
Implementation of VLSI Routing Algorithms

Bence Golda, Bálint Laczay, Zoltán Ádám Mann, Csaba Megyeri, András Recski

Department of Computer Science
Budapest University of Technology and Economics

H-1117 Budapest, Magyar tudósok körútja 2
Hungary

vlsi@cs.bme.hu

http://www.cs.bme.hu/vlsi

This paper was accepted for publication in the Proceedings of the
IEEE 6th International Conference on Intelligent Engineering Systems, Opatija, 2002

Abstract� In this paper we introduce a �exible software

framework for the easy implementation and evaluation of

VLSI routing algorithms and the visualization of routing

results.

Moreover, we present some new results in the theory of

VLSI routing algorithms for rectangular grids, as well as

the reformulation of some classical algorithms for triangular

grids.

I. Introduction

In the last decades, with the amazing spread of electrical
devices, the need for Very Large Scale Integrated (VLSI)
circuits has grown rapidly. This required the construction
of new algorithms and methodologies in all phases of VLSI
circuit design and realization [1], [2], [3], [4]. As a result, a
variety of routing algorithms, mathematical models, heuris-
tics and automation tools have been developed [5], [6], [7],
[8], [9].
In this paper, we consider the problem of detailed routing.

That is, the placement of the units is already known, as
well as the terminals to be interconnected. The aim is
to determine if such an interconnection is possible, and in
the case of a positive answer, an optimal interconnection
is to be found [10], [11]. Optimality is usually measured in
terms of chip size, but other factors (such as wire length,
number of bends, speed, energy consumption etc.) can also
be considered.
As the complexity of the circuits to be designed has

grown signi�cantly, it has become increasingly di�cult to
create suitable algorithms. First, the algorithms have to
be fast and scalable in order to cope with huge and com-
plex problem instances. A second problem is that because
of the complexity of the routings�especially in the case of
3-dimensional routing�it is increasingly hard for the al-
gorithm designer to visualize the operation of his or her
algorithm. There has been little tool support for this [12].
One of the main contributions of the presented work is

a �exible software framework, which enables rapid proto-
typing, evaluation and testing of routing algorithms. An
important feature of the software is its support for both
2-dimensional and 3-dimensional visualization of routings.
We also implemented some of the 'classic' routing algo-

rithms using the software. This enabled us to perform cer-

tain experiments and measurements, which gave interesting
results about the practical e�ectiveness of the algorithms.
Another contribution of the paper is connected with a

less wide-spread routing model based on a triangular grid
instead of a rectangular one. We managed to transfer some
known routing algorithms to this new model, yielding in
some cases better results than in the original rectangular
model. The software could also be easily extended to sup-
port the new model, which proved its �exibility.
The paper is organized as follows. Section II gives an

overview of the formal mathematic model of detailed rout-
ing, as well as the main results in the �eld. This section also
includes two previously unpublished results. Section III
introduces the triangular model and describes routing al-
gorithms for it. Section IV presents the software frame-
work, while Section V describes some empirical results.
Section VI concludes the paper.

II. VLSI routing theory

A. Basic de�nitions

In VLSI routing problems we are given a rectangular area
and we have to interconnect some points of the boundary
by wires. For this purpose we use a square grid or usu-
ally a three dimensional cubic grid containing l levels of
square grids. These levels are called layers. The points at
the bounds of the grid connecting to the devices are called
terminals. A set of terminals to be interconnected is called
a net. A routing problem is a collection of nets. To solve
this problem we have to �nd a collection of vertex-disjoint
connected subgraphs of the grid so that the terminals be-
longing to the same net are in the same subgraph. In the
multilayer model, where l ≥ 2, a wire can leave a layer for
another using a via-hole and the subgraphs may leave the
terminals at any layer, so via-holes are at the boundary as
well.
If terminals appear only at one side of the boundary, we

speak about a single row routing problem. If they arise on
two parallel sides then it is a channel routing problem. If
terminals are on all the four sides, the problem is called
switchbox routing. Beside these important cases it is pos-
sible that terminals are on two adjacent sides what we call
gamma routing or on three sides when we speak about open



3

21

3

1

2

(a) (b)

Fig. 1. A routing problem and its solution

switchbox routing.
In case of a single row routing or a channel routing the

width is not given and we have to minimize the width of the
solution, while in case of switchbox routings and gamma
routings the size of the area is determined so we have to
decide whether a solution exists. In this case an optimiza-
tion problem can be to minimize the number of layers.
Although we de�ned a solution as a collection of vertex-
disjoint subgraphs, some authors studied solutions where
the subgraphs have to be edge-disjoint. This is called edge-

disjoint routing. If l = 1, we speak about planar routing.
If there are several layers, we can consider certain mod-
els where restrictions are introduced. The most frequently
used model is called Manhattan model where consecutive
layers may contain wire segments of di�erent directions
(horizontal or vertical) only. If no restriction is de�ned,
the model is called unconstrained.
Figure 1 shows an example switchbox routing prob-

lem (Figure 1(a)) and its solution in the two-layer uncon-
strained model (Figure 1(b)).

