
Genetic Scheduling Algorithm for High-Level Synthesis

P. Arató, Z. Á. Mann, A. Orbán
Department of Control Engineering and Information Technology

Budapest University of Technology and Economics
H-1117 Budapest, Magyar Tudósok Körútja 2.

Hungary
{arato,mann}@iit.bme.hu,Andras.Orban@cs.bme.hu

This paper was accepted for publication in the Proceedings of the
IEEE 6th International Conference on Intelligent Engineering Systems, Opatija, 2002

Abstract�High-level synthesis (HLS) aims at constructing
the optimal hardware or software structure from a given
high-level speci�cation. This process involves a number of
optimization steps, from which scheduling is the most crucial
one, concerning both the running time of the process and
the quality of the found solution.
In this paper, we present a genetic algorithm for the

scheduling problem in HLS. We describe in detail how this
general heuristic could be applied to the particular engi-
neering problem at hand. It is demonstrated with several
measurements on industry benchmarks that the new algo-
rithm performs better than previous methods.

I. Introduction

The goal of High-Level Synthesis (HLS, [1], [2], [3]) is
to automatically design the optimal hardware or software
structure from the high-level (yet formal) speci�cation of a
system. A high-level speci�cation may be for instance the
description in a third-generation programming language
such as C or some kind of pseudo-code. The optimality
criteria may di�er according to the particular application.
In the case of hardware synthesis, the most important as-
pects are: the number of required processing units, chip
size, heat dissipation, and energy consumption. Note that
although HLS originally emerged from the �eld of hard-
ware design, it raises similar problems as software design
and synthesis. Therefore, similar methods may be used
for hardware and software systems, and it becomes even
possible to design hardware and software simultaneously
(hardware-software co-design, system-level synthesis, [4]).
The main data structure of HLS is the elementary opera-

tion graph (EOG), which is an attributed data-�ow graph.
Its nodes represent elementary operations (EOs). An EO
might be e.g. a simple addition but it might also be a com-
plex function block. The edges of the EOG represent data
�ow�and consequently precedences�between the opera-
tions. The system is assumed to work synchronously; each
operation has a duration (d), determined by its type, and a
starting time (s). Therefore, node i works in the clock cy-
cles from si to si+di. The correct operation of the system
is de�ned by the following four axioms:
• Node j cannot start its operation until all nodes i, for
which there is an i → j edge (i.e. the predecessors of j),
have ended their operation;
• The inputs of node i must be constant during the total
time of its operation (di);
• Node i may change its output during the total time of
its operation (di);

• The output of node i remains constant from the end of
its operation until its next invocation.
The process of HLS starts by building the EOG from

the speci�cation, then some transformations are made on
the graph in order to meet timing and consistency require-
ments. Finally, the elementary operations are scheduled�
i.e. their starting times are determined�and allocated in
real processing units. The actual optimization is carried
out in these last two steps. Both are computationally hard,
but the big di�erence is that while there exist some quite ef-
fective approximation algorithms for allocation, this is not
the case with scheduling. The output of the whole HLS pro-
cess is the set of structural and control information that is
needed to implement the resulting system.
At the Department of Control Engineering and Informa-

tion Technology at Budapest University of Technology and
Economics, a software called PIPE [2] has been developed,
which realizes the HLS procedure. The unique feature of
PIPE which distinguishes it from other HLS tools is that
it can also handle pipeline systems, which are of great im-
portance because pipeline processing can boost the perfor-
mance of systems that are otherwise di�cult to parallelize.
A pipeline system is characterized by two numbers: la-
tency (denoted by L) is the time needed to process one
data item, while restart time (denoted by R) is the period
of time before a new data item is introduced into the sys-
tem. Generally R ≤ L. Thus, non-pipeline systems can
be regarded as a marginal case of pipeline systems, with
R = L. If a large amount of data has to be processed, then
minimizing R at the cost of a reasonable increase in L or
hardware price is an important objective of HLS.
PIPE contains a so-called force-directed scheduler, which

