
Hardware-Software Co-Design for Kohonen's Self-Organizing Map

Péter Arató, Zoltan Ádám Mann, András Orbán
Department of Control Engineering and Information Technology

Budapest University of Technology and Economics
H-1117 Budapest, Magyar Tudósok Körútja 2.

Hungary
{arato,mann}@iit.bme.hu,Andras.Orban@cs.bme.hu

This paper was published in the Proceedings of the 7th IEEE International Conference on Intelligent Engineering Systems, 2003.

Abstract� Kohonen's self-organizing map (SOM) is a
widely used technique to cluster unstructured data. It
has applications in computer graphics, image processing,
robotics, soft-computing and many more. The exact speci�-
cation and time requirements may vary according to the con-
crete application, therefore a re-design of Kohonen's SOM
o�ering several di�erent performance/cost trade-o�s by us-
ing special purpose hardware acceleration would be bene�-
cial. This paper introduces the main principles of system-
level synthesis (SLS) which aims at constructing optimal
hardware-software systems ful�lling a high-level speci�ca-
tion and applies its methodologies to construct di�erent
hardware-software SOM realizations corresponding to the
concrete expectations.

I. Introduction

The convergence of hardware and software development
may lead to the disappearance of separate software- and
hardware vendors, but rather companies o�ering di�er-
ent price/performance solutions fro the same function-
ality, beginning from a pure software realization until
the ASIC (Application-Speci�c Integrated Circuit), will
emerge. They may start with a software version, and ac-
cording to the di�erent time-requirements some part of
the complex system may be accelerated by special pur-
pose hardware elements. Moreover, in the parts chosen for
hardware implementation there is a further optimization
possibility: one can either strive for the best possible par-
allelization, which is rather costly, or to settle for a cheaper
but slower solution.

The implementation of Kohonen's SOM [1] has been cho-
sen as benchmark because of its simplicity and signi�cance
in many areas, like robotics, computer graphics, face recog-
nition, document clustering etc. The actual realizations of
the SOM may di�er in the various �elds according to the
particular time and/or performance requirements. For ex-
ample, if a robot uses the SOM for recognizing the objects
of the realworld to coordinate its movements, then the per-
formance of the clustering algorithm plays a key role; if it
is used to recognize the number plate of a car in a petrol
station, the speed is not that important, rather the system
should be possibly cheap.

Now, we give a short introduction to the concepts and
methods of system-level synthesis (SLS, [2], [3]). The goal
of SLS is to automatically design the optimal hardware
and/or software structure from the high-level (yet formal)
speci�cation of a system. The optimality criteria may di�er
according to the particular application; in our model we
will use the number of required processing units in the case

of hardware and the execution time in the case of software
as main cost factors.

The central data structure of SLS is the elementary oper-
ation graph (EOG), which is an attributed data-�ow graph.
Its nodes represent elementary operations (EOs). An EO
might be e.g. a simple arithmetic operation but it might
also be a complex function block. Each EO has a given
duration di ∈ IN. The edges of the EOG represent data
�ow�and consequently precedences�between the opera-
tions.

One important problem of SLS is partitioning: deciding
which parts of the problem should be realized in hardware
and which ones in software, taking into account hardware,
software and communication costs. One possible approach
to partitioning is to start with a pure software solution,
identify the slowest parts and construct a special purpose
hardware for them. The parts that should be realized in
hardware will be designed using the methodologies of high-
level synthesis (HLS, [2], [4], [5]), which aims the automatic
construction of hardware units based on a high-level behav-
ioral description. SLS can be regarded as an extension of
HLS, since several methodologies of HLS can be transferred
to SLS.

The process of HLS starts by building the EOG from
the speci�cation, then some transformations are made on
the graph in order to meet timing and consistency require-
ments. Finally, the elementary operations are scheduled�
i.e. their starting times are determined�and allocated in
real processing units. The actual optimization is carried
out in these last two steps. Both are computationally
hard [6].

The above problems are complicated by the fact that we
consider pipeline hardware to achieve maximum through-
put, since pipeline processing can achieve higher perfor-
mance even in systems that are di�cult to parallelize. A
pipeline system is characterized by two numbers: latency
(denoted by L) is the time needed to process one data item,
while restart time (denoted by R) is the period of time be-
fore a new data item is introduced into the system. Gen-
erally R ≤ L. Thus, non-pipeline systems can be regarded
as a marginal case of pipeline systems, with R = L.

