
Optimal energy-e�cient placement of virtual machines with divisible

sizes∗

Gergely Halácsy and Zoltán Ádám Mann

Abstract

A key problem in the management of data centers is how to provision virtual machines based on the available

physical machines, because an optimized placement can lead to signi�cant reduction in energy consumption.

This problem can be formulated as bin packing with heterogeneous bin types, where the cost of a bin depends on

how full it is. We prove that under suitable conditions, an extended version of the First-Fit-Decreasing heuristic

delivers optimal results for this problem.

1 Introduction

Data centers serve an ever-growing demand for computational power. The resulting growth in the energy con-
sumption of data centers has both huge environmental impact and huge costs [19]. Therefore, the energy-e�cient
management of data centers has received much attention in the last couple of years.

Hardware vendors have devised techniques to reduce the power consumption of resources that are idle or lightly
loaded [2]. As a result, the power consumption of a server depends signi�cantly on its load. For example, the
power consumption of a HP ProLiant DL380 G7 server varies from 280W (zero load) to 540W (full load) [10]. It is
important to take into account the power characteristics (i.e., how power consumption depends on the server's load)
when allocating workload on the servers. Most previous research assumed linear power characteristics [24], but some
used more sophisticated power models, e.g., Hsu and Poole found the function P (u) = Pidle + (Ppeak −Pidle) · u0.75
to yield the most accurate results [11].

A key technology for enabling e�ective data center management is virtualization. In a virtualized data center,
the applications are deployed in virtual machines (VMs), which are in turn deployed on physical machines (PMs).
This way, multiple applications can co-exist on the same PM in an isolated manner. Through virtualization, the
workload can be allocated on a few highly utilized PMs and other PMs can be turned o�, resulting in signi�cant
savings in energy consumption. This leads to an important optimization problem called the VM allocation problem:
given the capacity and power consumption characteristics of the PMs and the load of the VMs, how to map the
VMs on the PMs so that the overall energy consumption is minimal.

Several slightly di�erent versions of the VM allocation problem have been addressed [16]. In many cases, the
objective was to minimize the number of turned-on PMs as a proxy for energy consumption [3, 20, 22, 23]. This
is only an approximation though since the power consumption of turned-on PMs can vary heavily. And with
the advancement of technology, the dynamic power range (i.e., the di�erence between maximum and idle power
consumption) of PMs is increasing.

In terms of the proposed algorithmic techniques, some works suggested exact methods but the majority applied
heuristics. The proposed exact methods rely almost always on some form of mathematic programming (e.g., integer
linear programming) and o�-the-shelf solvers [9, 20]. Unfortunately, these approaches do not scale to practical
problem sizes.

There is a natural connection between the VM allocation problem and bin-packing: VMs with their loads can
be seen as items with given sizes that need to be packed into bins (PMs) of given capacity. On one hand, this proves
that VM allocation is NP-hard. On the other hand, several researchers suggested to adopt bin-packing heuristics like
First-Fit, Best-Fit, First-Fit-Decreasing etc. to the VM allocation problem [4, 14, 25]. However, VM placement is in
several ways more complex than bin-packing, so that the known approximation results concerning these algorithms
on bin-packing [6, 7] cannot be transferred to VM placement; in other words, they remain heuristics the results of
which can be arbitrarily far from the optimum [15, 17, 18].

∗This paper was published in: Information Processing Letters, Volume 138, October 2018, Pages 51-56

1

Some relevant generalizations of bin-packing have also been considered, mainly from an approximation point of
view. Epstein and Levin showed an asymptotic polynomial-time approximation scheme (APTAS) for the problem
in which di�erent bin types are considered, each bin type is associated with a capacity and a cost, and the aim is to
pack the items into a set of bins with minimum total cost, assuming that a su�cient number of bins are available
from each type [8]. The problem that we are addressing now is more complex in the sense that the cost of a bin (its
energy consumption) is not constant, but depends on how full it is. If each bin's cost depends linearly on how full it
is, and this linear function is the same for each bin, then it is easy to see that the problem admits an APTAS [17].
However, the problem in which the cost of di�erent bins can be described by di�erent and not necessarily linear
functions (which is a more realistic model of the VM allocation problem), has to our knowledge not been addressed
yet.

