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Abstract

In this paper, we extend the classic data center allocation optimization problem for critical tenant applications
that need guarantees on the required resource capacities. We identify a set of representative, user-issuable con-
straints and new optimization objectives and establish a mathematical and corresponding integer programming
formulation. Using a typical Network Function Virtualization application as a case study, we show the viability
of the approach and present an initial scalability assessment. Our results demonstrate the advantage of combining
the conflicting objectives of the tenants and the provider in a single optimization problem.
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1 Introduction
Contemporary general-purpose cloud services provide a compelling and proven option for a variety of workloads,
ranging from web page serving to Big Data analytics. Resource pooling is an essential characteristic of these
services, “with different physical and virtual resources dynamically assigned and reassigned on-demand” [33]. To
drive down operational costs, operators optimize this mapping continuously and independently from the tenants, by
consolidating workload to the minimal number of hosts and taking unused resources offline. In the Infrastructure
as a Service (IaaS) domain, this activity is called allocation optimization, referring to the allocation of Virtual
Machines (VMs) to hypervisors running them.

Aggressive allocation optimization is made possible by cloud service properties that tenants have learned to
accept:

• Usually, the mapping of tenant applications to resources is hidden from the tenants – they cannot even
observe, let alone control it

• Extra-functional service parameters are specified only roughly, if at all

• Service Level Agreements (SLAs) are very permissive towards providers

In this setting, it is largely taken as a fact of life that the extra-functional properties of the service, like perfor-
mance, can have significant variability [29]. Variability here means instability as well as heterogeneity. Focusing
on IaaS performance, this means that virtual resource performance does not remain the same with the progress of
time or across the instances – even if it is specified by the provider using some rough measure of capacity (e.g., the
“EC2 Compute Unit” of Amazon Web Services).

The fundamental reason for performance instability – and to an extent, heterogeneity – is simply tenants shar-
ing resources. Just as processes compete for the finite CPU time in an operating system (and also influence each
other indirectly, e.g. through caches), VMs on the same hypervisor can have an impact on each other’s perfor-
mance. Host, operating system and network virtualization technologies do provide a range of mechanisms for the
performance isolation of tenants – colloquially, for avoiding the “noisy neighbor” effect. These facilities vary in
effectiveness: e.g., CPU usage caps tend to be an effective way for the CPU performance isolation of VMs, but for
number-crunching applications, cache and memory bandwidth may become a bottleneck [25]. Timeliness-critical
applications may require dedicated resources (e.g. dedicated CPU cores) for stable performance. However, even
though these means are available to the provider, for the tenants performance isolation is also a not observable and
not controllable aspect of cloud services. The same holds for other runtime extra-functional assurance mechanisms
(e.g. runtime fault tolerance techniques).
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With the increasing push for the “cloudification” of timeliness-critical and very high availability applications,
this status quo is rapidly changing. For true application-level performance and dependability guarantees for such
systems, tenants have to become able to formulate various constraints on the way operators fulfill their (virtual)
resource requirements. These constraints must be carefully chosen, so that they indeed allow tenants to have suffi-
cient control but on the other hand also leave providers enough opportunities for effective allocation optimization.
Examples for such constraints may include the need for dedicated physical host subsystems for a VM or affinity
and antiaffinity rules on VMs or VM types. Our main goal in this paper is to give a – to our knowledge first –
treatment to the problem of IaaS operator allocation optimization in this novel setting.

1.1 Allocation optimization in general-purpose clouds
IaaS offers tenants virtualized resources; most importantly, VMs that can be created and destroyed on demand.
Rapid elasticity of the resources and usage-based billing enable tenants to continuously adapt their resource usage
to the dynamically changing needs. This way, IaaS can significantly lower overall operational costs for tenants,
even if the “unit cost” of a cloud resource is higher than for own resources. From the provider point of view,
IaaS can be provided efficiently because sharing a large pool of resources between largely independent tenants
“statistically multiplexes” the varying loads [42] – in addition to simple economies of scale. However, as a rule,
tenants have only limited and indirect influence over the deployment of their reservations onto physical resources,
making critical applications vulnerable to a variety of faults, e.g., common mode hardware and capacity faults [26].
This holds not only for today’s general-purpose public IaaS clouds, but mostly for the leading open IaaS software
frameworks, too.