At the Department of Control Engineering and Informa-
tion Technology at Budapest University of Technology and
Economics, a software called PIPE [2] has been developed,
which realizes the HLS procedure. The unique feature of
PIPE which distinguishes it from other HLS tools is that it
takes pipeline processing into account from the beginning



of the design process: the desired R and L values are parts
of the input of PIPE. If a large amount of data has to be
processed, then minimizing R at the cost of a reasonable
increase in L or hardware price is an important objective
of HLS.

The paper is organized as follows: Section II gives a short
overview about related work, Section III presents the soft-
ware implementation of the Kohonen's SOM, which is the
starting point of the partitioning. The redesign using SLS
methods and the PIPE system is described in Section IV
and �nally Section V concludes the paper.

II. Existing hardware and hardware/software
implementations of the SOM

There are already some existing hardware and hard-
ware/software solutions for Kohonen's SOM algorithm.
Both commercial tools and research projects are dealing
with that problem. Since the notion Kohonen's SOM does
not cover a single algorithm, but rather a family of meth-
ods, so to set them against each other is rather complicated
and only partially meaningful.

A. Commercial tools

This subsection lists commercial neuro-chips, neural co-
processors and neural accelerators. They are usually not
made speci�cally for the Kohonen algorithm but their ven-
dor claims that they also support it, or they can be used to
accelerate operations that are also critical in the Kohonen
algorithm.

SAND (Simple Applicable Neural Device [7]) is a neural
processor based upon the principle of a systolic processor
array. Four parallel processor elements form the heart of
this array. Each processor element has a multiplier and
two adders, one of which serves as an accumulator. With
a maximum clock frequency of 50 MHz, SAND achieves a
performance of 200 MCPS (Mega Connections Per Second).
Multiple SAND chips may be connected in parallel in order
to attain a further increase in performance.

NeuroLution [8] is a tool for the development of arti-
�cial neural network applications and contains hardware
and software components, which can be used as stand-alone
tools or in an integrated form. The system is available for
PCs under Windows 95 and Windows NT.

The CNAPS system [9] is a full NNW (Neural NetWork)
development system based on the proprietary CNAPS-1064
Digital Parallel Processor chip that has 64 sub-processors
operating in SIMD mode. Each sub-processor has its own
4KB local memory and a �xed-point arithmetic unit to
perform 1-bit, 8-bit, or 16-bit integer arithmetic. Each sub-
processor can emulate one or more neurons and multiple
chips can be used together.

The processors must be programmed to execute a given
NNW algorithm. The CNAPS tools include CNAP-C (a
C-compiler and debugger), Quicklib (hand-coded standard
functions callable form CNAPS-C), BuildNet (pre-coded
neural network algorithms), and CodeNet (assembly lan-
guage debugger.)

Further related tools are AAC Neural Network Processor
(NNP) and Neural Network Tool (NNT) [9].

B. Research projects

According to Research group Rosenstiel at the Univer-
sity of Tübingen [10], the critical time consumed by SOM
is the computation of the the distance for all the neurons.
Therefore, a neural coprocessor is designed on a Weaver-
prototyping-system which calculates the distances of all
neurons and �nds rapidly the position of the winning neu-
ron.

The working group of Prof. Dr. H. G. Purwins at the
Institute of Applied Physics of Westfälische Wilhelms-
Universität [11] is concerned with the investigation of spe-
cial physical phenomena, which can also be used as a cou-
pling medium for implementing neural networks, and par-
ticularly the SOM.

III. Software realization of the selected
Kohonen algorithm

First, the algorithm of Kohonen's Self-Organizing Map
has been implemented in software, more speci�cally in the
C programming language. This section discusses this soft-
ware implementation, which is going to be the starting
point for the system-level design of Section IV.

The input of the software are the training patterns given
in a text �le; after running the learning algorithm it stores
the resulting weight vectors also in a text �le.

A. Program structure

In our approach we only deal with the learning phase
of the SOM (after learning the algorithm only becomes
simpler since the weights need not be modi�ed), therefore
we only analyze the Learning() function. Initialization
and output generation is not interesting either, because it
is not performance critical.

The function Learning() iteratively calls the functions
WhoWins() and ModifyWeights() for every training pat-
tern. The former function determines the winning neuron
by calculating the Euclidean distance between each cell of
the SOM and the given training pattern (using the func-
tion CompareDistance()). The latter function updates the
weight vector of the winning neuron as well as that of its
neighboring cells.