The hardness of bin-packing arises partly because arbitrary sizes can appear in the input. Constraints on the
allowed sizes can make the problem much easier. If the item sizes form a divisible series � i.e., for each pair of
di�erent item sizes, the smaller is a divisor of the larger � bin-packing can be solved optimally in polynomial time
[5]. In this paper, we use a similar approach to devise a polynomial-time exact algorithm for the generalized problem
in which the cost of bins depends on how full they are, under the assumption that the item sizes form a divisible
series. This assumption is not too strict for VM allocation, because PM capacities and VM sizes are often powers
of 2 [21], leading to divisible item size series.

The contributions of this paper are as follows:

• We address a version of the VM allocation problem, aiming to minimize total power consumption, where
the power consumption of each type of PM is given by some function of its load. In contrast to previous
works, we make only very light assumptions on these functions: they must be monotonously increasing and
concave. These assumptions hold for example for the linear power consumption characteristics used by several
researchers [1, 24] and also for the more sophisticated power consumption characteristics proposed by Hsu
and Poole [11]. Further, we assume that VM sizes form a divisible series. This assumption holds for example
if the VM sizes are all powers of two, which occurs frequently in practice, as reported by Shen et al. [21].

• We devise an algorithm called OptDiv for this problem. OptDiv is based on the First-Fit-Decreasing (FFD)
heuristic, but FFD is oblivious of bin costs, so OptDiv extends it with informed decisions relating to power
consumption.

• We prove that, under the given assumptions, OptDiv results in optimal total power consumption.

• OptDiv is very fast, in contrast to the proposed APTASs that are often not practical because of the huge
constants in their execution times [13].

2 Preliminaries

In the bin-packing problem, we are given a set of n items with sizes s1 ≤ s2 ≤ . . . ≤ sn and a su�ciently large set
of bins, each having capacity C, where sn ≤ C. The aim is to pack all the items into a minimal number m of bins
B1, . . . , Bm so that for each Bi, the sum of the sizes of the items in Bi is at most C. Bi denotes both the ith bin
and the set of items in that bin.

The items arrive in some order si1 , . . . , sin . The First-Fit heuristic (FF) processes the items in this order: it
starts by opening a bin B1 for item si1 . In a general step, when bins B1, . . . , Bk are already in use and the next
item sij is considered, the algorithm puts sij into the �rst bin from B1, . . . , Bk where it �ts if there is such a bin,
otherwise it opens a new bin Bk+1. The First-Fit-Decreasing heuristic (FFD) consists of �rst sorting the items in
non-increasing order of their size, and then performing FF in this order of the items. Both FF and FFD are known
to be approximation algorithms for the bin-packing problem [6, 7].

Let x, y be arbitrary real numbers. We call x a divisor of y and y a multiple of x if there exists an integer z
such that x · z = y. This relation is denoted as x | y. The input of bin-packing is weakly divisible if si | sj holds for
all 1 ≤ i < j ≤ n. If, in addition, also sn | C holds, then the input is strongly divisible.

The following known results about divisible inputs to bin-packing will be important.

Lemma 1 ([5], Fact 2). Let si be an item size in a weakly divisible input and let T be a subset of the items such
that no item in T has size larger than si but the sum of the sizes of the items in T is at least si. Then, there is a
subset T ′ ⊆ T such that the sum of the sizes of the items in T ′ equals si.

Theorem 2 ([5], Theorem 2). For weakly divisible inputs, the FFD algorithm always uses the minimal number of
bins.

2

y-d y x x+d

g(y-d)

g(y)

g(x)

f(y)
f(x)

f(x+d)

Figure 1: To the proof of Lemma 4

In the VM allocation problem, the input contains, just like in bin-packing, a set of n items with sizes s1 ≤
s2 ≤ . . . ≤ sn. In addition, there are k bin types T1, . . . , Tk. Each bin has capacity C, where sn ≤ C. Each bin
type Ti is characterized by a cost function Fi : [0, C] → R+. For a bin B, let Σ(B) denote the sum of the sizes
of the items packed into B; this will be called the size of the bin. If B is a bin of type Ti, then the cost of B is
γ(B) = Fi(Σ(B)). From each bin type, a su�cient number of bins is available. The objective is to pack all the items
into bins B1, . . . , Bm so that for each Bj , Σ(Bj) ≤ C, and the total cost of the packing

∑m
j=1 γ(Bj) is minimal.

