
Guiding SAT solving by formula partitioning∗

Zoltán Ádám Mann, Pál András Papp

Abstract

When deciding the satisfiability of a Boolean formula, one promising approach is to split
the formula into two smaller independent sub-formulas. While many studies report encour-
aging early results with such methods, the approach is rarely used in state-of-the-art solvers.
In this paper, we present a technique that uses formula partitioning to guide the solution of
the SAT problem through providing initialization values for the VSIDS heuristic. Our results
on a large number of benchmark instances show that the method can notably improve the
performance of modern solvers, especially if the time available for solving is short. We also
present some findings in the area of hypergraph partitioning, which is used as a tool for our
technique.

1 Introduction

Boolean satisfiability is one of the central problems of computer science. It is not only relevant
from a theoretic point of view, but also because of its applications in a wide range of different
areas, including automated reasoning, circuit design, formal verification, and artificial intelligence.
Due to this, the study and enhancement of SAT solvers is of key importance.

Deciding satisfiability is NP-complete. Although modern SAT solvers can sometimes solve
extremely large formulas in reasonable time, they may need orders of magnitude more time to
solve other, much smaller formulas [39]. Therefore, further research is still needed. From an
application point of view, it is especially important to devise methods that can recognize the
structure inherently present in problem instances encoding real-world problems and exploit that
structure to speed up the search.

Partitioning the formula into smaller subformulas is a natural idea in this direction, since
reducing a problem to a set of smaller independent subproblems is a successful technique for a
variety of hard problems [17]. There are a number of studies in the literature that aim to introduce
some form of this idea into an algorithm for SAT solving [46] [19] [1] [37] [29] [49] [26]. Most of
these studies suggest that the approach indeed yields promising results.

Nonetheless, techniques based on partitioning are rarely present in today’s state-of-the-art SAT
solvers. One possible explanation is that most of these studies focused only on a specific family of
formulas, and methods that are successful on such a family may not bring similar results on the
more heterogeneous set of problems that solvers usually encounter. Another possible reason may
be that some of these experiments were carried out a longer time ago, and as both the performance
of leading solvers and the size of the considered input formulas have drastically increased since
then, methods that were once beneficial may not be effective anymore.

In our previous work [41], we investigated the use of various versions of the Fiduccia-Mattheyses
(FM) heuristic for SAT partitioning on a diverse set of benchmark formulas. Our findings indi-
cated that, although each considered partitioning method gave promising results on some problem
instances, but none of them was consistently good on the set of benchmarks as a whole. In this
paper, we continue this research by evaluating two further, more advanced hypergraph partitioning
algorithms: the state-of-the-art multilevel Fiduccia-Mattheyses heuristic, and a novel algorithm

∗This paper has been published in International Journal on Artificial Intelligence Tools, volume 26, issue 4,
article 1750011. DOI: http://dx.doi.org/10.1142/S0218213017500117

1

that we specifically developed for finding small cuts in the hypergraph of real-world formulas.
These two algorithms perform indeed better than the simpler heuristics considered previously, but
there is no clear winner from the two approaches. We show that based on simple properties of
the formula, we can give an efficient prediction as to which of our partitioning algorithms will find
the best cut, and thus we can develop a heuristic which automatically chooses the most promising
partitioning algorithm for a given input formula.

Using this partitioning heuristic, we present two different methods to introduce the divide-
and-conquer approach into modern SAT solvers. Both techniques can be incorporated into any
SAT solver based on the DPLL algorithm, and only require minimal modification of the underlying
solver. One of the two methods, called the hard partitioning approach, uses the concept of priority
levels to divide the formula, and was already investigated to some extent previously. The other
technique, called soft partitioning, uses the information obtained from partitioning to guide the
variable selection heuristic of the underlying solver, with its impact decreasing over time. The
second approach is, to our knowledge, new.

To evaluate the methods, we introduced them into a leading solver and validated the resulting
algorithms on the large and heterogeneous set of benchmark problems used in the SAT competi-
tions of recent years. Our experiments show that the soft partitioning approach is indeed capable
of notably increasing the number of successfully solved problem instances, especially if the time
available for solving is relatively small. Furthermore, we argue that the success rate of the different
solver variants is strongly related to some properties of the input formula, and therefore we can
also develop a heuristic that automatically chooses the most promising solver version to use for a
specific formula. Our results show that for smaller time limits, this combined algorithm can even
outperform the soft partitioning solver.