A.1 Neighborhood de�nition

The main feature that di�erentiates Kohonen's approach
from other clustering techniques is that it creates an or-

dered map. This is due to the placement of the neurons
on a map and to the consideration of neighborhood around
the winning neuron. This determines the weight vectors to
be updated in each iteration. We declared the neurons ly-
ing in a rectangle around the wining neuron to be modi�ed
in each iteration. The size of the rectangle decreases with
time.



A.2 Weight modi�cation

Another question related to the neighborhood de�nition
is the parameter to be used in the weight modi�cation of
the neurons. In our method the weight update strategy in
the neighborhood of the winning neuron is:

w(t+1)=w(t)+Alpha(t,dx,dy)*(x-w(t))

where t has the value of the current iteration, x has the
value of the current pattern and dx and dy are the coordi-
nates of the di�erence vector between the winning neuron
and the neuron to be modi�ed. Alpha() decreases with
time and with the distance on the map.

B. Performance analysis of the software

B.1 Methodology

Since hardware is usually much more costly than soft-
ware, it is logical to move only those operations into hard-
ware which are

• simple, i.e. consist of relatively few elementary opera-
tions; and
• performance critical, which usually means that they are
invoked very often.

So the �rst task is to �nd the optimal candidates to be
put into hardware according to these two criteria. For this
purpose, we used the pro�ler gprof [12] to extract that
information. The results can be seen in Figure 1. Blocks
in this calling graph represent functions, the edges indi-
cate function calls. The edges are marked with numbers
indicating the (relative) amount of time spent in the called
function (including the time spent in all of the functions
called from this function). The root of the calling graph
is the function Learning, its execution time is taken to be
100%. All other execution time values are relative to the
execution time of Learning.

65% 0.8% 5.8%

Learning

WhoWins ModifyWeights

CompareDistance AlphaGetNeighborhood

77% 23%

Fig. 1. Calling graph of the software

B.2 Quantitative assumptions

For the purposes of this empirical evaluation, a 'typical'
situation has to be considered. That is, some assumptions
have to be made concerning the parameters. Based on
our former experience and the review of the literature, the
following assumptions seem to be appropriate:

1. The size of the map is between 4x4 and 32x32; a typical
value is 10x10.
2. The dimension of the vectors is between 4 and 64; a
typical value is 9.

3. The number of iterations is between 103 and 105; a typ-
ical value is 1000.

In our empirical analysis, we made several measurements
in the above range. We found that the proportion of time
spent in the respective routines is quite independent of the
particular parameters (at least in this range). So we could
simply use the above typical values for pro�ling the soft-
ware.
For the measurements, we used a PC with Intel Pentium

II Celeron processor running at 433 MHz with 128 KB
cache and 64 MB RAM (865 bogomips). The operating
system was Linux 2.2.16 with gcc version 2.95.2. One clock
cycle is about 2.3ns.

B.3 Results

According to Figure 1, the function Learning can be
divided into two parts:

1. WhoWins (also including CompareDistance) is responsi-
ble for 77% of the execution time. One execution of this
function takes about 40000 ns, which means approximately
17000 clock cycles. The function WhoWins calls the func-
tion CompareDistance CompareDistance is responsible for
65% of the execution time. On the other hand, one execu-
tion of this function takes only about 300 ns, which means
approximately 130 clock cycles.
2. The function ModifyWeightsmodi�es the weights of the
winning neuron and of its neighbors. It takes 23% of the ex-
ecution time (9000 ns or 4000 clock cycles each execution)
and contains two subfunctions. GetNeighborhood deter-
mines the neurons to be modi�ed around the winning neu-
ron. Function Alpha calculates the modi�cation factor for
a given neuron.

As can be seen from the above data, the best candi-
date for hardware acceleration is CompareDistance, be-
cause it is a relatively simple function that nevertheless
takes 65% of the execution time. Note though that if
CompareDistance could be accelerated with an order of
magnitude, this would not accelerate the whole process
with an order of magnitude, but only to 35%+6.5%=41.5%
of the original execution time. That is, if a higher factor of
acceleration is to be achieved, other functions have to be
transferred to hardware as well. Additional candidates for
this are: WhoWins, Alpha and ModifyWeights.