For a size 0 ≤ x ≤ C, a cost function that assigns minimal cost to size x among the functions F1, . . . , Fk will be
called an optimal cost function for the given size x.

3 Solving the VM allocation problem for divisible inputs

3.1 Proposed algorithm (OptDiv)

Given an instance of the VM allocation problem with item sizes s1, . . . , sn, capacity C, and bin type cost functions
F1, . . . , Fk, our algorithm OptDiv consists of the following two phases:

1. Running FFD with item sizes s1, . . . , sn and capacity C. The result is a series of disjoint subsets B1, . . . , Bm

such that in each Bi, Σ(Bi) ≤ C.

2. Selecting for each Bi a bin of the type j for which Fj(Σ(Bi)) is minimal, i.e., Fj is optimal for size Σ(Bi).

In other words, we disregard the cost functions in the �rst phase and pack the items in a �ctive set of unit-cost
bins. In the second phase, the real bins are chosen based on their costs, choosing for each subset of items forming
a �ctive bin a real bin that has (locally) optimal costs for the given subset of items.

3.2 Optimality

It is clear that OptDiv returns a valid solution to the VM allocation problem, but it is not clear that this solution
is an optimal one. Our main result is the following theorem:

Theorem 3. If the input is weakly divisible and the Fj functions are monotonously increasing and concave, then
OptDiv yields optimal results for the VM allocation problem.

Before proving Theorem 3, some lemmas are needed.

Lemma 4. Let B and B′ be two bins with Σ(B) = x and Σ(B′) = y, where x > y. Let f be an optimal cost
function for bin size x and g an optimal cost function for bin size y. Let d > 0 be such that x+d ≤ C and y−d ≥ 0.
Assume that f and g are monotonously increasing and concave. Then,

f(x+ d) + g(y − d) ≤ f(x) + g(y).

3

Proof. Since f is optimal for x and g is optimal for y, we have f(x) ≤ g(x) and g(y) ≤ f(y). Therefore,

f(x)− f(y)

x− y
≤ g(x)− g(y)

x− y
. (1)

Since f is concave, the slope of the chord in [y, x] is at least as high as the slope of the chord in [x, x+d] (see Figure
1):

f(x)− f(y)

x− y
≥ f(x+ d)− f(x)

d
. (2)

Since g is concave, the slope of the chord in [y, x] is at most as high as the slope of the chord in [y − d, y]:

g(x)− g(y)

x− y
≤ g(y)− g(y − d)

d
. (3)

Combining inequalities (1)-(3), we get:

f(x+ d)− f(x)

d
≤ f(x)− f(y)

x− y
≤ g(x)− g(y)

x− y
≤ g(y)− g(y − d)

d
,

and hence
f(x+ d)− f(x)

d
≤ g(y)− g(y − d)

d
.

Multiplying by d and reordering gives the stated inequality.

The following shows that Lemma 4 also holds if x = y and f = g.

Lemma 5. Let B and B′ be two bins with Σ(B) = Σ(B′) = x. Let f be an optimal cost function for bin size x.
Let d > 0 be such that x+ d ≤ C and x− d ≥ 0. Assume that f is monotonously increasing and concave. Then,

f(x+ d) + f(x− d) ≤ 2 · f(x).

Proof. Since f is concave, the slope of the chord in [x−d, x] is at least as high as the slope of the chord in [x, x+d]:

f(x)− f(x− d)

d
≥ f(x+ d)− f(x)

d
. (4)

Multiplying by d and reordering gives the stated inequality.

Lemma 6. Let B1, . . . , Bm be the list of subsets as returned by FFD at the end of Step 1 of the algorithm, in the
order as FFD opened them. If the input is weakly divisible, then Σ(B1) ≥ Σ(B2) ≥ . . . ≥ Σ(Bm).