B. Algorithms and theoretical bounds

In this section we mention some results in di�erent mod-
els. At �rst we consider the single row routing problem.
In case of l = 1, one can easily verify that not every prob-
lem can be solved. If l ≥ 2 then every speci�cation can be
solved in the Manhattan model by Gallai's algorithm based
on a greedy interval packing. Similarly, single row routing
problem can be solved in case of l ≥ 3. The width of the so-
lution is d d

lH
e, where d is the density and lH is the number

of horizontal layers. In Manhattan model this is the best
possible. The theoretical lower bound in the unconstrained
model is ddl e, but this can slightly be improved:
Theorem 1: For every l and w > 4 there exists a routing

speci�cation with density d = lw−1 which cannot be solved
in w width on l layers. In other words, the theoretical
bound ddl e is not tight.

Proof: One can immediately see that not every spec-
i�cation can be solved if d = lw, since at a position where
the density is equal to d, all rows are occupied by a wire
of a net and only the wires next to the terminals' side
can be reached. Hence for example, the routing problem
12 . . . d12 . . . d12 . . . d remains unsolvable.

Even in case of d = lw − 1 there must be an unsolv-
able problem. Suppose the problem has d nets and starts
and ends with 12 . . . d. Consider the problem only between
these parts, let us say, of n terminals. We have only one
free row and at one step at most the four neighboring wires
can leave to this row, and at most l wires can be reached
from the terminal side. This means that the number of
di�erent routing realizations is at most (4l)n. The number
of all routing problems is dn and since d = lw − 1 > 4l,
there must be unsolvable problems.
Now let us consider the more interesting channel routing

problem. First we mention that it is NP-complete to decide
whether a channel routing problem can be solved in the
Manhattan model on two layers [8]. But we can solve it
in the unconstrained model by the algorithm of A. Recski
and F. Strzyzewski [13]. A disadvantage of this algorithm
is that the width of the channel can be 3

2n, though this
upper bound can be improved with some heuristics.
In case of channel routing in the multilayer Manhattan

model the theoretical lower bound is d d
lH
e. The greedy

interval packing algorithm solves the problem width w =
d d
lV −1e, where lV is the number of vertical layers. For odd

l in the VHV. . . V model the two bounds are the same. For
even l it is NP-complete to decide whether a solution with
w = d d

lH
e exists in the multilayer Manhattan model with

lH horizontal layers.
Now consider the switchbox routing. Here we suppose

that terminals cannot appear at the corner of the switch-
box. There is no �xed number of layers that is su�cient
for every speci�cation, see an example of S. E. Hambr-
usch in [9]. This example shows that the number of layers
depends on the shape of the rectangle. Szeszlér's algo-
rithm [14] solves the switchbox routing problem in linear
time in the Manhattan model on 2dme + 4 layers, where
m = max(hv ,

v
h ), h and w are the height and width of the

switchbox.
In the switchbox routing the basic lower bound of the

number of layers, obtained by the example of Hambrusch,
is dme+1 in the unconstrained model and 2dme+2 in the
Manhattan model. Due to the algorithm of D. Szeszªér, we
have an upper bound of 2dme+4 in both cases. For square
shape box in the Manhattan model this means 4 ≤ l ≤ 6.
Theorem 2: The construction of Hambrusch with size

w = h = 2 (see [9]) cannot be solved on 5 layers. This
means that the lower bound for square boxes in the Man-
hattan model is 6.