Operators and tenants strive to optimize their operations with conflicting goals. Operators aim at consolidating
tenant VMs to as few hypervisors as possible to save power and cooling costs by switching off unused hosts [30].
Reliability, availability, performance stability and homogeneity are secondary concerns [23]; if needed, tenants
must equip their applications with the appropriate resiliency mechanisms at the application level. Applying these
mechanisms – e.g., maintaining online spare capacity – has serious cost impacts. Thus, redundancy has to be
dynamically managed as well, taking into account variable application workload as well as variable performability
[3].

1.2 Emerging user requirements for critical applications
A number of emerging cloud-delivered services have to adhere to strict constraints on various Service Level Ob-
jectives (SLOs). A prime example is Network Function Virtualization (NFV) [15]: the current push in the telco
domain to migrate network functions from dedicated appliances to IaaS. The first step of this evolutionary process
is that telco providers migrate existing legacy appliances largely without modification into sets of VMs, weaved
together either by standard network virtualization or increasingly by Software Defined Networks (SDNs). These
so-called Virtualized Network Functions (VNFs) provide telco services ranging from simple IP packet stream ma-
nipulation to sophisticated IP-Multimedia Subsystem specifications. Crucially, they have to provide telco-grade
services; that is, the allowed delay, response time as well as availability thresholds are very stringent [12].

In order to adhere to these requirements at the service level, tenants need the enforcement of analogously
stringent extra-functional requirements on the underlying IaaS services. Ideally, tenants should be able to submit
these requirements to the operator in the form of constraints formulated on established resource service attributes
(and the metrics of these). An example would be that the variability of single-core processing capacity for a VM
(measured e.g. as the coefficient of variation of the amount of available CPU cycles for single-threaded execution,
summed for a small sliding window) should be lower than a predefined value. The operator should then be able
to make the appropriate deployment decisions, including the configuration of appropriate isolation mechanisms,
based on this declarative request.

There are two major problems with this idealized approach. First, there is not even consensus on the attributes
(and metrics) for characterizing NFVIaaS resource services. The NFV Service Quality Metrics specification [14]
establishes the Speed, Accuracy and Reliability categories and declares the most important attributes and metrics
for VMs and virtual networks (VNs) that take part in delivering VNFs; however, the specification is new and thus
application experience is still lacking. Also, [14] covers the set of known possible cloud service impairments
incompletely; it focuses on the “pain points” that are deemed the most important from the point of view of existing
NFV applications. Other cloud service quality attribute/metric and KPI taxonomies are even less appropriate for
this purpose; e.g. the Service Measurement Index (SMI) [11] emphasizes business-related service properties at the
expense of expressing runtime technical compliance. Second, deriving allocation and configuration decisions from
constraints on metrics has been and remains to be a nontrivial exercise; in many cases, it is theoretically possible,
but practically infeasible. Instead, a practical approach is to use a mix of resource service quality constraints
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and direct, user-issued, explicit allocation and configuration directives. The various architectural guidance and
interface specifications published by the European Telecommunications Standards Institute (ETSI) for NFV follow
this pattern (see [13]).

It is still very early to try to set up a definitive taxonomy of these. However, the applicable parts of the ETSI
NFVIaaS specification can be interpreted as requirements for enabling users to ask for capabilities that already
exist in the hypervisor domain – just not visible for and requestable by the tenants in current cloud environments.
In line with the NFV specifications, our prior experience in virtualization design for QoS and our current work
with a telco NFV application (see later) show that a tenant may want to request at least the following deployment
properties:

1. With respect to the partitionable resources of the hypervisor hosts, capacity guarantees for the VMs that are
stable even at fine time scales. At the current state of technology, CPU cycles, I/O bandwidth (with possibly
network-attached storage), network packet or data rate and physical memory space fall under this category.
Modern hypervisors can be configured to provide allowance guarantees on these capacities. As the guar-
antees are realized through scheduling, the abstraction of resources “dedicated” this way is not necessarily
perfect; however, at least for CPU scheduling even real-time hypervisors are emerging (for various levels of
hardness).