Proof. We prove by induction that the required property holds throughout the operation of the FFD algorithm.
Assume that so far it holds and now the item with size si is processed, and the algorithm decides to put it in bin
Bj , leading to B′j = Bj ∪ {si}. If j = 1, then the desired property cannot be violated. Otherwise, we need to show
that Σ(Bj−1) ≥ Σ(B′j).

Since the input is weakly divisible and the items are processed in non-increasing order, si is a divisor of the size
of all items that were packed before. As a consequence, si | Σ(Bj−1) and si | Σ(Bj). Since FFD chooses the �rst
�tting bin and it chose Bj and not Bj−1, it follows that Σ(Bj−1) > Σ(Bj). Together with the fact that both are
multiples of si, this implies that Σ(Bj−1) ≥ Σ(Bj) + si, and hence Σ(Bj−1) ≥ Σ(B′j).

Now everything is in place to prove our main theorem.

Proof of Theorem 3. We start by describing a method that assigns a code to any solution of the VM allocation
problem. The method �rst sorts the bins in non-increasing order of their size, and encodes them in this order. For
encoding the contents of a bin, the contained items are also sorted in non-increasing order of their size, and their
sizes are enumerated in this order. The encoding of consecutive bins is separated by a special delimiter symbol (∗).
E.g., the code (6, 6, 3, ∗, 6, 3) encodes a packing of �ve items into two bins, where the �rst bin contains two items of
size 6 and one item of size 3, whereas the second bin contains one item of size 6 and one item of size 3. Any solution
has a de�nite code, but multiple solutions can have the same code, since the code does not contain information
about the bin types and it does not di�erentiate between items of the same size.

In order to prove the theorem, we use proof by contradiction: we assume that the solution found by OptDiv is
not optimal. Let the solution delivered by OptDiv, denoted by A, consist of the bins B1, . . . , Bm (in the order as
returned by FFD in the �rst step). Consider an optimal solution O with bins O1, . . . , Ot (in non-increasing order
of their size), such that the code of O has the longest pre�x in common with the code of A.

The solutions A and O have the following properties:

4

O:
si

A:

si

Bj

Oj

Bl

(a) Case 1

O:

A:

si

Bj

Oj Ol

si

si

(b) Case 2

O:

A:

so

Bj

Oj

Bl

so

sb

(c) Case 3.1

O:

A:

sb

Bj

Oj

so

sb

Ol

E E’

(d) Case 3.2.1

O:

A:

sb

Bj

Oj

so

sb

Ol

E

(e) Case 3.2.2

Figure 2: To the proof of Theorem 3

1. Because of Lemma 6, we can assume that the code of A contains the encoding of bins B1, . . . , Bm in this
order.

2. Because of Theorem 2, m ≤ t.

3. Since O is optimal, it uses for each bin a bin type, the cost function of which is optimal for the given bin size.
The same holds also for A because of the way it is created (second step of the algorithm).

4. According to the indirect assumption, the total cost of O is strictly less than the total cost of A.

5. Since the cost functions assign positive values to even an empty bin and O is optimal, O does not contain
empty bins. The same holds also for A because of the way it is created.

6. If there are multiple items with the same size, the code does not di�erentiate between them. We can assume
that they appear in the same order in A and O. E.g., if there are two items with size 6, then the �rst 6 in
the code of A and the �rst 6 in the code of O represent the same item.

7. It can be assumed without loss of generality that, for any two bins with equal size, the same bin type is used.

Let j be the index of the �rst bin where the codes of A and O di�er. Clearly, 1 ≤ j ≤ m: if j were greater than
m (i.e., the code of A were a pre�x of the code of O), that would mean that the �rst m bins of O contain all items
and O has further bins, which would contradict property 5. Because of property 2, also j ≤ t follows.

Based on the di�erence between Bj and Oj , we can di�erentiate three cases. Our aim is to show a contradiction
in each of the three cases.

Case 1 (see Figure 2(a)): Bj is a proper subset of Oj . This means that Oj contains all items that Bj contains
plus at least one more item si. Since this is the �rst di�erence between A and O, the item si must be in the
solution A in a bin B`, where ` > j. However, this contradicts the FFD logic: when the FFD algorithm packed
item si, it should have put it into bin Bj , since it would �t into that bin as well (as demonstrated by the fact that
Bj ∪ {si} ⊆ Oj) and FFD always chooses the �rst �tting bin.