IV. System-level design for the SOM

A. Introduction

As discussed in section I, one of the most crucial tasks of
system-level design is the partitioning problem, i.e. decid-
ing which system components should be realized in hard-
ware and which ones in software.
A possible approach to this problem is the one followed

in this project: we start from the cheapest, but slowest ex-
treme, i.e. a software implementation. After analyzing the
performance of the software (pro�ling, see section III), the
component(s) with the highest performance impact is (are)
transferred into hardware. This process is continued itera-
tively, until the system meets the pre-de�ned performance



requirements. This way, a solution with minimum cost can
be found.
The components that are decided to be transferred to

hardware undergo a hardware design and synthesis process,
using high-level synthesis. In particular, we used the HLS
tool PIPE (introduced in section I) for this purpose.
We will assume throughout the following sections these

technology conditions:
• As elementary operations, simple arithmetic and logic
operations can be used.
• As processing units, ALUs (Arithmetic & Logic Unit) are
used. There is no di�erence between the ALUs; each ALU
is capable of executing any arithmetic or logic elementary
operation.
• The cost of a hardware solution is measured by the num-
ber of the necessary ALUs.
Somewhat less straight-forward is the determination of

the execution time of the elementary operations, since it
should be comparable with the times of the software real-
ization. We assume for the ALUs the same performance as
in the case of the PC. The resulting execution time values
are presented in Table I. These are actually the restart
time values of the corresponding pipeline in the processor
of the PC [13]. If custom VLSI technology is assumed as
target technology, than the same execution time can really
be achieved. If other technology (e.g. FPGA) is used, then
the exact execution time values are of course di�erent; how-
ever, this is unimportant from the point of view of PIPE,
for which only the proportions of the execution time values
are of importance.

Operation Execution time
add 1
sub 1
mul 2
div 2
cmp 1

TABLE I

Execution time values measured in clockcycles for the

elementary operations

B. Hardware acceleration for the calculation of the Euclid-

ian distance

As it turns out from the analysis of section III, the
most logical choice for hardware acceleration is the function
CompareDistance, because this function alone is responsi-
ble for 65% of the execution time. It is also important
to note that this function is rather simple which makes a
hardware solution even more favorable.
CompareDistance takes as input the weights of a neuron

ne (which is an array of numbers of dimension nb_inputs

that is in our example 9), the new pattern (also an ar-
ray of the same dimension) and a reference to a num-
ber (mindist) which is the minimal distance found so
far. The function essentially consists of a loop of at most
nb_inputs iterations, in which the (squared) distance of
ne and pattern is calculated (dist).

At the end of the function it is investigated whether dist
is smaller than the previously found minimum. If it is, then
mindist is updated accordingly and the function returns 1.
Otherwise, mindist is unaltered and the function returns
0.

Analyzing the performance of this function leads to the
conclusion that emphasis should be laid on accelerating the
�rst part of the function, i.e. the loop that computes the
distance, because the rest is hardly time-consuming. For-
tunately, this loop is not recursive, that is, the calculation
in the i+1. iteration does not depend on the results of the
i. iteration (or any former iterations). This way, the loop
can be fully parallelized if necessary.

B.1 Elementary operation graph

It is assumed that nb_inputs is 9, so that the hardware
unit for the calculation of the Euclidian distance (called
Compute_distance) will receive as input 2x9 numbers de-
noted by a1, . . . , a9 and b1, . . . , b9. The result is the squared
distance of the two vectors. The corresponding EOG can
be seen in Figure 2.

distance
2

b ba a b a b a a b a b a b a b a b4 421 21 3 3 5 5 6 6 7 7 8 8 9 9

Fig. 2. Elementary operation graph of Compute_distance

Note that this is only a data �ow graph, i.e. it is not sure
that all the operations that are shown to be parallel will re-
ally be parallel in the realization. This graph only speci�es
the possibilities for parallelism, and PIPE will try to take
into account as much as possible of them, but also trying
to reduce the restart time and the cost of the unit. This
way, a suboptimal implementation caused by inappropriate
human decisions can be prevented.

After having constructed the elementary operation graph
of the Compute_distance unit, this graph has to be spec-
i�ed in the input format of PIPE. The code listing in Ta-
ble II shows this speci�cation.