2. Some applications are sensitive to contention of the today non-partitionable resources, like CPU caches and
various host-internal bandwidths (memory, device buses, interconnects). To protect these applications, a
tenant may want to ask for dedicated physical resources. In virtualization, what is mostly available today
is dedicating CPU cores or sets of cores to VMs (at least for SMP systems). Another requirement can be
pinning VMs to cores to avoid the performance impact of migration between cores or CPUs. VMs may also
want dedicated access to physical devices as network interface cards and local storage, but the reason for
this may be increasing performance instead of ensuring performance capacity guarantees.

3. From the point of view of deployment to hypervisors, the requirements posed by most runtime dependabil-
ity techniques can be formulated as VM-VM antiaffinity and affinity rules. VMs forming a fault tolerant
cluster are usually required to be spread out across physical hosts to protect against hypervisor host single
faults. Conversely, for realizing the watchdog pattern the optimal solution may be to run the worker and
watchdog VMs on the same host. Affinity rules can also be important for application performance, since
communication between VMs on the same host can be much faster than across the network.

4. A proscription of live VM migration may be necessary for avoiding the short, but detectable VM stalls that
can accompany moving a live VM from a host to another.

In IaaS for critical applications (and specifically NFV), the two most fundamental resource services are Virtual
Machines and Virtual Networks. We formulated the above deployment requirement categories for VMs – although
VNs have just as nontrivial deployment aspects. We chose to focus on the open problem of VM deployment
optimization for critical applications in this work, restricting the treatment to physical setups where

• host-to-host network connections do not radically differ in physical latencies (or the difference does not
matter for the applications) and

• the bandwidth bottleneck may be the host network interface cards, but not the networking fabric.

These assumptions may not hold at the scale of large data centers, but are typically true for single racks or connected
local groups of racks. This is already in the size domain where current commercial data center “cloud units” fall for
NFV; also, many critical distributed applications retain this level of locality with data center level and geographic
dispersion of whole clusters handled as a separate problem. This way, our results approach an open problem with
directly applicable results and hopefully provide useful insights for the broader (and mathematically even more
challenging) problem of integrated VM and VN deployment optimization.

2 Previous work
The optimization problem of how to best allocate VMs to the available physical machines (PMs) has received a lot
of attention in the last couple of years, leading to a wide variety of proposed problem models and algorithms.

In several works, only the CPU load of VMs and the CPU capacity of PMs is considered [5, 17, 19, 27, 10].
Considering also other resource dimensions like memory [16, 4], or even memory and disk and/or network I/O
[7, 22, 37, 40] makes the problem somewhat more complicated but also more useful in practice. The objective of
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Figure 1: Overview of the allocation and deployment modeling approach

the optimization is in many cases the number of active PMs [9, 36, 38, 39], often together with other metrics like
the number of SLO violations [5, 8, 41, 43]. More details on the used problem models can be found in [32].

Concerning the algorithmic techniques suggested so far in the literature, the situation is a bit less heterogeneous.
Many researchers proposed to take advantage of the similarity between the VM allocation problem and the well-
known bin-packing problem and to adapt packing heuristics like First-Fit and Best-Fit to VM allocation [6, 8,
24, 40, 41]. However, VM allocation is actually a much harder problem than bin packing [31], limiting the
applicability of these heuristics to the simplest versions of the VM allocation problem. Other researchers proposed
to use metaheuristics like genetic algorithms and ant colony optimization [16, 18] or sophisticated proprietary
heuristics [2]. There were also some attempts to devise exact algorithms for VM allocation, using mostly mixed
integer linear programming and related techniques [20, 28].

3 Proposed approach
Our paper extends classic IaaS allocation optimization problem models [30] with VM placement for critical ap-
plications. For this purpose, we extend the set of constraints that deployments have to adhere to and modify the
optimization objectives to reflect both tenant and provider goals.

Figure 1 gives an overview of our allocation and deployment modeling approach. The host machines of the
operator have various capacities: storage IOPS, network packet rate, physical memory, and CPU capacity. These
are all partitionable capacities, with broad hypervisor support for partitioning them; notably, memory bandwidth
is not present (although it can be very important for critical applications). The amount of accessible storage is not
modeled as it is usually not a concern in the given domain. In addition to total CPU capacity, individual physical
cores are also present as first-class concepts. The hosts can be switched on or off.

Tenant VMs can be already existing or ones that have just been requested and wait for being provisioned.
“Future” VMs are not requested currently, but a tenant has declared that they will be needed in the future and the
provider may be asked for assurances on being able to provide them later in a timely manner. For some VMs, the
tenants may decide to prohibit migration (limiting the rearrangement of VM allocation in data center optimization).