Case 2 (see Figure 2(b)): Oj is a proper subset of Bj . Let si be the �rst element in the code of Bj that is not
contained in Oj . In solution O, the item si must be in a bin O`, where ` > j. Now let us move item si from O` to
Oj , resulting in a new solution O′. This is indeed a solution, since si �ts into bin j, as demonstrated by the fact
that Oj ∪ {si} ⊆ Bj . Recall that the bins of O are in non-increasing order of their size, and so Σ(Oj) ≥ Σ(O`). If

5

Σ(Oj) > Σ(O`), then Lemma 4 (cf. also property 3), if Σ(Oj) = Σ(O`), then Lemma 5 (cf. also property 7) shows
that the total cost of solution O′ is less than or equal to the total cost of solution O. Since O is optimal, it follows
that O′ is also optimal. On the other hand, the new position of item si means that the pre�x of the code of O′ that
is in common with the code of A is at least one longer than the pre�x of the code of O that is in common with the
code of A, contradicting the choice of O.

Case 3: neither Bj (Oj nor Oj (Bj . Since Bj 6= Oj and because of property 6, this means that the codes
of Bj and Oj are equal up to some point, but continue with di�erent elements; let these be sb in Bj and so in Oj ,
where sb 6= so. We have two sub-cases according to the relation between sb and so.

Case 3.1 (see Figure 2(c)): sb < so. Since this is the �rst di�erence between A and O and because the item so
cannot appear later in the code of Bj , the item so must be in the solution A in a bin B`, where ` > j. However,
this contradicts the FFD logic: when the FFD algorithm packed item so, sb was not yet in Bj , so that so would
have �t into Bj (just as it �ts into Oj), and FFD always chooses the �rst �tting bin.

Case 3.2: sb > so. Since this is the �rst di�erence between A and O and because the item sb cannot appear later
in the code of Oj , the item sb must be in the solution O in a bin O`, where ` > j. Let D denote the set of items
corresponding to the maximal common pre�x in the code of Oj and Bj , and let E denote the further elements in
Oj . We must di�erentiate between two sub-cases according to the size of E.

Case 3.2.1 (see Figure 2(d)): Σ(E) ≥ sb. Since so is the greatest element in E, all elements in E are less than
sb. Therefore, Lemma 1 can be applied, and it guarantees the existence of a subset E′ ⊆ E with Σ(E′) = sb. Now,
we can swap item sb in O` with the items forming E′ in Oj , resulting in a new solution O′. Since Σ(E′) = sb, this
swap does not alter the size of the bins. As a consequence, O′ is also an optimal solution. On the other hand, now
sb has become a common element in the jth bin of A and O′, so that the pre�x of the code of O′ that is in common
with the code of A is at least one longer than the pre�x of the code of O that is in common with the code of A,
contradicting the choice of O.

Case 3.2.2 (see Figure 2(e)): Σ(E) < sb. Let d = sb−Σ(E) > 0. We swap item sb in O` with the items forming
E in Oj , resulting in a new solution O′. This is indeed a solution: the size of O` decreased by d, while the size of
Oj increased by d to Σ(D) + sb, which is still below the bin capacity since D ∪ {sb} ⊆ Bj . Recall that the bins
of O are in non-increasing order of their size, and so Σ(Oj) ≥ Σ(O`). If Σ(Oj) > Σ(O`), then Lemma 4 (cf. also
property 3), if Σ(Oj) = Σ(O`), then Lemma 5 (cf. also property 7) shows that the total cost of solution O′ is less
than or equal to the total cost of solution O. Since O is optimal, it follows that O′ is also optimal. On the other
hand, the new position of item sb means that the pre�x of the code of O′ that is in common with the code of A is
at least one longer than the pre�x of the code of O that is in common with the code of A, contradicting the choice
of O.
Each case led to a contradiction, thus completing the proof.

3.3 Execution time

Now we investigate the asymptotic running time of the proposed algorithm. Recall that n denotes the number of
items to pack and k denotes the number of bin types available.

The �rst step is an invocation of FFD on the set of items. FFD can be implemented to run in Θ(n · log n) time
[12].