Most of this listing should be obvious to understand
when interpreted in conjunction with Figure 2. The only
line that needs some explanation is the following:

# map mul ALU add ALU sub ALU

The e�ect of this line is that all of the used elementary
operations (which are in this case add, sub and mul) are
mapped to ALUs. That is, PIPE will not assume separate



# type add 1

# type sub 1

# type mul 2

# type SYSTEM 0

# map mul ALU add ALU sub ALU

IN SYSTEM

## subtract INi+1 from INi

sub1 sub IN IN

sub2 sub IN IN

sub3 sub IN IN

sub4 sub IN IN

sub5 sub IN IN

sub6 sub IN IN

sub7 sub IN IN

sub8 sub IN IN

sub9 sub IN IN

## squaring the di�erences

mul1 mul sub1 sub1

mul2 mul sub2 sub2

mul3 mul sub3 sub3

mul4 mul sub4 sub4

mul5 mul sub5 sub5

mul6 mul sub6 sub6

mul7 mul sub7 sub7

mul8 mul sub8 sub8

mul9 mul sub9 sub9

## building the square of the distance

add1 add mul1 mul2

add2 add mul3 mul4

add3 add mul5 mul6

add4 add mul7 mul8

add5 add add1 add2

add6 add add3 add4

add7 add add5 add6

## return the square of the distance

out add add7 mul9

## system ports

# in IN

# out out

TABLE II

The input of PIPE for the Compute_distance algorithm

processing units for the three kinds of elementary opera-
tions but rather a single type of processing units (ALUs)
that can realize all of the elementary operation types.

B.2 Results

We have run PIPE with the elementary operation graph
presented in subsection IV-B.1. We made several experi-
ments using di�erent restart time and latency values to get
various cost/speed solutions. Of course the restart time is
superior to the latency in importance so we visualize the
number of necessary processing units (ALUs) as a function
of the restart time, and indicate the corresponding best
(i.e. lowest) latency values only as a number near the dot
(see Figure 3).

As expected, the number of necessary ALUs increases
when the restart time is decreased. This is natural because
a faster hardware solution is obviously more costly. This
�gure is quite informative because it shows the possible
compromises between cost and performance. If the exact
criteria are known, it can easily be decided which solution
is best. Moreover, if the criteria change over time, it is easy
to switch to another solution, without repeating the whole
design process.

In the following, we will conduct further analysis on a
couple of speci�c solutions (i.e. speci�c restart time, la-
tency and cost) to demonstrate the output of PIPE. The
dots corresponding to these solutions are marked with a
box in Figure 3.

The results of PIPE for these speci�c cases are visual-

0

5

10

15

20

25

0 5 10 15 20 25 30 35

N
um

be
r 

of
 p

ro
ce

ss
in

g 
un

its

Restart time

3482
16

1328

10
19

13

10

10

22
37 16

64 34 28 31 25
46 52 76 97 46 52 31 28 34 34 31 34 37

67 67

Fig. 3. The number of necessary ALUs for di�erent restart time
values. The numbers near the dots indicate the lowest corresponding
latency value

ized in Figure 4. The ALUs are represented by vertical
tracks. The vertical axis shows the time cycles from 0 to
R, folded according to the restart period. The bars in the
vertical tracks represent the allocated elementary opera-
tions. In the �rst sub�gure of each pair, the length of the
bars corresponds to the execution time of the operation; in
the second sub�gure it corresponds to its busy time. (The
amount of time an EO occupies a processor is called busy
time. This is not equal to the duration of the EO. The
busy time of an EO can be calculated as its duration plus
either the duration of its longest immediate successor or
plus 1 if such does not exist.)
It can clearly be seen from these �gures that PIPE has

indeed found an optimal solution. Especially the �gures
showing the busy times indicate explicitly that the resource
usage is optimal, which means that the optimization stages
of PIPE (scheduling and allocation) were very successful.
The �rst pair of �gures show a very fast, but quite expen-

sive solution. In this case, the restart time is 5 which means
that (after a short loading time of the pipeline) the system
can provide a new output every 5 clock cycles. However,
this requires 13 ALUs.
The other cases show some more combinations of increas-

ing restart time and decreasing cost. In the last combina-
tion, the restart time is already 21, but this is compensated
for by a cost of only 3 ALUs.
Remember that the execution of Compute_distance

takes on the PC about 130 clock cycles. The above solu-
tions take 5 to 21 clock cycles. This means an acceleration
factor of 6 to 26. If performance is much more important
than cost then even a solution with restart time of 3 can
be achieved which means an acceleration factor of 43.