All VMs have computational load and “other resource load” requirements. We focus on computational capac-
ity, as it is a representative problem for the similar handling of the other capacity types and has an emphasis in
NFV currently. While the “other load” requirements are expressed as single scalars on a per capacity type basis,
computational capacity requirements are either given as the load on a per CPU core basis, or as the number of
dedicated cores requested. The load of a VM can be tagged as capacity that must be guaranteed.

In order to enable cluster and application dependability, a tenant can request that at most k VMs of a set of VMs
may be deployed to the same host. In classic dependability terminology, this is a replica set allocation constraint,
but this facility can be used to express a wide range of antiaffinity rules. Affinity rules could be introduced similarly;
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we chose to omit these to keep the model simpler and because antiaffinity rules are far more important for critical
applications.

The objective function in the majority of the works for general-purpose cloud data center allocation optimiza-
tion is energy consumption, captured through the number of switched-on hosts. We introduce two additional
aspects: the amount of future requests that can be fulfilled without bringing further hypervisors online (a usually
lengthy operation) and the impact of single-host failures. The former is modeled by the number of “future” VMs
that could be allocated, while the latter is expressed as the highest number of VMs any tenant can lose due to a host
failure. To highlight the trade-off between these goals, we chose to build a single weighted composite objective
function from them. Our approach towards modeling optimality is intended to be a representative example; as it is
common with multi-aspect optimization, what constitutes an “optimal” solution is heavily problem-dependent.

In the following, we present a mathematical model and the corresponding integer programming formulation
fitting this approach, followed by a case study.

4 Problem formalization
The set of available PMs is denoted by P . PM p ∈ P has pcn(p) ∈ Z+ cores (pCPUs) and pcc(p) ∈ R+

computational capacity per core. The set of cores of PM p is denoted by pC(p); further, let

PC =
⋃
p∈P

pC(p)

denote the set of all PM cores. Beyond the CPU, the capacity in further resource dimensions is given by cap(p, r) ∈
R+ for p ∈ P and r ∈ R = {memory, ingressPacketRate, egressPacketRate, IOPS}.

The set of VMs, V , is comprised of three subsets: V = V0 ∪ V1 ∪ V2, where V0, V1, and V2 are pairwise
disjoint. V0 contains the VMs that are already accommodated by PMs, whereas V1 consists of newly requested
VMs that need to be allocated now. V2 contains reservations for future VMs that need not be allocated right now;
they just represent indications for future workload.

For each VM v ∈ V , the number of its processor cores (vCPUs) is denoted by vcn(v) ∈ Z+, the computational
capacity per core requested for the VM is denoted by vcc(v) ∈ R+, and the set of its cores is denoted by vC(v).
The set of all VM cores is denoted by

V C =
⋃
v∈V

vC(v).

The load is given for all VMs and each resource dimension:

• If the customer requested guaranteed capacity for the given VM and the given resource dimension, then this
value is used as the VM’s load.

• Otherwise, in the case of an existing VM (v ∈ V0), either its current load can be used, or an estimate for the
near future based on past observations; however, if this value is higher than the requested capacity, then the
requested capacity is used.

• Otherwise, a given percentage of the requested capacity is used, taking into account that users typically
overestimate the necessary capacity for their VMs [35].

In any case, for a VM v ∈ V and for its core vc ∈ vC(v), vcl(v, vc) ∈ R+ denotes the computational load of
that VM core. For VM v ∈ V and any further resource type r ∈ R, vload(v, r) ∈ R+ is its load in this resource
dimension.

There is a current mapping of VMs to PMs, represented by a function map0 : V0 → P . Our goal is to compute
a new mapping map : V ′ → P , where V0 ∪ V1 ⊆ V ′ ⊆ V , i.e., all VMs in V0 ∪ V1 must be mapped to PMs and
possibly also some in V2.