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5

Comparison
of FM-based
partitioning
approaches
to SAT on
diverse
benchmarks

More
advanced
partitioning
algorithms:
• MLFM
• CFPH

Automated
selection of
the most
appropriate
partitioning
method

SAT solver
integration
by means of
priority
levels (hard
partitioning)

SAT solver
integration
as variable
selection
guidance
(soft
partitioning)

Automated
selection of
solver

Figure 1: Overview of the presented research

Fig. 1 shows an overview of the presented research. Step 0 was covered in our earlier paper [41];
Steps 1 to 5 are the contributions of this paper.

1.1 Paper organization

The following section summarizes previous results in related areas. Section 3 defines the concepts
and notation used throughout the paper. Section 4 describes different models to reduce the split-
ting of the formula to a hypergraph partitioning problem. Section 5 discusses the partitioning
algorithms used for splitting the hypergraph, including state-of-the-art methods, our novel algo-
rithm, and their relationships to the properties of the input hypergraph. Section 6 describes the
hard partitioning and soft partitioning techniques to guide the SAT solver. Section 7 presents
our empiric results with the different algorithm versions, while Section 8 shows additional details
about the way the soft partitioning technique works, when it is useful and what the limits of its
applicability are. Finally, Section 9 concludes the paper.

2

2 Related work

Various studies considered some form of partitioning to accelerate the solution of a SAT problem.
The validity of the partitioning approach was demonstrated by the work of Biere and Sinz [11],
who investigated the case when during the process of solving, the formula falls into multiple
independent parts. They show that a minor modification in the solver to recognize these situations
can notably increase the efficiency of the solving process. This indicates that developing and
applying partitioning techniques may be a promising way to improve solver performance.

A number of different papers investigate partitioning-based methods. Several of these studies
experiment with applying a partitioning algorithm to the dual hypergraph of the formula, that is,
finding a set of variables that separate the formula when removed. Park and Gelder were among
the first to show results with this approach [46]; however, since their work, both the performance of
solvers and the size of the formulas they can address increased dramatically. Similarly promising
results were reported with this method by Durairaj and Kalla [19], Li and van Beek [37], and
Huang and Darwiche [29]. All these studies examine the technique that we will refer to as hard
partitioning, and they evaluate it on a set of relatively small formulas (on today’s scale). However,
in our experiments, we have found that the hard partitioning technique performs weakly on a
heterogeneous set of formulas of large size.

Instead of looking for a set of splitting variables, several studies were conducted to search for
a separating set of clauses in the formula (that is, partitioning the primal hypergraph). Amir and
McIlraith present such an approach, but the nature of their work is mostly theoretic, without a
thorough empiric evaluation of their technique [1]. Similar methods are investigated by Monnet
and Singer [49], by Monnet and Villemaire [43] and by Torres-Jimenez et al. [50]; however, their
results are preliminary in the sense that their algorithms are only tested on a very small number
of instances.

Another natural idea is to carry out the partitioning of the input formula recursively, creating
a so-called tree decomposition of the original formula. Multiple studies aimed to improve solver
performance by generating an ordering of decision variables based on such a decomposition [12]
[29] [43]. However, one drawback of this technique is that finding the optimal tree decomposition
is a very challenging task itself.

Most studies in the area concentrate on the application of only one specific partitioning method.
One exception to this is the work of Heule and Kullmann [26], who presented a comprehensive
survey of a wide variety of partitioning methods. However, while they mostly consider the approach
from a theoretic point of view, our aim is to evaluate these techniques according to their efficiency
in practice.

Another related area is parallel SAT solving. As multicore architectures become more and
more dominant, researchers put more emphasis on designing solution algorithms that can exploit
this parallelism, leading to a variety of parallel SAT solvers [14,42]. These algorithms also reduce
the input problem to a set of smaller problems that are solved independently, and as such, also
execute some form of partitioning. An example is the cube-and-conquer algorithm of Heule et
al. [27], which combines CDCL and lookahead solvers by first executing some branching steps
according to carefully chosen decision variables, and then parallelly solving the resulting reduced
formulas with CDCL solvers. In contrast to these methods, we focus on applying the partitioning
approach in the context of sequential SAT solvers. A more fundamental difference is that parallel
SAT solvers partition the search space (e.g.: one solver instance searches the part of the search
space where x1 = true, whereas the other works in the part of the search space where x1 = false);
in contrast, we are dealing with approaches that partition the formula, which is a much more costly
operation, but leads to much smaller subproblems.