In the second step, the optimal bin type has to be found for each subset returned by FFD. This requires
evaluating each of the k cost functions for each of the m subsets. Assuming that the function evaluations can be
done in O(1) time, and using that m ≤ n, the time required for the second step is O(n · k).

Thus, the overall time complexity of the algorithm is O(n · (k + log n)).

4 Empirical evaluation

To empirically assess the e�ectiveness and e�ciency of the proposed algorithm (OptDiv), we implemented it in a
C++ program together with two alternatives. One of them is the normal � i.e., power-oblivious � FFD algorithm,
the other is the Power-Aware Best Fit Decreasing (PABFD) algorithm proposed in the literature speci�cally for the
VM allocation problem [4].

We �xed the capacity of the PMs to 1024 and generated n VMs with sizes chosen uniformly at random from the
powers of two between 1 and 1024, thus ensuring the divisibility of the VM sizes. We considered three PM types,
each with di�erent linear power characteristics: (1) from 150 to 600W, (2) from 300 to 350W, and (3) from 250 to
450W. The measurements were carried out on a notebook computer with Intel i3-3110M CPU running at 2.40 GHz
with 4GB RAM. Each reported result is the average of 10 runs.

6

Table 1: Results of the empirical evaluation. m: number of PMs; kW : total power consumption in kW; W%: total
power consumption relative to OptDiv; t: execution time in msec; t%: execution time relative to OptDiv

100 VMs 500 VMs 1,000 VMs 5,000 VMs 10,000 VMs

Algorithm m kW W% t t% m kW W% t t% m kW W% t t% m kW W% t t% m kW W% t t%

OptDiv 20.5 7.1 100 0.5 100 90 31.5 100 3 100 183 63.8 100 9.3 100 924 323 100 180 100 1820 637 100 596 100

FFD 20.5 9.5 134 0.4 80 90 42.2 134 2.4 80 183 84.6 133 8.3 89 924 430 133 171 95 1820 849 133 581 98

PABFD 20.5 8.0 113 0.2 40 90 37.0 118 3.7 123 183 75.4 118 13.4 144 924 380 118 286 159 1820 751 118 1021 171

Table 1 shows the results for varying number of VMs, according to multiple metrics. Concerning the number
of PMs, the three algorithms perform equal: each uses the minimum number of PMs in accordance with Theorem
2. Regarding power consumption, however, there are clear di�erences: FFD leads to 33-34%, PABFD to 13-18%
higher power consumption than OptDiv. In terms of execution time, FFD is the fastest, but the relative performance
penalty for OptDiv diminishes for larger instances. The execution time of PABFD is growing faster than that of
the other two algorithms, leading to 71% higher execution time than OptDiv for 10,000 VMs, but even that is just
about one second.

Overall, the experiments reinforced the usefulness of the proposed OptDiv algorithm: it is very fast and delivers
signi�cant reductions in power consumption compared to competing algorithms.

5 Open problems

Several interesting open problems remain. In particular, it is unclear if the presented methods can be carried over to
the following generalizations of the problem: (i) bin types with di�erent capacities; (ii) limited number of available
bins per bin type; (iii) multi-dimensional vector bin packing.

Acknowledgements

This work was partially supported by the Hungarian Scienti�c Research Fund (Grant Nr. OTKA 108947) and by
the European Union's Horizon 2020 research and innovation programme under grant 731678 (RestAssured).

References

[1] Ehsan Ahvar, Shohreh Ahvar, Zoltán Ádám Mann, Noel Crespi, Joaquin Garcia-Alfaro, and Roch Glitho.
CACEV: a cost and carbon emission-e�cient virtual machine placement method for green distributed clouds.
In Proceedings of the 13th IEEE International Conference on Services Computing, pages 275�282, 2016.

[2] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing. Computer, 40(12):33�37,
2007.

[3] Dávid Bartók and Zoltán Ádám Mann. A branch-and-bound approach to virtual machine placement. In
Proceedings of the 3rd HPI Cloud Symposium �Operating the Cloud�, pages 49�63, 2015.

[4] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms and adaptive heuristics for
energy and performance e�cient dynamic consolidation of virtual machines in cloud data centers. Concurrency
and Computation: Practice and Experience, 24(13):1397�1420, 2012.