The cost of a mapping is comprised of three terms. The first term is the number of active PMs. A PM is called
active if at least one VM is mapped to it. PMs that are not active can be switched to sleep mode, thus considerably
reducing their energy consumption. Therefore, to save energy, we should minimize the number of active PMs,
denoted by A(map) and calculated as

A(map) =
∣∣ {p ∈ P : ∃v ∈ V map(v) = p}

∣∣.
The second term of the cost of a mapping rewards the allocation of VMs in V2 to PMs. The number of VMs in

V2 that are allocated to PMs is given by B(map) = |V ′ \ (V0 ∪ V1)|.
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The third term of the cost of a mapping penalizes the impact of the failure of a PM on a tenant. To make this
more precise, let T denote the set of tenants, and for each t ∈ T , let V T (t) ⊆ V denote the set of VMs belonging
to this tenant. (Therefore, the subsets V T (t), t ∈ T form a partition of V .) Let C(map) denote the highest number
of VMs of the same tenant allocated to the same PM. Clearly, this represents the worst-case impact of a PM failure
on a tenant in terms of the number of affected VMs, and can be calculated as

C(map) = max
{∣∣{v ∈ V T (t) : map(v) = p}

∣∣ : t ∈ T, p ∈ P}.
The overall objective function that we want to minimize is

α ·A(map)− β ·B(map) + γ · C(map),

where α, β, and γ are given non-negative constants. It should be noted that A(map) and C(map) are to be
minimized, whereas B(map) is to be maximized.

The solution, encoded by map, must satisfy the following capacity constraints:

∀p ∈ P, r ∈ R :
∑

v∈V :map(v)=p

vload(v, r) ≤ cap(p, r) (1)

These relate to all resource types other than the CPU. For the CPU, the situation is more complex because
some VMs may require dedicated cores. Let Vded ⊆ V denote the set of VMs for which dedicated CPU cores
were requested and Vnonded = V \ Vded the rest. For a PM p ∈ P , let Vded(p,map) = {v ∈ Vded : map(v) = p}
denote the set of VMs that need dedicated cores and are mapped to p, and Vnonded(p,map) = {v ∈ Vnonded :
map(v) = p} the set of VMs that do not need dedicated cores and are mapped to p. The VMs mapped to PM
p ∈ P can be scheduled on p’s CPU if and only if all of the following constraints are fulfilled:

∀v ∈ Vded(p,map) ∪ Vnonded(p,map) : vcc(v) ≤ pcc(p), (2)

∑
v∈Vded(p,map)

vcn(v) ≤ pcn(p), (3)

and

∑
v∈Vnonded(p,map)

∑
vc∈vC(v)

vcl(v, vc) ≤

pcn(p)− ∑
v∈Vded(p,map)

vcn(v)

 · pcc(p). (4)

Constraint (2) ensures that each VM is mapped to a PM with cores of sufficient capacity. Constraint (3) ensures
that the number of cores of PM p is sufficient for the VMs mapped to it that require dedicated cores, whereas
constraint (4) ensures that the cores of p that remain for the VMs not requiring dedicated cores have sufficient total
capacity.

The further special constraints for critical VMs can be formulated as follows:

• VM v must not be migrated

– If v ∈ V0:

map(v) = map0(v) (5)

– If v ∈ V1, then v needs to be placed in such a way that it will never lead to an SLA violation, because
the placement of v cannot be changed anymore. In principle, a problem could arise if multiple non-
migrateable VMs that are mapped to the same PM start to use heavily the same resource, because
such overuse could not be remedied by migration. However, our approach ensures that VMs requiring
guaranteed capacity (and critical VMs will typically belong to this category) do indeed obtain that
capacity (since we use the required capacity as load for such VMs during our allocation decisions,
even if their actual load is lower), so that no SLA violation can occur for such VMs.

• For a set of VMs V ⊆ V , at most k of them can be allocated to the same PM:

∀p ∈ P :
∣∣{v ∈ V : map(v) = p}

∣∣ ≤ k (6)
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5 Integer Linear Programming model
Let n = |V | and m = |P |. VMs are indexed as vi (i = 1, . . . , n), PMs are indexed as pj (j = 1, . . . ,m). In order
to formulate the above problem as an integer linear program (ILP), the following binary variables are introduced:

Alloci,j =

{
1 if vi is allocated on pj
0 otherwise

Activej =

{
1 if pj is active
0 otherwise

In addition, there is an integer variable C, corresponding to C(map) above.
Using these variables, the integer program can be formulated as follows (if not stated otherwise, i = 1, . . . , n

and j = 1, . . . ,m):

minimize α ·
m∑
j=1

Activej − β ·
∑
vi∈V2

m∑
j=1

Alloci,j + γ · C (7)

subject to
m∑
j=1

Alloci,j = 1, ∀vi ∈ V0 ∪ V1 (8)

m∑
j=1

Alloci,j ≤ 1, ∀vi ∈ V2 (9)