Proof: Note that it is still possible that for larger
boxes less than 6 layers are su�cient. But in this case,
every net uses at least 5 vertices of the grid because the
shortest path between the endpoints is of length 3, but
every wire has to turn at least twice and in Manhattan
model this needs a via hole. The four nets use at least 20
vertices, thus the number of layers is at least �ve.
In case of �ve layers every vertex is occupied. We can

suppose that there are two layers for horizontal wires. Then
the horizontal wires �ll these layers. At the top layer only
the Southern or Northern terminals can connect to the grid
bacause this layer is for vertical wires. But the wires on the



Fig. 2. The connection between lambda and gamma routing

second layer cut these terminals from the wires of the fourth
layer, hence the wires on the second layer are for the South-
ern and Northern terminals. This can be repeated for the
wires of the fourth layer, so Western and Eastern terminals
do not have horizontal wires, leading to a contradiction.
Like channel routing, the two-layer switchbox routing in

the Manhattan model is also NP-hard.

III. The triangular routing model

VLSI routings are usually based on the square lattice. It
is an interesting question whether other type of lattices like
the triangular or the hexagonal lattice are also useful for
solving routing problems. Since on these lattices we can
use one more direction for wires, one can expect that the
number of necessary layers may decrease. In technology,
the use of a new direction causes no problem, while via
holes remain the same as before.
One can immediately see that the triangular lattice is a

better candidate than the hexagonal lattice, because on the
latter wires have to turn at every vertex of the lattice. This
is the main reason why we focus on the triangular lattice.
In this case, it is natural to de�ne the routing area as

a triangle rather than a rectangle. Similarly to the origi-
nal model, we call a problem single row routing problem,
if terminals are only on one side of the triangle. If termi-
nals appear on two sides, we speak about a lambda routing

problem while the general case, when terminals can be ev-
erywhere, is called triangle routing problem.
Note that the lambda routing problem di�ers from the

original gamma routing problem in the fact that it can use
three directions instead of two on the half of the area (see
Figure 2).
We call a routing Manhattan type if layers contain wires

of the same direction and these directions change from layer
to layer. Now we will show some algorithms on the tri-
angular model. The sides of the triangle will be called
South, East and West, while the nonhorizontal directions
of the lattice will be called Eastern and Western. Termi-
nals in single row problems will always occupy the South
side, while in lambda routing the East and North side.

A. Single Row Routing

The single row routing can be solved in this model like
in the original one:

Theorem 3: A single row routing can be solved on one
layer in the triangular model if and only if it can be solved
on one layer in the original model. Moreover, similarly to
the original model, every single row routing can be solved
on two layers in the triangular model. A Manhattan type
solution can be realized in linear time.

Proof: A single row routing can be solved on one
layer if and only if no two nets are crossing and this is
independent of the type of the lattice. On two layers choose
the leftmost terminal of every net. Give a wire segment
from this terminal on the �rst layer in the Eastern direction
and connect every other terminal on the second layer using
a West-directed segment.

B. Lambda Routing

Theorem 4: Every lambda routing problem can be
solved Manhattan-like on 5 layers in linear time.

Proof: The �rst and �fth layer will be for Eastern,
the second and fourth layer will be for horizontal and the
third layer will be for Western segments. Choose a net that
has terminal on the West side and give a wire segment on
the second and third layer from the lowest terminal of this
net. Now every other terminal of the Western side can
be connected on the third layer, while terminals on the
Eastern side on either the �rst or on the fourth layer. Nets
having Eastern terminals only, will be given a segment on
the �fth layer from the topmost terminal. Other Eastern
terminals can be connected on the fourth layer.

C. Triangle Routing

Theorem 5: The number of layers needed in the triangle
routing is at least 4, while at least 5 layers are needed for a
Manhattan type solution. There is a linear time algorithm
that uses 12 layers to provide a Manhattan type solution.

Proof: One can �nd small speci�cations needing 4 or 5
layers in the Manhattan type routing. By using the lambda
routing algorithm we get a 12-layer-algorithm for triangle
routing. We have to use the above algorithm to connect
nets on the �rst four layers, having only Western terminals,
and nets having both Western and Eastern terminals. We
do not need the �fth layer. Now repeat this for nets having
Eastern terminals only, and for nets having both Eastern
and Southern terminals on the next four layers. Finally,
do the same with nets having Southern terminals only, and
for nets having both Western and Southern terminals on
the last four layers.

D. Gamma Routing

In the original model, gamma routing can be solved by
Szeszlér's switchbox algorithm on 4 layers. However, it is
possible to solve the gamma routing problems on 3 layers,
if we use the triangular lattice:
Theorem 6: Every square-shape gamma routing problem

can be solved in linear time on 3 layers in Manhattan way
on the triangular lattice.

Proof: Note that now we have a square box on the
square lattice extended by a North-East diagonal direction,
terminals are on the Northern and Western side.



