mod R).

Definition 12 EOi and EOj are called compatible iff type(EOi) = type(EOj) and busy(EOi)
and busy(EOj) do not intersect modulo R. Otherwise they are called incompatible (sometimes
also called concurrent).

It can be proven (see [1]) that two EOs can be realized in the same PU iff they are compatible.
(Note that if EOj is started immediately after EOi has finished, then they are incompatible.)

Based on EOGσ, we can define a new undirected graph:

Definition 13 The concurrency graph of EOGσ is G′ = (V ′, E′), where V ′ = V , and (EOi, EOj) ∈
E′ iff EOi and EOj are incompatible in EOGσ.

3

It can be seen easily that finding a realization of EOGσ using PUs corresponds to a vertex
coloring of G′. Thus:

Definition 14 The allocation problem consists of finding a vertex coloring in G′ with the min-
imum number of colors.

Correspondingly, the objective function of scheduling should be χ(G′). However, our ulti-
mate goal was to use general-purpose optimization heuristics for the scheduling problem. Con-
sequently, we wanted to decouple it from the allocation problem; in addition, we wanted to use
an objective function that can be calculated quickly. Therefore, we settled for another objective
function, namely the number of compatible pairs (that is, the number of edges in the complement
of the concurrency graph). We had two reasons for this:

1. Calculating the number of compatible pairs (NCP) is much easier than calculating the
number of required PUs;

2. The above two numbers correlate significantly, i.e. if the NCP is high, this usually results
in a lower number of required PUs.

As we will see in Section 2.2, it is difficult to calculate the number of required PUs. On the
other hand, the Concheck algorithm [1] can determine the compatibility of two EOs in O(1)
steps, and so the NCP can be calculated in O(n2) time.

Now we will try to formally elaborate on the second claim.
Intuitively it seems to be logical that the chromatic number of graphs with many edges is

higher than that of graphs with few edges, but this is clearly not always true. There are examples
of graphs with many edges and relatively low chromatic number and vice versa. However, the
above intuitive claim is true in a statistical sense.

Definition 15 Let Gn,M denote the set of all graphs with n vertices and M edges. This can be
regarded as a probability space, in which every graph has the same probability. Gn,p denotes the
set of all graphs with n vertices, provided with the following probability structure: every edge is
present with probability p, independently from the others.

Definition 16 Let Q be a graph property (that is, a set of graphs). We say that G ∈ Q almost
surely, iff limn→∞ Prob(G ∈ Q | G ∈ Gn,p) = 1.

It is known [2], that

χ(G) = Θ

(
n

logd n

)
almost surely, where d = 1/(1− p).

Definition 17 The graph property Q is said to be convex, iff (G1 ∈ Q, G2 ∈ Q, V (G1) =
V (G) = V (G2), E(G1) ⊆ E(G) ⊆ E(G2)) ⇒ G ∈ Q.

It is also known [3] that if Q is almost sure in the above sense, i.e. in Gn,p, Q is convex, and
p = p(n) is such that limn→∞ p ·

(
n
2

)
= ∞, and limn→∞(1 − p)

(
n
2

)
= ∞, then Q is also almost

sure in Gn,M , where M = p ·
(
n
2

)
(i.e. the expected number of edges).

4

Clearly, the property that χ(G) equals a given value is convex, so we can write with the
appropriate p and M values:

χ(G) = Θ

(
n

logd n

)
= Θ

 n

lnn
ln

1

1− M

(n2)

almost surely.

It can be seen easily that this function is monotonously increasing in the number of edges.
This shows that maximizing the NCP almost surely induces solutions requiring fewer PUs.

Definition 18 The scheduling problem consists of finding a valid scheduling with a maximum
number of compatible pairs, given an EOG (G, type, L,R).

2.2 Results

Proposition 19 Not every scheduling is valid.

Proof: Consider the EOG in Figure 1.

4

31

2

Figure 1: Example EOG

The duration of the EOs is the following: d(EO1) = 3, d(EO2) = 1, d(EO3) = 1, d(EO4) =
1. Let the latency be L = 4 (which is actually the lowest possible latency for this system).
Consequently, the mobility domains are the following: mob(EO1) = [0, 0], mob(EO2) = [3, 3],
mob(EO3) = [0, 1], mob(EO4) = [1, 2].