Alloci,j ≤ Activej , ∀i, ∀j (10)∑
vi∈V T (t)

Alloci,j ≤ C, ∀t ∈ T, ∀j (11)

n∑
i=1

vload(vi, r) ·Alloci,j ≤ cap(pj , r), ∀j, ∀r ∈ R (12)

vcc(vi) ·Alloci,j ≤ pcc(pj), ∀i, ∀j (13)∑
vi∈Vded

vcn(vi) ·Alloci,j ≤ pcn(pj), ∀j (14)

n∑
i=1

cpu load(i, j) ·Alloci,j ≤ pcn(pj) · pcc(pj), ∀j (15)

Alloci,j = 1, if vi ∈ V0 must not be migrated and map0(vi) = pj (16)∑
vi∈V

Alloci,j ≤ k, if at most k of V can be on the same PM, ∀j (17)

Alloci,j ∈ {0, 1}, Activej ∈ {0, 1}, ∀i, ∀j (18)

The objective function (7) is the same as before, consisting of the number of active PMs, the number of VMs
of V2 that could be allocated, and the maximum number of VMs of the same tenant on the same PM. Equation (8)
ensures that each VM in V0 ∪ V1 is allocated to exactly one PM, whereas Equation (9) ensures that each VM in
V2 is allocated to at most one PM. Constraint (10) ensures that for a PM pj to which at least one VM is allocated,
Activej = 1. Together with the objective function, this ensures that Activej = 1 holds for exactly those PMs that
accommodate at least one VM. Using similar logic, constraint (11) ensures that the value of C is at least C(map);
together with the objective function, it is guaranteed that C will have exactly this value.

Constraints (12)-(17) are mostly straight-forward formulations of constraints (1)-(6) in terms of the binary
variables Alloci,j . The quantity cpu load(i, j) in (15) is the CPU capacity that vi would use up if allocated on pj ,
calculated as follows:

cpu load(i, j) =

{
vcn(vi) · pcc(pj) if vi ∈ Vded∑

vc∈vC(vi)
vcl(vi, vc) if vi ∈ Vnonded

If vi ∈ Vnonded, then this is the total CPU load of vi, not depending on j. If vi ∈ Vded, then it may be higher
than the total CPU load of vi and it also depends on j. However, from an integer programming point of view, the
most important is that cpu load(i, j) is a constant for each i, j.
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6 Case study
To demonstrate our approach, we model the deployment of a specific, nontrivial NFV application, solve the prob-
lem for various weight values in the cost function and interpret the results. We use Gurobi [21] as the solver in our
current toolchain. A preliminary scalability analysis is provided in section 6.4.

6.1 Project Clearwater
According to the website of the Clearwater Project (http://www.projectclearwater.org), “Clearwater
is an open source implementation of IMS (the IP Multimedia Subsystem) designed from the ground up for mas-
sively scalable deployment in the Cloud to provide voice, video and messaging services to millions of users.” At
its core, Clearwater is a standards-based (VoIP) telephony “switching center” that is quickly becoming a standard
example in NFV research. (The plethora of more sophisticated services that an IMS service has to provide is irrel-
evant from the point of view of this work.) The big telco equipment providers all have their IMS implementations;
however, Clearwater is open source and explicitly engineered to be deployable in NFV IaaS environments as a
so-called Virtual Network Function. It implements the IMS standards in such a way that the various functional
components defined by the IMS standards directly map to its component services. It is possible to deploy all Clear-
water components into a single VM or onto a single physical host; however, it is mainly intended to be deployed in
a distributed way, by placing component service instances into separate VMs. Figure 2 demonstrates the topology
of typical distributed Clearwater deployments; nearly all components are scalable as clusters of VMs running the
same component code.

For reference, we give a short description of the functionality of the components. For more details, the inter-
ested reader is kindly referred to the IMS standard [1] and the documentation of the Clearwater project [34].

Bono implements the P-CSCF IMS function – acting as an edge proxy between users and the SIP routers.