The community structure and modularity of graph representations of SAT formulas have also
been investigated. Informally, communities are subgraphs with many edges inside the subgraph
and few edges across the boundary of the subgraph; modularity is a measure of how well the
graph can be decomposed into communities. Finding the best community decomposition is a
tough problem, but fast heuristics exist that work well in practice [16]. Ansótegui et al. found
that SAT instances encoding real-world problems typically have a highly modular structure [2,3].

3

Newsham et al. showed that learned clauses with variables from few communities tend to have
higher quality than those intersecting many communities; moreover, metrics of the community
structure of a formula can be used to improve the accuracy of predicting solver runtime [45].
While there are obvious similarities between this line of research and our work, there are also two
main differences. First, we work with balanced bipartitions of the formula (that is, cutting the
formula into two parts of similar size), whereas a community decomposition may consist of many
and highly imbalanced subgraphs, which would be impractical for our purposes. Second, our aim
is not only to analyze formulas and predict solver runtime, but also to make solving more efficient.

A somewhat related concept is centrality, which also attempts to grasp the structure of SAT
formulas. Katsirelos and Simon introduced a directed graph representation of formulas and approx-
imated the frequency with which a random walk in the graph traverses each vertex corresponding
to a literal or clause [34]. They showed that the measure computed this way, called the centrality
of literals and clauses, correlates with various aspects of the solving process in a CDCL solver, like
the variables selected for decisions, conflict clauses, and learned clauses. However, their work left
it open how the gained insight could be used for improving the efficiency of SAT solving.

In some application domains, a modular structure arises in a natural way. An example is
planning, which is often solved by transforming the problem to SAT and using a SAT solver. As
shown by Huang et al., an encoding of planning as SAT results in a set of so-called transition
variables, which link together the lower-level action plans of each time epoch [30]. Thus, removing
the transition variables leads to a set of loosely coupled sub-formulas.

Besides SAT, the divide-and-conquer approach was also successfully applied in other problems
related to Boolean formulas, such as #SAT [9] and MAX-2-SAT [22].

Earlier, we have also conducted a set of experiments with formula partitioning approaches [41],
putting more focus on aspects of partitioning the formulas than on integrating partitioning into
SAT solving. In contrast to this research, that early study only examined the hard partitioning
approach for using partitioning to solve SAT, and it deduced that the results with this method
are inconclusive.

In this research, we evaluate our partitioning approaches by introducing them into the SAT
solver glucose [4, 5] (version 3.0). glucose is an open-source state-of-the-art solver (an highly
improved version of the MiniSAT solver [20]), that achieved outstanding results in all of the SAT
competitions of recent years. As the majority of modern SAT solvers, glucose is based on the
CDCL algorithm [23], and implements most of the wide range of techniques invented over the last
decades that make today’s SAT solvers extremely efficient.

3 Preliminaries

A satisfiability problem can be described as a formula consisting of Boolean variables and clauses.
A variable or its negation is called a literal. A disjunction of literals is called a clause. A formula
(in conjunctive normal form) is obtained as a conjunction of clauses. An assignment (partial
assignment) to a formula is a function that assigns a possible value (true or false) to all of (a
subset of) the variables. We say that an assignment satisfies the formula if it makes the formula
evaluate to true. A formula is satisfiable if there exists an assignment that satisfies it; otherwise,
it is unsatisfiable [31].

In practice, beyond the number of variables and clauses, another important characteristic of
the formula is its length, defined as the sum of the size of all clauses in the formula. The LtV ratio
(Length to Variables ratio) or average variable occurrence of a formula is obtained by dividing the
length of the formula by the number of its variables.

A hypergraph consists of a non-empty set V of vertices, and a set E of hyperedges (or simply:
edges), where every element of E is a subset of V . The size of a hyperedge is defined as its
cardinality. The degree of a vertex is the number of hyperedges it is contained in; a vertex of
degree 0 is called isolated.