belongs to best known scheduling algorithms. Since
scheduling is the most crucial phase of HLS, and the re-
sults of currently known scheduling algorithms are often
not satisfying, new scheduling algorithms have to be in-
vented.
In this paper a new genetic scheduling algorithm is pre-

sented. We describe in detail how this general heuristic
could be applied to the scheduling problem of HLS. The re-
sults of the empirical tests on industrial benchmarks show
that this new scheduler almost always produces better re-
sults (and often even in shorter running time) than the
state-of-the-art force-directed scheduler.
The paper is organized as follows. Section II de�nes

the scheduling problem and explains its most important



characteristics. Section III presents the new algorithm. In
Section IV the empirical evaluation of the new algorithm
is described. Section V concludes the paper.

II. The scheduling problem

A. Problem de�nition

The input of scheduling consists of: the restart time R;
the latency L; and an EOG, in which each node is associ-
ated with an operation type that also determines its dura-
tion, as well as with an ASAP (As Soon As Possible) and
ALAP (As Late As Possible) value for its starting time.
(The [ASAP,ALAP] interval is often referred to as the mo-
bility domain of the node.) The task of the scheduler is

to �nd an optimal valid scheduling in the given EOG be-

tween ASAP and ALAP. The output is the vector of the
determined starting times.

In this de�nition, the terms 'optimal' and 'valid' need
further clari�cation. Valid means in this context that the
precedence rules de�ned by the EOG are not violated. It is
guaranteed that the ASAP and ALAP schedules are valid,
but this does not necessarily hold for all schedulings be-
tween them. Therefore, the precedences must be assured
explicitly.

Optimality should be measured in terms of hardware
costs, i.e. the number of necessary processing units. How-
ever, it is known to be an NP-hard problem to calculate
the number of processing units for a given schedule (this is
exactly the task of allocation) [2].

Therefore, the chosen objective is the number of com-
patible pairs instead. A pair of nodes is called compatible
if they may be allocated in the same processing units; oth-
erwise they are called concurrent. If the number of com-
patible pairs is high, this usually results in a low number
of necessary processing units. Calculation of the number of
compatible pairs is not straight-forward, since�as a conse-
quence of pipeline operation�also nodes that are far from
each other in the EOG can become concurrent. However,
the Concheck algorithm [2] can determine the compati-
bility of two EOs in O(1) steps. This is why the number
of compatible pairs was chosen as objective instead of the
number of processing units.

This completes the de�nition of the scheduling problem.
This slightly modi�ed problem is also NP-hard, which mo-
tivates the application of heuristic algorithms.

B. Known scheduling algorithms

There are three major groups of scheduling algorithms:
those built on integer linear programming (ILP), list sched-
ulers and force-directed schedulers.

In ILP-based schedulers, the scheduling problem is con-
verted into a system of integer inequalities. The optimum
of some linear function can then be found using standard
linear programming techniques, e.g. the simplex method
[5]. There are two major drawbacks to this approach. First,
it is hard to give an estimate on the running time of the
algorithm. Second, domain-speci�c knowledge cannot be
built into the algorithm.

List schedulers are usually simple and fast because they
process only once the time domain or the set of operations,
trying to guarantee the optimal number of operations for
each time cycle. This means a series of local, greedy de-
cisions. Usually, some heuristic is used to de�ne the or-
der in which operations are selected. The problem with
this approach is that a bad choice cannot be undone later.
Thus, the result given by list schedulers is usually not good
enough. ALso, the performance of list schedulers depends
signi�cantly on the order of the nodes.
The force-directed scheduler [6] tries to schedule approx-

imately the same number of concurrent nodes for each
time cycle, using a probabilistic approach. It is called
force-directed because it always makes modi�cations pro-
portional to the deviation from the optimum, resembling
the law of Hooke in mechanics. This seems to be the best
known scheduling algorithm, but its running time is pro-
portional to the third power of the size of the input graph,
so it can be slow for big EOGs. The performance of force-
directed schedulers also depends heavily on the order of the
nodes.
PIPE contains a force-directed scheduler. Since the ac-

tual optimization is done at this level of the HLS process, it
is the most critical component concerning both the running
time of the process and the quality of the found solution.
For big input graphs, the running time of PIPE is essen-
tially the same as that of the scheduler. This motivates the
search for better and better scheduling algorithms.