However, if both EO3 and EO4 were started in cycle 1, this would violate the axioms, since
EO4 needs the output of EO3. �

Theorem 20 In the special case when pipeline processing is not allowed (R = L), the allocation
problem can be solved in polynomial time.

Proof: Let Vt be the set of EOs of a given type t. If pipeline processing is not allowed, then the
subgraph of G′ spanned by Vt is an interval graph, and the chromatic number of interval graphs
can be found in polynomial time [5]. Clearly, all types can be handled this way, independently
of each other. (However, it is not true that G′ itself would be an interval graph, but rather a
set of interval graphs, between which all edges are present.) �

Theorem 21 The allocation problem is NP-hard, even if only EOGs with a single type and no
edges are considered.

5

Proof: Because of pipeline processing, the class of possible G′-s is not that of interval graphs,
but that of circular arc graphs, and the coloring of circular arc graphs is NP-hard. (For a
proof, see [4].) It only has to be proven that all circular arc graphs can be constructed as the
concurrency graph of an EOG (with one type and no edges).

Suppose we have a set of arcs on a circle whose starting and end points have rationale
coordinates (measured on the circle from an arbitrary origin). Let us choose a length unit in
such a way that the length of all arcs be an integer greater than 1. Now consider an EOG,
in which the EOs correspond to the arcs, and the duration of each EO is 1 smaller than the
corresponding length; this way the busy time of the EO equals the length of the arc. The
starting time of the EO should be the coordinate of the starting point of the arc, and R should
be equal to the perimeter of the circle. This way G′ will be exactly the corresponding circular
arc graph. �

Theorem 22 The scheduling problem is NP-hard, even if pipeline processing is not allowed.

Proof: We show a Karp-reduction of the 3-SAT problem to this problem.
Suppose we have a Boolean satisfiability problem with variables xl of the form F = (y11 +

y12 + y13)(y21 + y22 + y23) . . . (yt1 + yt2 + yt3) where yij stands for either some xl or ¬xl. (If
both xl and ¬xl occur in the same term, then we can neglect that term, because it has always
the value 1.) Now let us construct an EOG from this satisfiability problem. First make two
nodes for each variable xl: one for xl and one for ¬xl. The mobility range of these variables
is the [1, 2] interval. If one of these nodes is scheduled for the first time cycle, this means that
the corresponding variable has the value 0, otherwise the value 1. The nodes corresponding to
xl and ¬xl will have the same type so that they are guaranteed to have different values in an
optimal schedule.

Now take one term of the conjunction: yi1+yi2+yi3. There are already 3 nodes corresponding
to the variables; now we construct 6 more as shown in Figure 2.

0

1

2

C B A

E F y yy
i3 i1i2

D

(a) 8 compatible pairs

C

y
i3

0

1

2

D B A

E F y y
i1i2

(b) 9 compatible pairs

Figure 2: The EOG belonging to a term of the 3-SAT formula

Here the same symbol means the same type, whereas different symbols mean different types.
The mobility range of nodes A, B and C is the [0, 1] interval, for D it is [0, 0] and for E and F
[1, 1].

The value of the term should be 1, i.e. at least one of the variables yi1, yi2, yi3 should have
the value 1. If all of them have the value 0 (which is the bad case) then we have the situation

6

of Figure 2(a) with 8 compatible pairs (concerning the type denoted by circles). If, on the other
hand, at least one of the variables has the value 1, then one of the nodes A, B, C may be
scheduled in cycle 1, making the NCP 9 (see Figure 2(b)). It can also be seen that the NCP
cannot be more than 9.

So the reduction works as follows. First, we create the EOG using the rules just described.
Suppose that there are v variables and t terms. Then we ask if the optimal number of com-
patible pairs is v + 9t. More than this is not possible because the number of compatible pairs
corresponding to the variables is at most v and the number of compatible pairs corresponding
to the terms is at most 9t. If the answer is yes, then the optimal schedule provides the solution
of the satisfiability problem. If not, then this means that the satisfiability problem cannot be
solved. �

These results show that it is infeasible to strive for a perfect solution. Rather, we have
implemented two heuristic scheduling methods, which are described in [11]. In the case of
allocation, we use a best-fit heuristic [8].

3 Partitioning

In this section we consider the partitioning problem, which aims at automatically deciding which
operations should be realized in software, and which ones in hardware. Software and hardware
costs, as well as communication between software and hardware have to be taken into account.