A partitioning of a hypergraph is the division of its vertices into two sets V1, V2 such that
V1∪V2 = V and V1∩V2 = ∅. A partial partitioning of a hypergraph is a pair V1, V2 ⊂ V that only

4

(x1 ∨ x2 ∨ x5)︸ ︷︷ ︸
C1

∧ (x3 ∨ x4)︸ ︷︷ ︸
C2

∧ (x1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C3

(a) formula

x1

x2

x3

x4

C1

C2

C3

x5

(b) primal hy-
pergraph

x5

C1

C2

C3

x1
x2

x3

x4

(c) dual hyper-
graph

Figure 2: Example formula and its hypergraph representations

requires V1 ∩V2 = ∅. A hypergraph (V,E) is disconnected, if it has a partitioning V1, V2 of V such
that for all hyperedges e ∈ E we have e ⊂ V1 or e ⊂ V2. A cut set is a set of hyperedges F ⊂ E
such that (V,E \ F) is disconnected. A partitioning V1, V2 generates a cut set naturally through
the edges e for which V1 ∩ e 6= ∅ and V2 ∩ e 6= ∅; such a generated cut set is referred to as a cut.

Given a Boolean formula, there are two natural ways to represent it as a hypergraph. In the
primal hypergraph, each variable is represented by a vertex and each clause is represented by a
hyperedge. The hyperedge corresponding to a clause c contains the vertices that represent variables
occurring in c (with or without negation). In the dual hypergraph, each clause is represented by
a vertex and each variable is represented by a hyperedge. The hyperedge corresponding to the
variable x contains the vertices that represent clauses containing x (with or without negation).
The primal and dual hypergraphs are demonstrated for an example formula in Fig. 2.

The paper also assumes familiarity with the basic concepts of state-of-the-art DPLL (Davis–Putnam–Logemann–Loveland)
and CDCL (conflict-driven clause learning) SAT solvers, including the notions of decision variables,
conflicts, learned clauses and backjumps [25].

One of the most well-known methods for selecting decision variables in DPLL-based solvers
is the VSIDS (Variable State Independent Decaying Sum) heuristic [44]. The VSIDS heuristic
maintains an activity value for all variables in the formula, and always selects the variable with
the highest activity as the next decision variable. The activity of each variable is initialized to 0,
and is incremented every time the variable appears in a conflict clause. To prevent activity values
growing too large, occasionally, the activity of all variables is multiplied by a constant smaller
than 1. As a result of this, the activity of a variable is mostly determined by its presence in recent
conflicts.

3.1 Evaluation methodology

The paper contains several different empirical studies, investigating either the performance of
solver variants or the behavior of different partitioning algorithms. As input problems for these
experiments, we used the set of input formulas from the SAT Challenge 2012 [6], the SAT Compe-
titions of the years 2013 [7] and 2014 [10], and the SAT Race of 2015 [8]. These are formulas that
pose a serious challenge for today’s SAT solvers and can be seen as a diverse and representative
set of benchmarks for solver evaluation.

In our experiments, instances of the 2012 SAT Challenge and 2013 SAT Competition were
used as a training set of benchmarks to tune the parameters of our algorithms, while instances of
the 2014 SAT Competition and the 2015 SAT Race were used to validate the performance of the
tuned solvers.

5

Benchmarks for the 2012-2014 SAT events consist of three different sets of formulas: application
formulas obtained from different application areas, hard combinatorial formulas designed especially
for the competition through some combinatorial procedure, and random instances, generated
according to some model of random SAT formulas.

The main metric that we used for comparing the performance of solvers is the number of
problem instances they can solve within a given time limit. This is in line with the methodology
used at the SAT competitions [39].

All measurements were carried out on a desktop computer with Intel Core i3-2100 CPU @
3.1GHz and 4GB RAM, running Gentoo Linux 2.2.

4 Models of formula partitioning

When solving a SAT problem through partitioning, the main idea is to identify a part of the
formula such that after removing it, the remaining formula falls into two independent parts. The
part to remove may be a set of clauses or a set of variables in the formula.

In practice, removing a part of the formula means guiding the SAT solver such that it first
focuses on this part of the formula in the solution process. Then, through evaluating this part,
the solver somehow reduces the problem to deciding the satisfiability of two smaller subformulas.