III. Genetic scheduler

For the given NP-hard optimization problem, we needed
a general, high-performance search heuristic. This lead us
to genetic algorithms (GA).

A. GA in general

Since there are very good surveys on genetic algorithms
(see, for instance, [7], [8] and references therein), we will
only give here a very brief, rather practical introduction
only.
In order to implement a genetic algorithm, one has to

do the following. First, an initial population must be set
up somehow. After that, in each iteration a new popula-
tion is generated from the previous one using the genetic
operations: recombination, mutation and selection. So in
each step there are two populations. The new population
is �rst partially �lled using recombination (usually there is
a prede�ned recombination rate), then the rest using selec-
tion. Mutation is then used on some individuals of the new
population (their number is de�ned by the mutation rate).
The order of the operations is important because this way
individuals created by recombination and mutation surely
get into the new population, even if they are not very �t,
so they have the chance to propagate their possibly good
properties.
Mutation is important because it guarantees variety and

thus helps leaving local optima. Its implementation is sim-
ple: a randomly chosen gene of a randomly chosen individ-
ual is altered randomly. Of course there can be variants:



one can alter one gene at a time or maybe more genes at
once, one can allow only slight modi�cations of a gene or
any modi�cation etc.

The aim of recombination is to mix good properties of
the individuals so that a sequence of genes corresponding
to a good property can spread across the whole population.
It is implemented by generating one or more (usually two)
new individuals by the cross-over of two individuals. In-
dividuals are usually not chosen with uniform probability
for recombination (as for mutation for instance), since it is
more probable to get good genes from individuals having
high �tness values.

Selection is also necessary, it is used to propagate good
individuals and to eliminate bad ones. It is implemented
by simply copying the best individuals into the new popu-
lation. In some variants it is not necessarily the best ones
who survive, but they are selected with a higher probabil-
ity.

B. Application for the scheduling problem

In this section we present the way that the above general
scheme could be used for the scheduling problem. That is,
we describe what are individuals, the population, genetic
operations and the �tness function.

B.1 Individual

Actually, the scheduling problem is fortunate from the
point of view of a genetic algorithm. The applicability of
genetic algorithms requires that the solutions of the opti-
mization problem can be represented by means of a vector
with meaningful components: this is the condition for the
recombination to work on the actual features of a solution.

Fortunately, there is an obvious vector representation in
the case of the scheduling problem: genes are the starting
times of the elementary operations. The order of the genes
is not indi�erent either: for the e�ciency of recombination
it is vital that genes next to each other do represent correl-
ative pieces of information. It can be assumed though that
the elementary operation graph was speci�ed in a logical
order (e.g. top-down, from left to right), so that the order
of the nodes is suitable for genetic representation.

B.2 Population

Choosing the population is not as straight-forward as
was the case with individuals. The question to answer is
whether non-valid schedulings should be permitted.

Since non-valid schedulings have no real physical mean-
ing, it seems to be logical at �rst glance to work with valid
schedulings only. Unfortunately, there are two major draw-
backs to this approach. First, this may constrain e�ciency
severely. Namely, it may be possible to get from a valid
individual to a much better valid individual by genetic op-
erations through a couple of non-valid individuals, whereas
it may not be possible (or perhaps only in hundreds of
steps) to get to it through valid ones only. In such a case,
if non-valid individuals are not permitted, one would hardly
arrive to the good solution.