The �rst layer is for vertical, the second is for horizontal
and the third is for diagonal wires. Suppose that the square
has size n × n, that is, there are at most 2n terminals
and n nets. We give a wire segment for every net on the
second layer. This is possible because we have n rows and
at most n nets. Nets having at least two terminals on
the West side get a wire on the horizontal layer from their
topmost terminal. Next the nets that have exactly one
terminal on the West side get a wire on the horizontal layer
from this western terminal. On the rest of the rows of the
second layer we give one wire segment for every net that has
Northern terminals only. Now every Northern terminal can
be connected on the �rst layer and every Western terminal
can be connected on the third layer.
This algorithm works also in the general rectangular

case. Suppose that width is no greater than height, w ≤ h.
If we have N nets then 3dNw e layers su�ce, since horizon-
tal tracks can be placed on dNw e layers. As N ≤

w+h
2 , the

routing uses at most 3dw+h
2w e layers. That is at most 3m

layers.

IV. The software framework

After having described brie�y the theory of detailed rout-
ing algorithms as well as triangular routing, the second part
of the paper focuses on more practical issues. This section
presents our software implementation.
The aim was to create a software that helps in designing

and evaluating routing algorithms. Correspondingly, the
main design goals were the following:

• Portability;
• Both 2-dimensional and 3-dimensional visualization;
• The implementation of routing algorithms should be as
easy as possible;
• Also heuristic algorithms have to be supported;
• Flexibility to incorporate new routing models;
• Persistent storage of problem instances and routings with
a suitable �le format, which is easy to generate and to
process;
• Automatic generation of �gures for presentation and ed-
ucational purposes.

The software was implemented in Java, using object-
oriented methodology, and UML as modelling language.
For 3-dimensional visualization, Java3D was used. For the
persistent storage of routings, we de�ned a special for-
mat using XML [15]. Routings can also be exported in
FIG format, so that they can be edited using the draw-
ing tool XFig, converted to PostScript and embedded in
LATEXdocuments.
The software was mainly tested on Pentium PIII work-

stations running Debian Linux. It can be downloaded from
the website of the project. It needs JDK 1.3, Java3D and
the XML parser JAXP.
The software consists of three major modules: the graph-

ical user interface (GUI), the backend library, and the im-
plemented algorithms. Figure 3 shows a simpli�ed UML
diagram of the system.

algorithm.channel

framework

gui
model.multilayer

«interface»
Model

«interface»
Segment

«interface»
Side

«interface»
Terminal

Net

RowRectangle

Routing

RoutingView

NetView

MultilayerModel

Wire ViaHole

«interface»
Algorithm

ChannelAlgorithm

GuiCore

Layer

Fig. 3. Simpli�ed UML diagram of the software

A. The backend library

The backend library is a set of classes modelling the im-
portant elements of routing problems and thus supporting
the implementation of routing algorithms. These classes
include:
• Net

• Wire

• ViaHole

• Routing

• etc.
Other elements of the routing problems are modelled as
interfaces, the implementation of which depends on the
actual routing model:
• Terminal

• Side

• etc.
The most important principle in the design of the back-

end library was �exibility. In particular, the geometric
properties of the routing problem (i.e. the routing model)
are separated from the logic of the routing problem (in-
terconnection of terminals belonging to the same net by
wires). This way, new routing models can be de�ned eas-
ily; they only have to implement certain interfaces. The
�exibility of this approach has been proven by the uncom-
plicated implementation of the triangular routing model af-
ter the development of the system was already completed.
Currently, two routing models are implemented: the tra-

ditional rectangular grid (MultiLayerModel) and the new
triangular grid (TriangularModel). Additional models can
also be realized; however, each model needs a correspond-
ing graphical user interface.

B. Algorithms

To demonstrate the operation of the system, we imple-
mented the following algorithms (all of them are realized
as separate classes implementing the Algorithm interface):
• Gallai's algorithm for the single row routing problem [10,
p. 267];
• The algorithm of Recski and Strzyzewski for the channel
routing problem [13];
• Szeszlér's algorithm for the switchbox routing prob-
lem [14].



The implementation of the algorithms was signi�cantly
simpli�ed by the services of the backend library. On the
other hand, we also experienced problems concerning the
programming language. Although Java has proven to be
really suitable for constructing the backend library, it may
not be the best choice for implementing algorithms. It
seems to be hard to maintain �exibility in the implemen-
tation of the algorithms in Java.
The implementation of Gallai's algorithm revealed an

interesting fact: although the literature states that it is a
linear-time algorithm, this is not true for its description in
most sources. So extra care had to be taken to implement
it in a more e�cient way.