Most of today’s state-of-the-art SAT solvers are variants of the DPLL algorithm, and as such,
they proceed by repeatedly branching on the value of chosen variables. A natural way to guide
such an algorithm toward our aim is to find a set of variables D that divide the formula if removed,
and assign values to these variables first. At the latest when all these variables are assigned values,
the formula will be split. Such a set of variables can be found in different ways. In our research, we
investigated two approaches (referred to as partitioning models) to obtain such a set, corresponding
to the two hypergraph representations introduced earlier:

• Dual: We find a cut in the dual hypergraph of the formula. The edges of the cut directly
correspond to a set of variables D that divides the formula if removed.

• Primal: We find a cut in the primal hypergraph of the formula, corresponding to a set of
clauses, and take the set of variables D that appear in at least one of these clauses. If we
remove all these variables, the formula will fall into two parts.

Note that in the dual case, a cut of the hypergraph directly represents a set of variables to
remove. On the other hand, a cut in the primal hypergraph only yields such a set through taking
the union of variables present in the clauses of the cut. Even for primal cuts containing a small
portion of the clauses, this union might contain a large portion of the variables.

Let us revisit the example formula of Fig. 2. In the dual hypergraph, one example of a cut is
the set D = {x4} which divides the formula after removal. In the primal case, the clause C3 forms
a cut in the hypergraph, so selecting D = {x1, x2, x4} gives a set of variables that, once removed,
split the formula into two parts.

There is no general recipe to tell which of the two is the more promising approach to find a
small set of cut variables. On the one hand, the advantage of partitioning the dual hypergraph
is that we directly optimize for a set of variables, without possibly ending up with much more
variables when taking the union of clauses. On the other hand, as shown in the next section,
partitioning the dual hypergraph is a considerably more difficult task, since most partitioning
algorithms perform much better on primal hypergraphs than on dual ones.

Both partitioning models were already examined to some extent in the literature [46] [19] [37]
[1] [49]. In our preliminary experiments, we have also considered a third approach, in which we
find a cut in the primal hypergraph, and then introduce new variables to split the clauses in the
cut into two parts [41]. However, we have found that since this model often increases the number
of variables significantly, using it has a strong negative effect on the runtime of the SAT solver in
almost all cases; therefore, this option will not be considered here.

6

5 Partitioning algorithms

5.1 State-of-the-art techniques

In both partitioning approaches, we have to find a cut in a given hypergraph. On one hand, we
aim to find a cut that has few hyperedges, to make the formula fall apart as soon as possible.
On the other hand, we would like the partitioning to be balanced, that is, to ensure that both
partitions contain at least a certain portion of all vertices; otherwise, we could end up cutting
off an insignificantly small part of the hypergraph. Therefore, a limit parameter L ∈ [0.5; 1)
is introduced in partitioning problems. Given L, we say that a partitioning of a hypergraph is
balanced if both of the partitions contain at most L · |V | vertices. A cut is said to be balanced if
the underlying partitioning is balanced.

Finding a small balanced cut in a hypergraph is a well-known problem for its numerous ap-
plications in VLSI netlist partitioning and other areas [15] [32] [40]. Unfortunately, finding the
minimal cut that satisfies a balance constraint is known to be NP-hard [38]. However, various
sophisticated heuristics were developed to address the problem; the most notable among these is
the Kernighan-Lin (KL) heuristic [35], and its improved version, the Fiduccia-Mattheyses (FM)
heuristic [21].

The Fiduccia-Mattheyses heuristic is a linear-time algorithm, which (along with its further
improved variants [18] [28] [32]) is known to be particularly successful in returning small balanced
cuts in many application areas. The algorithm proceeds in passes. Each pass starts from a
balanced partition of the vertices, with the first one usually being initialized by some randomized
heuristic. Passes consist of steps, in which one vertex is moved from one partition to the other.
In each step, the vertex with maximal gain is chosen, that is, the one which reduces the cut size
the most, among those that can be moved without violating the balance constraint. After the
step, the moved vertex remains locked in the new partition until the end of the pass. When no
more vertex can be moved, the pass is over, and the best state (in terms of cut size) observed
throughout the pass is chosen as the initial partition for the next pass.