Fig. 1. Recombination of two individuals

The other problem is that it is hard to guarantee that
genetic operations do not generate non-valid individuals
even from valid ones. This holds for both mutation and
recombination. Thus, if non-valid individuals are not per-
mitted, the recombination operation cannot be used in the
form of cross-over. Rather, it should be de�ned as averag-
ing. But this method does not help to maintain variety in
the population so it can cause degeneration. In the case
of mutation it seems that the only way to guarantee valid-
ity is to immediately get rid of occasional invalid mutants.
However, this would contradict the principle of giving every
individual the possibility to propagate its characteristics.

For these reasons we decided to permit any individual in
the population, not only valid ones. Of course the sched-
uler must produce a valid scheduling at the end. In or-
der to guarantee this, there must be valid individuals in
the initial population (see Section III-C.1) and the �tness
function must be chosen in such a way that on one hand
valid individuals do not become extinct, on the other hand
it punishes invalidity (see Sections III-B.4 and III-C.3).

B.3 Genetic operations

Mutation, recombination and selection are used. Muta-
tion is done in the new population; each individual is cho-
sen with the same probability. Recombination is realized as
cross-over: from two individuals of the old population two
new individuals are generated as illustrated in Figure 1.
The roulette method is used for choosing the individuals
to recombinate. Selection is realized as �lling some part
of the new population with the best individuals of the old
population. This is done by �rst sorting the individuals ac-
cording to their �tness with QSort and then simply taking
the �rst ones.

B.4 Fitness function

The �tness has two components: the �rst one is the ac-
tual objective function, namely the number of compatible
pairs. If only valid individuals were allowed, the �tness
would be equal to the objective function. But non-valid
individuals are also allowed; however, they should have
lower �tness values. This is why a second component of
the �tness is needed. Since these individuals should be
motivated to be less and less invalid, the second compo-
nent of the �tness is a measure of the invalidity, namely
the number of collisions, i. e. the number of precedence
rules (edges of the EOG) that are corrupted. So the �tness
is monotonously increasing in the number of compatible
pairs and monotonously decreasing in the number of colli-
sions. (For more details, see Section III-C.3.)



B.5 The output of the scheduler

Optimization can be made more e�cient by means of a
large population, but the scheduler must give only one so-
lution at the end. However, there may be dozens of valid
individuals with a high objective value in the last popu-
lation. So we choose the best valid individuals and run
the allocation process for all of them. Then the best one
is chosen (in terms of used processors and not compatible
pairs anymore) as output.

C. Implementation

In this section we take a closer look at our genetic im-
plementation and describe some interesting details.

C.1 Initial population

In order to be sure that we get a valid scheduling at the
end, some valid individuals must be placed into the initial
population. (The �tness function will make sure that they
will not be replaced by invalid ones.) It seems to be a good
idea to have several valid individuals in the initial popu-
lation so that computational power is not wasted on indi-
viduals with many collisions. Now the question is how to
generate those valid individuals? Well, two valid schedul-
ings are known in advance: ASAP and ALAP. It can be
proven that any weighted average of two valid schedulings
is also valid. This way, additional valid individuals can be
generated.

In our program, the ratio of valid individuals in the initial
population can be speci�ed in the sched.ini �le. Suppose
that Z valid individuals are needed. Then individual i
(i = 0 . . . Z − 1) has the form:

ASAP + (ALAP −ASAP ) · i

Z − 1

Of course this method will not always generate Z di�er-
ent individuals. It has the advantage though that it is very
simple and the generated individuals are homogeneously
varied between the two extremes ASAP and ALAP. So it
is likely that subsequent mutations and recombinations will
generate very di�erent valid individuals from these.

C.2 Roulette method

The aim of the roulette method is to choose an indi-
vidual with a probability distribution proportional to the
�tness values. It is realized as follows. Assume that the
�tness is always positive and the individuals are ordered
somehow, numbered from 0 to n − 1. Denote the sum of
the �tness values of the individuals 0 . . . i − 1 by Si. This
means that S0 = 0, Sn is the sum of the �tness values of all
the individuals and S is monotonously increasing. Choose
an arbitrary number 0 < m < Sn. Suppose that m lies in
the interval [Si, Si+1]. Then the chosen individual is the
one numbered i.