C. GUI

The graphical user interface is mostly made up of stan-
dard Swing elements. The key design patterns used in the
GUI are model-view and listener [16]. On the other hand,
the design of the user interface also required the applica-
tion of more user-focused principles such as similarity and
symmetry.
The main control window contains two lists: one for al-

gorithms and one for routings. Both lists can be edited
by adding and removing elements. The user can select an
algorithm and a corresponding routing problem and let the
algorithm solve the given problem. View windows (2D and
3D) showing the solution automatically show up.
Creating a new routing problem is supported by a 'wiz-

ard'. The user can �rst either de�ne a set of constraints
or use a prede�ned one and �ll in its preferences (e.g. the
length in the case of a single row routing problem). After
that, terminals and nets can be added to the routing prob-
lem in a special window. Alternatively, a previously saved
problem instance can be loaded from the disk.

V. Empirical results

The implementation of the routing algorithms described
in Section IV-B enabled us to test their runtime properties.
The main purpose of the testing methods in this section is
the evaluation of heuristic algorithms; however, they also
yielded interesting results in the case of the implemented
exact and deterministic algorithms. Even if these algo-
rithms are claimed to be linear-time in the literature, we
saw in Section IV-B that it may still be problematic to
construct a linear-time implementation. Moreover, it is
important to know the constants of the linear implementa-
tion, as well as the impact of technical in�uences, such as
memory management, on the running time.

A. Functional tests

The aim of the �rst tests was to check the correctness of
the implementation. For this purpose, we chose problem
instances that were small enough to verify the operation
of the algorithms manually. These test cases also covered
special cases, such as empty nets, no nets at all etc. The
veri�cation process consisted of three steps:
1. We checked �rst whether the algorithm ran without er-
rors, and terminated;

2. It was checked whether the output of the algorithm was
a correct solution of the original problem;
3. The algorithm was also performed manually, and the
results were compared.
Besides �nding a couple of minor bugs, which were �xed

right away, an interesting behaviour of the checkbox rout-
ing algorithm was recorded. Namely, in some cases the
algorithm produces routings with loops. This does not af-
fect the correctness of the output; however, in an industrial
application, such loops should be eliminated.

B. Performance tests

In the performance tests, the average running time of
the algorithms was measured as a function of problem size.
The problem size was characterized by the number of ter-
minal positions. The test cases were generated randomly,
based on two di�erent distributions. In the �rst case the
number of terminals in a given net was determined by a
binomial distribution, in the second case this number was
constant for all nets. In both cases the terminals were se-
lected according to a uniform distribution.
Since we wanted to measure the performance of the algo-

rithms, extra care had to be taken to exclude the starting
time of the Java virtual machine as well as the time re-
quired by test case generation and garbage collection from
the measurements. Particularly, garbage collection has to
be forced before starting the tests to avoid compromising
the measurements with the deferred clean-up of memory
that had been reserved before the algorithm was started.
Moreover, in the case of big problem instances, the �rst

invocation of the algorithm was signi�cantly slowed down
by the fact that the Java virtual machine had to reserve
huge memory blocks from the operating system, while the
second invocation already started with more memory avail-
able. So, we let the algorithm solve a �x-sized problem
before each measurement.
We found that the two considered distributions gave very

similar results. Therefore we mostly focused only on the
case when the number of terminals in a net is constant.
The case when this constant is 2 is particularly important,
because this is the situation in many practical applications.
In the case of Gallai's algorithm for the single row routing

problem, we found that for small and medium size problems
the running time of the algorithm is indeed linear, with a
slant of about 0.01 . . . 0.02 ms/terminal. However, on very
large problem instances (104 . . . 105 terminals, which is not
typical for detailed routing problems in practice) it was
superlinear with an exponent of about 1.22.
In the case of the channel routing algorithm, the slant

for normal problems was in the range 0.026 . . . 0.036, and
the exponent for huge problem instances was about 1.08.
For the switchbox routing algorithm, the slant for normal-
size problems was 0.016 . . . 0.024, and the exponent for very
large problem instances was about 1.13.
The superlinear behaviour of the algorithms in the range

of huge problem instances is probably caused by the ef-
fects of virtual memory management. Operations that are
assumed to require constant time (such as, for instance,



referencing an element of an array) require an increasing
amount of time if the amount of data becomes large be-
cause of the page and segment access overhead. This also
explains why the level of superlinearity was the highest in
the case of Gallai's algorithm, since it makes heavy use of
memory for optimization.