3.1 Problem definition

An undirected simple graph G = (V,E), V = {v1, . . . , vn}, s, h : V → IR+ and c : E → IR+ are
given (G is the EOG of the problem—without directions). s(vi) (or si) and h(vi) (or hi) denote
the software and hardware cost of node vi, respectively, while c(vi, vj) denotes the communication
cost between vi and vj if they are in different contexts (HW or SW).

P is called a hardware-software (HW-SW) partition if it is a bipartition of V , V = VH] VS .
The crossing edges are: EP = {(vi, vj) : vi ∈ VS , vj ∈ VH or vi ∈ VH , vj ∈ VS}. The hardware
cost of P is: HP =

∑
vi∈VH hi; the software cost of P is: SP =

∑
vi∈VS si +

∑
(vi,vj)∈EP

c(vi, vj)

(i.e. the software cost of the nodes and the communication cost; since both costs are time-
dimensional, it makes sense to add them). The following optimization and decision problems
can be defined (G, h, s, c are given in all problems):

Part1: H0, S0 ∈ IR+ are given. Is there a P HW-SW partition so that HP ≤ H0 and
SP ≤ S0?

Part2: H0 ∈ IR+ is given. Find a P HW-SW partition so that HP ≤ H0 and SP is minimal.

Part3: S0 ∈ IR+ is given. Find a P HW-SW partition so that SP ≤ S0 and HP is minimal.

3.2 Results

3.2.1 NP-completeness

Theorem 23 Part1 is NP-complete even if only graphs with no edges are considered.

7

Proof: Part1∈ NP, since P is a good proof for that.
To prove theNP-hardness, we reduce the Knapsack problem [12] to Part1. Let an instance

of the Knapsack problem be given. (There are n objects, the weights of the objects are denoted
by wi, the price of the objects by pi, the weight limit by W and the price limit by K. The task
is to decide, whether there is a subset X of objects, so that

∑
vi∈X wi ≤W and

∑
vi∈X pi ≥ K.)

We define a graph to that as follows: V = {v1, . . . , vn}, E = {}. Let hi = pi, si = wi. (Since E
is empty, there is no need to define c.) Introducing A =

∑
vi∈V pi, let S0 = W , H0 = A−K.

Now we solve Part1 with these parameters. We state that it has a solution iff the given
Knapsack problem has a solution.

Assuming that Part1 has a solution: V = VH] VS . It means that

SP =
∑
vi∈VS

wi ≤W (3)

and
HP =

∑
vi∈VH

pi ≤ A−K =
∑
vi∈V

pi −K

the last one can also be formulated as:

K ≤
∑
vi∈V

pi −
∑
vi∈VH

pi =
∑
vi∈VS

pi (4)

(3) and (4) proves that X = VS is a solution of the original Knapsack problem.
Let now assume that X solves the Knapsack problem. Therefore:∑

vi∈X
si =

∑
vi∈X

wi ≤W = S0 (5)

and ∑
vi∈X

pi ≥ K = A−H0 =
∑
vi∈V

pi −H0

that is
H0 ≥

∑
vi∈V

pi −
∑
vi∈X

pi =
∑

vi∈V \X

pi =
∑

vi∈V \X

hi (6)

(5) and (6) verifies that V = (V \X)]X solves Part1. �

Theorem 24 Part2 and Part3 are NP-hard. �

Although the general partitioning problem seems to be too hard to solve for large inputs, some
special cases are easier. If communication is cheap, i.e. c(vi, vj) ≡ 0 ∀i, j, then the partitioning
problem reduces according to the proof of Theorem 23 to the well known knapsack problem, for
which quasi-polynomial algorithms are known [4]. On the other hand, if the communication is
the only significant part, i.e. si ≡ 0, hi ≡ 0 ∀i, then the trivial optimal solution is to put every
node to software. However, if there are some predefined constraints considering the context of
some nodes (i.e. the nodes in ∅ 6= VS ⊆ V are prescribed to be in software and the ones in
VH ⊆ V, to be in hardware, VH ∩ VS = ∅) the problem reduces to find the minimal weighted
s-h-cut in a graph, where s and h represent the VS and VH sets, respectively. (If VH = ∅, then
it reduces to find a minimal weighted cut.) This can be solved in polynomial time[8].