Sprout SIP router, which is responsible for most of the I-CSCF and S-CSCF functions. It handles client authenti-
cation and routes SIP requests – e.g. call setup and teardown message flows – between users (and application
servers). Sprout also features a built-in MMTel application server to enable multimedia communication.

Homestead is a Home Subscriber Service (HSS), the IMS standard facility for storing subscriber data. Homestead
can serve as a mirror, but it can also serve as a master store.

Homer serves as a data store (XDMS) for the MMTel application server.

Figure 2: VMs and dependencies in a typical Clearwater deployment

6.2 An initial deployment
We begin our case study with a hypothetical (but realistic) Clearwater deployment, for which the allocation has
been performed manually. Available in the data center are two “big” and two “small” PMs; their capacities are
listed in Table 1. Figure 3 visualizes how the CPU, Memory and IOPS capacities are used by a Homer, a Home-
stead, two Bono and two Sprout instances, and two VMs belonging to another tenant. For the numerical data,
see Table 2. (Note that Sprout instances have two cores, whereas the other Clearwater components have a single
core. The two VMs from another tenant have two and four cores, respectively.) To keep the discussion simpler,
we omitted the network (rate) capacity because it is not a major concern in the deployments that we have hands-on
experience with.
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PM type Cores Core capacity (GHz, HT enabled) Memory (GB) IOPS

bigPM 6 8 32 10000
smallPM 4 6 8 350

Table 1: Parameters of the available physical machine types

Figure 3: The original deployment

It is clear that this deployment is suboptimal in multiple aspects. The I/O capabilities of the two smaller
physical machines (smallPM1, smallPM2) are saturated, while the utilization of the two bigger machines is low.
Also, smallPM2 is very low on free memory. Overall, this deployment is inefficient in the sense that some resources
are saturated, while there are also significant unused resources. With a better deployment, we might be able to turn
off one or two machines. Another aspect concerns fault tolerance. In general clouds, it is usually not possible to set
physical redundancy rules within one zone. This is how it can happen that VMs of the same cluster are deployed
on the same PM, thereby compromising fault tolerance. In our case, the two Sprout instances are on the same PM,
just as the two Bono instances.

6.3 Optimized deployments
We now turn to our optimization framework to guide the deployment. To this end, we have to specify the resource
usage of the various VMs and whether we want these capacities to be guaranteed, the number of CPU cores the
VMs need and whether cores must be dedicated, and any outstanding “future” reservations. For our example, this
is given by Table 3. Moreover, to guarantee a higher fault tolerance level, we declare that at most 1 Bono instance
and at most 1 Sprout instance may be allocated on a PM.

We solve the ILP problem with various weights. In the first run, α was set high (consolidation is the most

VM Core utilizations (GHz) Memory (GB) IOPS PM (initial)

Sprout1 5,2 2 10 bigPM1
Sprout2 3,4 4 45 bigPM1
Bono1 3 1 0 bigPM2
Bono2 2 1 0 bigPM2
Homer 2 3 400 smallPM1

Homestead 3 4 300 smallPM2
otherVM1 1,4 1 100 bigPM1
otherVM2 1,2,1,3 4 100 smallPM2

Table 2: Resource utilization of VMs in the initial deployment
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VMTypes Cores Capacity Memory IOPS Reserved
/dedicated? /guaranteed? /guaranteed? /guaranteed?

Bono 1/y 4/y 1/y 100/n 1
Sprout 2/n 6/y 4/y 100/n 0
Homer 1/n 4/n 4/y 1000/y 0

Homestead 1/n 4/n 4/y 1000/y 0
other1 2/n 4/n 4/n 100/n 0
other2 4/n 2/n 4/n 50/n 0

Table 3: Resource configuration for the VM types of the example

important), which led to a drastically decreased number of active PMs as shown in Figure 4. This deployment
is nicely consolidated and also has the desired anti-affinity properties. However, also some disadvantages can
be observed. There are too many VMs of the same tenant on a single node, leading to big impact if one of the
machines fails. The other problem is that there is no reserve in the system for the future Bono instance (according to
Table 3, the tenant specified there will be one more Bono instance in the future): since Bono instances must not be
colocated, when the tenant requests the third Bono instance, a new PM must be started, which takes non-negligible
time.