VI. Conclusion

This paper has presented both theoretical and practical
results in the �eld of VLSI detailed routing algorithms.
As theoretical contributions, we gave two new theorems

which improve some lower bounds on the number of nec-
essary layers: we have proven that the previously known
lower bound for the number of necessary layers to solve
the single row routing problem in the unconstrained model
is not tight; and that the lower bound for square-shaped
switchbox routing problems in Manhattan model is 6 in-
stead of 5.
Moreover, we investigated a less widespread model, the

triangular model, and managed to transfer some algorithms
for it. In some cases these algorithms yield even better
results in the triangular model than in the rectangular one.
As a practical contribution, we presented our software

framework for the easy implementation and evaluation of
routing algorithms. This framework was �exible enough to
enable the implementation of the triangular model as well.
Also, the software posesses excellent visualization capabil-
ities.
Finally, we performed a series of tests on the imple-

mented routing algorithms. Both the functional and the
non-functional tests gave interesting results that could not
have been discovered without the help of the presented soft-
ware.
Our future research plans include the implementation

of additional algorithms (including algorithms for the tri-
angular grid and also heuristic algorithms). Moreover, we
would like to extend the software with high-level debugging
functionality.

VII. Acknowledgements

The work of the group was partially supported by grant
No. OTKA 30122 of the Hungarian National Science Fund
and that of Zoltán Ádám Mann by a grant by Timber Hill
LLC.

References

[1] R. N. Noyce, �Microelectronics,� Sci. Amer., vol. 237, 1977.
[2] T. C. Hu and Ernest S. Kuh, VLSI Circuit Layout: Theory and

Design, chapter �Theory and Concepts of Circuit Layout�, pp.
3�19, IEEE Press, New York, NY 10017, 1985.

[3] Otto G. Folberth and Warren D. Grobman, Eds., VLSI: Tech-
nology and Design, chapter �Device, Circuit, and Technology
Scaling to Micron and Submicron Dimensions�, pp. 3�18, IEEE
Press, New York, NY 10017, 1984.

[4] Otto G. Folberth and Warren D. Grobman, Eds., VLSI: Tech-
nology and Design, chapter �VLSI Design Automation: An In-
troduction�, pp. 19�23, IEEE Press, New York, NY 10017, 1984.

[5] A. Frank, �Disjoint paths in a rectilinear grid,� Combinatorica,
vol. 2, pp. 361�371, 1982.

[6] M. L. Brady and D. J. Brown, �VLSI routing: Four layer's
su�ce,� Advances in Computing Research, vol. 2, pp. 245�258,
1984.

[7] M. Koebe and P. Dupont, �Single-layer channel routing,� J. Inf.
Process. Cybern., vol. 7/8, pp. 339�354, 1988.

[8] A. S. LaPaugh, �A polynomial time algorithm for optimal rout-
ing around a rectangle,� Proc. 21st FOCS Symp., pp. 282�293,
1980.

[9] S. E. Hambrusch, Channel routing in overlap models, IEEE
Trans. Computer-Aided Design of Integrated Circ. Syst. CAD-
4, 1985.

[10] A. Recski, �Minimax results and polynomial algorithms in VLSI
routing,� Ann. Discrete Math, pp. 261�273, 1992.

[11] D. Szeszlér, �Nagy bonyolultságú hálózatok huzalozása,� Kézi-
rat, 2000.

[12] Dorothea Wagner and Karsten Weihe, �An animated library
of combinatorial VLSI-routing algorithms,� in Symposium on
Computational Geometry, 1995, pp. C28�C29.

[13] Recski A. and F. Strzyzewski, �Vertex-disjoint channel routing
on two layers,� in Integer programming and combinatorial opti-
mization. 1990, pp. 397�405, University Waterloo Press.

[14] D. Szeszlér, �Switchbox routing in the multilayer manhattan
model,� Ann. Univ. Sci. Budapest Eötvös Sect. Math., vol. 40,
pp. 155�164, 1997.

[15] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve
Maler, Extensible Markup Language (XML) 1.0 Recommenda-
tion, World Wide Web Consortium, second edition, 2000.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, Massachusetts, 1994.

[17] Java Virtual Machine Pro�ler Interface, Sun Microsystems,
1999.