[5] E.G Co�man, M.R Garey, and D.S Johnson. Bin packing with divisible item sizes. Journal of Complexity,
3(4):406�428, 1987.

[6] György Dósa. The tight bound of �rst �t decreasing bin-packing algorithm is FFD(I) ≤ 11/9OPT (I) + 6/9.
In Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, pages 1�11. Springer, 2007.

[7] György Dósa and Ji°í Sgall. First �t bin packing: A tight analysis. In 30th Symposium on Theoretical Aspects
of Computer Science (STACS), pages 538�549, 2013.

7

[8] Leah Epstein and Asaf Levin. An APTAS for generalized cost variable-sized bin packing. SIAM Journal on
Computing, 38(1):411�428, 2008.

[9] Brian Guenter, Navendu Jain, and Charles Williams. Managing cost, performance, and reliability tradeo�s for
energy-aware server provisioning. In Proceedings of IEEE INFOCOM, pages 1332�1340. IEEE, 2011.

[10] HP. Power e�ciency and power management in HP ProLiant servers. http://h10032.www1.hp.com/ctg/

Manual/c03161908.pdf, 2012.

[11] Chung-Hsing Hsu and Stephen W. Poole. Power signature analysis of the SPECpower_ssj2008 benchmark. In
IEEE International Symposium on Performance Analysis of Systems and Software, pages 227�236, 2011.

[12] David S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences, 8(3):272�314,
1974.

[13] Narendra Karmarkar and Richard M. Karp. An e�cient approximation scheme for the one-dimensional bin-
packing problem. In 23rd Annual Symposium on Foundations of Computer Science, pages 312�320. IEEE,
1982.

[14] Wubin Li, Johan Tordsson, and Erik Elmroth. Virtual machine placement for predictable and time-constrained
peak loads. In Proceedings of the 8th International Conference on Economics of Grids, Clouds, Systems, and
Services (GECON 2011), pages 120�134. Springer, 2011.

[15] Zoltán Ádám Mann. Optimization in computer engineering � Theory and applications. Scienti�c Research
Publishing, 2011.

[16] Zoltán Ádám Mann. Allocation of virtual machines in cloud data centers � a survey of problem models and
optimization algorithms. ACM Computing Surveys, 48(1), 2015.

[17] Zoltán Ádám Mann. Approximability of virtual machine allocation: much harder than bin packing. In Proceed-
ings of the 9th Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, pages 21�30,
2015.

[18] Zoltán Ádám Mann. Rigorous results on the e�ectiveness of some heuristics for the consolidation of virtual
machines in a cloud data center. Future Generation Computer Systems, 51:1�6, 2015.

[19] Natural Resources Defense Council. Scaling up energy e�ciency across the data center industry: Evaluating key
drivers and barriers. http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf,
2014.

[20] B. C. Ribas, R. M. Suguimoto, R. A. N. R. Montano, F. Silva, L. de Bona, and M. A. Castilho. On modelling
virtual machine consolidation to pseudo-Boolean constraints. In 13th Ibero-American Conference on AI, pages
361�370, 2012.

[21] Siqi Shen, Vincent van Beek, and Alexandru Iosup. Statistical characterization of business-critical workloads
hosted in cloud datacenters. In 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, pages 465�474, 2015.

[22] L. Shi, J. Furlong, and R. Wang. Empirical evaluation of vector bin packing algorithms for energy e�cient
data centers. In IEEE Symposium on Computers and Communications, pages 9�15, 2013.

[23] W. Song, Z. Xiao, Q. Chen, and H. Luo. Adaptive resource provisioning for the cloud using online bin packing.
IEEE Transactions on Computers, 63(11):2647�2660, 2014.

[24] P. Svärd, W. Li, E. Wadbro, J. Tordsson, and E. Elmroth. Continuous datacenter consolidation. In IEEE 7th
International Conference on Cloud Computing Technology and Science (CloudCom), pages 387�396, 2015.

[25] Luis Tomás and Johan Tordsson. An autonomic approach to risk-aware data center overbooking. IEEE
Transactions on Cloud Computing, 2(3):292�305, 2014.

8