Since the length of the [Si, Si+1] interval is equal to the
�tness of the individual number i, individuals are indeed
chosen with probabilities proportional to their �tness. The

method is called roulette because the intervals may be vi-
sualized on a roulette wheel, the roulette ball �nishing in
them with probabilities proportional to their sizes.
Building the Si values requires O(n) time, but this has

to be done only once in an iteration. The last step, namely
�nding the interval containingm, can be accelerated signif-
icantly as compared to the obvious linear search. Since the
Si values are monotonously increasing, binary search can
be used, requiring only O(log n) steps. Since cn individuals
are chosen, the whole process requires O(n)+cnO(log n) =
O(n log n) time.

C.3 Tuning the �tness function

The actual �tness function has great impact on the per-
formance and e�ciency of the system. As mentioned ear-
lier (Section III-B.4), the �tness function has two compo-
nents: the number of compatible pairs (call it compat) and
the number of collisions (call it coll). After trying several
functions, the following two proved suitable:

F1 = maxcoll − coll + compat
maxcompat

F2 = C1 − 1
R
L ·(1+C2·coll)

· coll + compat
maxcompat

In both cases, if the number of collisions is greater than
a prede�ned maxcoll value, the �tness is 0. Otherwise,
the �tness is positive, which is necessary for the roulette
method. (C1 is set accordingly.)
The �rst function is based on the idea that the �tness

function creates 'stairs' for the individuals, on which they
can 'climb up' to better and better characteristics. There
are small stairs and big stairs: decreasing the number of
collisions corresponds to a big stair because it increases
the �tness by 1. Increasing the number of compatible pairs
corresponds to a small stair: it increases the �tness by

1
maxcompat . This means that decreasing the number of col-
lisions by 1 is worth more than any increase in the number
of compatible pairs. This guarantees that the valid indi-
viduals do not die out and their number even increases.
The second solution is not so strict. In this case it is not

claimed categorically that decreasing the number of colli-
sions by one is worth more than any increase in the number
of compatible pairs. Rather, a slight increase in the num-
ber of collisions is permitted if there is a su�cient increase
in the number of compatible pairs. Now it must be de�ned
what the 'su�cient increase' means. We found that this
should depend on the value of R

L . Namely, if R is small
compared to L, then there are lots of incompatible pairs
and decreasing their number tends to increase the number
of collisions. In order to avoid this, an increase in the num-
ber of collisions is only acceptable if there is a signi�cant
increase in the number of compatible pairs. On the other
hand, if R is not much less than L, then it is not neces-
sary to be that strict. Also, the increase in the number of
compatible pairs that is needed to compensate an increase
of 1 in the number of collisions should depend on the cur-
rent number of collisions. For example, the increase of the
number of collisions from 0 to 1 is much more costly than
an increase from, say, 7 to 8.



C.4 Parameter handling

As can be seen from the above, our program has lots of
parameters. This may be regarded as an advantage since
it provides great �exibility. On the other hand, it makes
evaluation and testing really hard. More on this in Sec-
tion IV.
The most important parameters are the following: pop-

ulation size, number of iterations, recombination rate, mu-
tation rate and the ratio of valid individuals in the initial
population. There are also some non-genetic parameters,
such as the name of the input �le, R and L. There could
be other parameters as well, e.g. bounds on where to cut
the individuals in the case of recombination or the maxi-
mum change allowed in a mutation etc. But as described in
the chapter about testing, evaluation was awkward enough
without them.
Actually, the tests provided values for these parameters

that seem to work well in most cases. So these are de-
fault values now but they can be overridden by means of
command-line options or in the sched.ini �le.