8

3.2.2 ILP solution

The following ILP solution is appropriate for the Part3 problem, but it is straightforward to
adopt it to the other versions of the partitioning problem.

h, s ∈ IRn, c ∈ IRe are the vectors representing each function (n is the number of nodes, e is
the number of edges). E ∈ {−1, 0, 1}e×n is the transposed incidence matrix of G, that is (using
the EOG as a directed graph for technical reasons)

E[i, j] :=

−1 if the ith edge starts in node j

1 if the ith edge ends in node j
0 if the ith edge is not connected to node j

Let x ∈ {0, 1}n be a binary vector indicating the partition, that is

x[i] :=

{
1 if the ith node is realized in hardware
0 if the ith node is realized in software

It can be seen that |Ex| indicates whether an edge crosses the two contexts or not. So the
problem can be formulated as follows:

minhx (7a)

s(1− x) + c|Ex| ≤ S0 (7b)

x ∈ {0, 1}n (7c)

In Equation (7b) 1 means the n-dimensional (1, . . . , 1) vector. The (7a)-(7c) problem can be
transformed to an ILP equivalent by introducing the variables y ∈ Re to eliminate the | · |:

minhx (8a)

s(1− x) + cy ≤ S0 (8b)

Ex ≤ y (8c)

−Ex ≤ y (8d)

x ∈ {0, 1}n (8e)

The last two programs are equivalent. If x solves (7b)-(7c), then (x, |Ex|) solves (8b)-(8e). On
the other hand, if (x, y) solves (8b)-(8e), then x will solve (7b)-(7c) too, since y ≥ |Ex| and
c ≥ 0.

Solving (8a)-(8e) is still NP-hard, but our empirical results show that with LP-relaxation
and branch-and-bound technique it can be solved for up to 300 nodes in acceptable time.

4 Conclusion

In this paper we have presented a graph-theoretic model commonly used in system-level syn-
thesis. We defined the scheduling and allocation problems for pipeline systems, as well as the
hardware-software partitioning problem.

All of these problems turned out to be NP-hard in the general case; however, some sub-cases
could be identified in which efficient algorithms are known. In particular, the allocation problem
can be solved in polynomial time for non-pipeline systems, and the partitioning problem can be
solved efficiently for both communication-dominated and processing-dominated systems. Also,
the ILP solution for the general partitioning problem could solve large real-world problems.

9

5 Acknowledgements

This work was supported by Timber Hill LLC and by the PRCH Student Science Foundation.
We would also like to thank Gbor Simonyi for pointing us to some useful literature.

References

[1] P. Arató, T. Visegrády, and I. Jankovits. High-Level Synthesis of Pipelined Datapaths. John
Wiley & Sons, Chichester, United Kingdom, first edition, 2001.

[2] B. Bollobás. The chromatic number of random graphs. Combinatorica, 8(1):49–55, 1988.

[3] M. Daws. Probabilistic combinatorics, part III. http://members.tripod.com/matt_daws/
maths/pc.ps, 2001. Based on the lectures of Dr. Thomason, Cambridge University.

[4] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete Methods,
(1):216–227, 1980.

[5] M. Ch. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

[6] R. L. Graham. Combinatorial scheduling theory. In Lynn Arthur Steen, editor, Mathematics
Today: Twelve Informal Essays, pages 183–211. Springer, New York, 1978.

[7] R. L. Graham, E. L. Lawler, and J. K. Lenstra. Optimization and approximation in deter-
ministic seqencing and scheduling: a survey. In P. L. Hammer, E. L. Johnson, and B. Korte,
editors, Discrete Optimization II, pages 287–326. North-Holland, Amsterdam, 1979.

[8] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Pub-
lishing, Boston, MA, 1997.

[9] A. A. Jerraya, M. Romdhani, C. Valderrama, Ph. Le Marrec, F. Hessel, G. Marchioro, and
J. Daveau. Models and languages for system-level specification and design. In NATO ASI
on System-Level Synthesis, Proceedings, 1998.

[10] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and
scheduling: algorithms and complexity. In S. C. Graves, A. H. G. Rinnooy Kan, and P. H.
Zipkin, editors, Handbooks in Operations Research and Management Science, volume 4.
Elsevier, Amsterdam, 1993.

[11] Z. Á. Mann and A. Orbán. Integrating formal, soft and diagrammatic approaches in high-
level synthesis and hardware-software co-design. In Proceedings of Informatik 2001, 2001.

[12] C. H. Papadimitriou. Computational complexity. Addison Wesley, 1994.

10