Figure 4: Allocation with high α value (consolidation is the most important)

The second run was performed with higher β, which increases the importance of future VM reservations. The
resulting deployment (see Figure 5) allocates capacity for the reserved future VM as well, while still using only 3
PMs as opposed to the original 4. The reservation is visible on smallPM2 under the name of “Bono3”. Of course,
this allocation also obeys all the capacity and anti-affinity constraints.

The last run was configured with high γ, aiming at a better distribution of the VMs belonging to the same
tenant. The solver achieves a deployment where the maximum number of VMs of the same tenant on the same PM
is two (in the previous allocations, this was three), and the number of active PMs is still only three, as shown in
Figure 6.

Our case study shows that changing the weights in accordance with different provider priorities changes the
engineering characteristics of the deployment in the intended way. Reconciling the three, basically contradictory
optimization goals and finding the weight set that best describes the intentions of a provider is a problem that we do
not address here; in the future, we plan to evaluate the applicability of the standard approaches in decision theory
and operations research.

6.4 Preliminary scalability assessment
In order to assess the scalability of our approach, we used a synthetic scaleup of the previously shown setup:
replicating the 4 physical hosts n times, resulting in a mini-DC with 4n PMs and also replicating the set of VMs to
be allocated n times (n = 2, 3, 4 . . .). The solver was run on a workstation with Intel Core i7 processor and 16GB
RAM. We specified a 30 second cutoff threshold for the solver. When an optimal solution is not found within this
time limit, then solving is interrupted and the solver returns the solution with the best objective value as well as

10



Figure 5: Allocation with higher β value (increased importance of future VM reservations)

Figure 6: Allocation with higher γ value (increased importance of spreading the VMs of a tenant across PMs)

the best lower bound on the optimum that it has been able to find until that point. The solver we employ uses
randomization as well as parallelization; unsurprisingly, there is significant variance in the runtime (and enforced
solving interruption) from approximately 100 physical hosts. Therefore, we chose to show here the results for a
single solving campaign using a single thread and the same seed value.

Figure 7 shows the best objective values found and the reported bounds; Figure 8 shows the solver runtimes.
This scaling profile is representative in the sense that runtime – as expected – increases exponentially; however,
we can still get near-optimal results in half a minute even for approximately 150 physical hosts. Arguably, our
base scenario as well as the way we scale it up are somewhat artificial and further evaluation is needed – still, this
experiment already shows that the approach is feasible at least for a few dozens of servers when fast decisions
have to be made; for longer term DC reoptimization and decision precomputation (when it is reasonable to allow
runtimes of tens of minutes), this scale is at least one order of magnitude larger.

It was clear from the start of this work that pure ILP modeling and solving using off-the-shelf tools is not a
feasible approach for DC-scale problems. Our main focus was a first attempt at laying the modeling groundwork;
there are numerous techniques that have the promise of enabling efficient decision-making at DC-scale. The mod-
ification of various existing heuristics for DC allocation optimization is just one option; we also plan to evaluate
the applicability of incremental solving techniques and hierarchical approaches. That said, it is important to note
that even with off-the-shelf solvers, we are already in the full single-rack size domain – making our results al-
ready directly applicable inside the typical “building blocks” of DCs. Intra-rack allocation is in itself an important
problem. As the communication between the hosts is here the fastest (and the overall cost to move data between
hosts the lowest), many distributed applications do prefer all tightly coupled components to be hosted in the same
rack (possibly with additional components at the macro scale; e.g. loosely coupled instantiations of these groups
“elsewhere”). Our approach can be applied directly for placement optimization in such cases.
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Figure 7: Best objective value and best lower bound found for case study scaling

7 Conclusions
In this paper, we have extended the classic data center allocation optimization problem for critical tenant applica-
tions that need guarantees on the resource capacities they wish to consume. We identified a set of representative,
user-issuable constraints and new optimization objectives, and established a mathematical and corresponding in-
teger programming formulation that combines tenant and provider goals in a joint optimization problem. Using
a typical NFV application, we have shown the viability of the approach and presented initial scalability results.
Further work will focus on establishing solution approaches for the modeling framework that scale to massive
amounts of hosts as well as modeling further critical applications to increase practical applicability.
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[30] Zoltán Ádám Mann. Allocation of virtual machines in cloud data centers – a survey of problem models and
optimization algorithms. ACM Computing Surveys, 48(1), 2015.
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