IV. Empirical results

At the beginning of the research our goal was to achieve
better results than the existing force-directed scheduler of
PIPE. Since PIPE consists of separable modules commu-
nicating only through text �les, it is possible to replace
the force-directed scheduler with ours without changing the
code of other modules.
The algorithms have been tested on three benchmarks:

• Fast Fourier Transformation (FFT), 25 nodes
• IDEA cryptographic algorithm, 116 nodes
• RC6 cryptographic algorithm, 328 nodes

A. Aims of testing

The genetic algorithm can be con�gured with seven ini-
tial parameters. These settings have great in�uence on the
e�ciency and speed of the algorithm.
The user cannot be expected to know the internal pa-

rameters of the genetic scheduler, so we had to �nd the
best combination of these parameters during testing and �x
these values. Some parameters (like the size of the popula-
tion, the number of steps) a�ect the solution in a more or
less predictable way, while for others (recombination rate,
mutation rate) we only have assumptions.
By increasing the size of the initial population we expect

to �nd better scheduling, but of course the algorithm be-
comes slower. Allowing more steps provides signi�cantly
better results at �rst, but after reaching a certain point it
has practically no more e�ect. By increasing the number
of valid individuals in the initial population the algorithm
does not have to 'waste power' to �nd valid solutions, but
on the other hand, the initial population becomes less di-
versi�ed, which can have negative in�uence on the quality
of the result. To determine the appropriate recombination
and mutation rate we can only use the trial and error way
or rely on former experiences that can be found in the lit-
erature.

Problem
Force- Gen. Gen.
Directed v1 v2

FFT R=20 L=20 9 9 9
FFT R=20 L=30 11 6 -
IDEA R=100 L=268 17 15 15
IDEA R=100 L=278 16 15 16
IDEA R=200 L=268 13 10 11
IDEA R=268 L=268 6 6 6
IDEA R=278 L=278 8 7 7
IDEA R=50 L=268 25 25 25
IDEA R=50 L=278 29 23 23
RC6 R=10 L=201 210 207 207
RC6 R=10 L=211 23 15 15
RC6 R=100 L=201 25 23 23
RC6 R=201 L=201 13 11 11

TABLE I

The required number of processors

Another important task of testing is to decide which of
the two objective functions produces better results.

B. Procedure of testing

Assuming that we only try 3 values for each parameter
on the 3 benchmark problems with the two versions of the
objective function, results in about 15000 executions. We
used 4-8 computers simultaneously and thus we managed
to complete the tests in two weeks. Most computers were
working with Pentium II processors on Debian GNU/Linux
platform. We implemented a TCL script to coordinate the
test cases. The script has the following functions:

1. Runs PIPE with the given benchmark until the schedul-
ing phase. This step provides the input for scheduling.
2. Runs the force-directed scheduler.
3. Runs the allocation on the output of the force-directed
scheduler.
4. Runs both versions of the genetic scheduler with all the
possible parameter-con�gurations.
5. Runs the allocation on each best individual of all the
con�gurations of both versions. This means about 104−105
allocation runs for every benchmark!
6. Writes the duration and the required number of proces-
sors of every scheduling to a �le in an appropriate format
for later analysis.

C. Comparison of the results

The summary of the results concerning the number of
required processors in the best con�guration for each test
case can be seen in Table I.
It can be seen that the new algorithms have reached the

previous results in every case, moreover, in most tests they
could improve them. This improvement is often remark-
able, for example in the FFT R = 20, L = 30 test case the
genetic algorithm could reduce the number of allocated pro-
cessors to almost 50%. Apparently the genetic algorithm
can cope with bigger tests as well, since it could lessen the
required number of processors from 23 to 15 in the RC6
R = 10, L = 211 case. Another interesting observation is
that by increasing the latency from 201 to 211 in the RC6



Fig. 2. The number of required processors of the two versions of the
genetic scheduler in di�erent con�gurations

R = 10 test we could reduce the number of processors to
10 percent of its previous value.