C. Work in progress

The current work focuses on the hardware acceleration
of the other function blocks of the software, with special
emphasis on the ModifyWeights algorithm. In the �rst
approach a smaller part of that function, the role of which



2 3 4 5 6 7 8 9 101 1211 13
0

1

2

3

4

5

2 3 4 5 6 7 8 9 101 1211 13
0

1

2

3

4

5

1 2 3 4 5 6 7 8
0

2

4

6

8

1 2 3 4 5 6 7 8
0

2

4

6

8

1 2 3 4 5 6
0

2

4

6

8

10

12

1 2 3 4 5 6
0

2

4

6

8

10

12

1 2 3
0

5

10

15

20

25

1 2 3
0

5

10

15

20

25

Fig. 4. Allocation results for Compute_distance. The pairs corre-
spond to the settings R = 5, L = 13; R = 8, L = 28; R = 11, L = 82;
R = 21, L = 46, respectively.

is to modify the weights of one neuron only, seems to be
worth realizing in hardware.

Another important aspect that needs further elaboration
is the communication cost between the software and hard-
ware contexts.

V. Conclusion

The object of the paper was to present the most impor-
tant principles and methods of system-level synthesis, and
show their applicability on the selected problem: Koho-

nen's self-organizing map.
In Section I the theoretical basis of the used design ap-

proach has been explained. It mostly relies on the former
results in the �eld of high-level synthesis: SLS can be re-
garded as an extension of HLS.
Then we have focused on the hardware/software real-

ization of the SOM algorithm using the SLS methods de-
scribed before. First the software realization has been pre-
sented in Section III, as the cheapest but slowest extreme.
Besides, a detailed analysis has been given of the struc-
ture and the performance characteristics of the software
using a pro�ling tool. Based on this analysis, the most
performance-critical part was selected for possible hard-
ware acceleration.
The hardware re-design of the most performance-critical

function by applying SLS techniques was presented in Sec-
tion IV. Starting from the functional description of the
problem, a VHDL-equivalent hardware description struc-
ture could be achieved by the utilization of the design tool
PIPE. One of PIPE's important features is that it proposes
di�erent solutions for di�erent cost/speed trade-o�s. The
hardware re-design resulted in a possible acceleration of
more than an order of magnitude. This acceleration is not
caused by assuming faster hardware processing units than
the one used to execute the software, but by the design
optimized speci�cally for this particular algorithm.

VI. Acknowledgments

The work of the authors was supported by the grant
OTKA T 030178, by the grant of Timber Hill LLC and the
PRCH Student Science Foundation.

References

[1] T. Kohonen, �Self-organized formation of topologically correct
feature maps,� Biological cybernetics, vol. 43, pp. 59�69, 1982.

[2] Péter Arató, Tamás Visegrády, and István Jankovits, High-Level
Synthesis of Pipelined Datapaths, John Wiley & Sons, Chich-
ester, United Kingdom, �rst edition, 2001.

[3] Ahmed A. Jerraya, M. Romdhani, C. Valderrama, Ph. Le Mar-
rec, F. Hessel, G. Marchioro, and J. Daveau, �Models and lan-
guages for system-level speci�cation and design,� in NATO ASI
on System-Level Synthesis, Proceedings, 1998.

[4] D. Gajski., High-Level Synthesis, Kluwer Academic Publishers,
1992.

[5] R. Camposano, �From behaviour to structure: high-level syn-
thesis,� IEEE Design and Test of Computers, vol. 10, pp. 8�19,
1990.

[6] Z. Á. Mann and A. Orbán, �Optimization problems in system-
level synthesis,� Submitted for the 3rd Hungarian-Japanese Sym-
posium on Discrete Mathematics and Its Applications, 2002.

[7] T. Becher, W. Eppler, T. Fischer, H. Gemmeke, and G. Kock,
�The MIND-project: building, applying and speeding-up neural
networks using the SAND-neuroprocessor,� in Proceedings of
the 5th European Congress on Intelligent Techniques and Soft
Computing, 1997.

[8] �The NeuroLution system,� http://www.�rst.gmd.de/ connect/
neurolution.html .

[9] �Neural network hardware,� http://map.web.cern.ch/
NeuralNets/nnwInHepHard.html , 1998.

[10] X. Fang, P. Thole, J. Göppert, and W. Rosenstiel, �A hard-
ware supported system for a special online application of self-
organizing map,� in Proc. of ICNN'96, 1996.

[11] �Homepage Gruppe Purwins,� http:// cgi.uni-muenster.de:
8410/ exec/Physik/ ap_puframe.pl?Titel;MenuF;halbleit/
neurohardware.

[12] Free Software Foundation, �GNU gprof manual,� http://www.
gnu.org/manual/ gprof-2.9.1/ gprof.html , 1998.



[13] A. Fog, �How to optimize for the pentium family of micropro-
cessors, chapter 17: Out-of-order execution,� http:// fatphil.org/
x86/pentopt/ 17.html , 2000.