Figure 2 illustrates the in�uence of changing the param-
eters in the test case RC6 R = 10, L = 211 (the con�gura-
tions are in the form: size_of_population mutation_rate

recombination_rate number_of_steps valid_rate). Obvi-
ously, the two versions show quite di�erent behavior, so se-
lecting the appropriate objective function has the biggest
e�ect on the quality of the result. Generally the �rst ver-
sion had better results, but there were exceptions too.

Concerning only the number of steps, it can be derived
from the diagram that after 100 steps we generally get the
same results as after 300 or 500 steps. Another interest-
ing observation is that increasing the size of the population
from 150 to 300 leads sometimes to even worse results, how-
ever, the best result has been reached with a population of
300 individuals. It can be seen that changing the mutation
and recombination rate a�ects rather irregularly the num-
ber of used processors. It is of course only a tiny fraction
of all the parameter combinations, but it clearly illustrates
the di�culty of con�guring the genetic algorithm.

It is almost impossible to give the absolute best con-
�guration, but some useful observations resulted from the
tests. In the majority of test cases it was enough to allow
100 iterations. The size of the population should not be
higher than 300. Producing 10 percent initial valid individ-
uals also resulted in better �gures. The best recombination
rate was around 0.3 − 0.351, the mutation rate was in the
range of 0.1− 0.2.

It is important to note that in most practical cases the
number of required processors is critical, not the running
time. It is acceptable if the algorithm can �nish in a couple
of hours. Our algorithm is far below this limit.

Since the algorithms were implemented in di�erent pro-
gramming languages and tested on di�erent machines, the

1In our implementation this means that 60-70 percent of the new
population will be generated by recombination.

running times can hardly be compared, but it can be stated
that the genetic algorithm was surprisingly fast, in most
cases faster than the force-directed scheduler. Moreover,
we experienced that by stopping the genetic algorithm ear-
lier, we can �nd a fairly good solution very fast, an order
of magnitude faster than the force-directed scheduler.

V. Conclusion

In our research we focused on the most critical prob-
lem of HLS: scheduling. We presented in this paper a new
genetic scheduling algorithm. The identi�cation of individ-
uals with schedulings was quite straight-forward; however,
it was by far not obvious whether or not non-valid schedul-
ings should also be allowed. We chose to allow non-valid
schedulings as well, therefore, we had to make sure that the
initial population contains valid schedulings and we had to
choose the �tness function so that it encourages schedulings
to be valid.
The empirical results on industry benchmarks show that

this algorithm could e�ectively minimize the number of
required processors and so it is able to reduce the cost of
the planned system compared to the best previously known
scheduler.
Currently, we are working on transferring these results

of HLS to hardware-software co-synthesis.

VI. Acknowledgments

The work of the authors was supported by the grant
OTKA T 030178 as well as a grant by Timber Hill LLC.

References

[1] D. Gajski., High-Level Synthesis, Kluwer Academic Publishers,
1992.

[2] Péter Arató, Tamás Visegrády, and István Jankovits, High-Level
Synthesis of Pipelined Datapaths, John Wiley & Sons, Chichester,
United Kingdom, �rst edition, 2001.

[3] R. Camposano, �From behaviour to structure: high-level syn-
thesis,� IEEE Design and Test of Computers, vol. 10, pp. 8�19,
1990.

[4] Ahmed A. Jerraya, M. Romdhani, C. Valderrama, Ph. Le Mar-
rec, F. Hessel, G. Marchioro, and J. Daveau, �Models and lan-
guages for system-level speci�cation and design,� in NATO ASI
on System-Level Synthesis, Proceedings, 1998.

[5] A. Schrijver, Theory of linear and integer programming, Wiley,
1998.

[6] P. G. Paulin and J. P. Knight, �Force-directed scheduling for the
behavioural synthesis of ASICs,� IEEE Transations on Computer
Aided Design, 1989.

[7] L. Davis, Handbook of genetic algorithms, Van Nostran Reinhold,
1991.

[8] W. Kinnebrock, Optimierung mit genetischen und selektiven Al-
gorithmen, Oldenburg, 1994.