The success of the heuristic is due to the fact that while the algorithm makes greedy choices
in each step, it continues the pass even if the following move increases the size of the cut, thus
allowing it to occasionally escape local minima. Also, a special data structure allows to access and
update the gain values of all vertices efficiently, resulting in linear runtime.

However, one big disadvantage of the FM heuristic is that it only moves one vertex in every
step. As the size of the input hypergraph grows, these steps cover smaller and smaller distances
in the solution space (relative to the size of the space), thus making the search less effective.
Therefore, an improved version of the algorithm was devised, known as the multilevel Fiduccia-
Mattheyses (MLFM) heuristic, to deal with hypergraphs of larger size [32]. The MLFM algorithm
works in three phases. In the clustering phase, iterative clustering steps are executed, each time
merging some vertices of the hypergraph to obtain a smaller hypergraph on the next level, while
trying to retain as much of the structure of the original hypergraph as possible in the process.
In the partitioning phase, the basic FM algorithm is used to find a balanced cut in the resulting
hypergraph, which is significantly smaller than the original one. Finally, a separation phase is
executed to iteratively unmerge vertices that were clustered together in the first step, also running
a few FM passes after separation in each level to further refine the partition.

In our experiments, we used hMetis, a state-of-the-art implementation of the MLFM algorithm
that had achieved impressive results in various applications [32,33].

In our previous study [41], we also investigated some other improved variants of the FM
algorithm. The multimove FM algorithm allows each vertex to be moved k times in a pass
(instead of only once), so as to traverse a bigger part of the search space. The soft gain FM uses
a more sophisticated gain function, assigning an extra gain value to vertices that contribute to
moving a given portion of a hyperedge into a partition, thereby rewarding small steps in the right
direction. The edgemoving FM is a remarkably different variant, which proceeds by selecting an
edge in each step, and moving all vertices of the edge in question to a given partition. While
these algorithms gave good results on some instances, none of them showed consistently good

7

performance. Moreover, we have found that hMetis is superior to these methods, either in terms
of runtime or quality of the cut returned.

5.2 The CFPH algorithm

5.2.1 The limit of FM-based techniques

The FM heuristic and its improved versions give strong results in the application areas they were
designed for. In our experiments, we have also found that they are indeed able to find good cuts
in the primal hypergraphs of formulas. These hypergraphs have the specialty that they mostly
contain relatively small hyperedges.

When the FM algorithm chooses the next vertex to move, hyperedges that have at least two
vertices in both partitions have no effect on the decision, since regardless of the vertex we move,
these hyperedges will remain cut after the move. For hyperedges of larger size, this is almost always
the case, as it is very unlikely for such edges to have all or all but one of their vertices falling into
the same partition in a given state of the algorithm. Hence, if the majority of hyperedges in a
hypergraph is large, then the FM algorithm ignores these in most cases, selecting vertices to move
ineffectively or even close to arbitrarily. As a result, in hypergraphs where the average hyperedge
size is too large, the FM algorithm usually returns cuts of very poor quality. While the MLFM
algorithm does improve on this problem to some extent by reducing the size of hyperedges in the
first phase, this only slightly extends the domain of problems with which it can effectively deal.

Unfortunately, this is a problem in the case of dual hypergraphs, where hyperedge size corre-
sponds to the number of occurrences of the variable in the formula. This is usually a much higher
number than the clause size (hyperedge size in the primal hypergraph) in formulas obtained from
application areas. For example, in the application problems of the 2013 SAT Competition [7], the
average clause size over all instances was 3.36, while the average variable occurrence was 59.92.
Therefore, when applied to the dual hypergraphs of formulas, FM-like algorithms often return
poor partitions, sometimes even ones where all hyperedges are cut.

5.2.2 Our new approach

Thus, we developed a heuristic with especially the aim of finding small balanced cuts in hyper-
graphs with large edges. The idea behind this heuristic, named Constructive Formula Partitioning
Heuristic (CFPH), is to start with two empty sets P1, P2, and place vertices into these throughout
the process, in every step inserting all vertices of a given hyperedge into one of the two sets, this
way making sure that the hyperedge in question will not be cut.

The algorithm works in two phases. In the first phase, called the clean phase, CFPH iterates
through the hyperedges repeatedly, searching for hyperedges such that (i) all already placed ver-
tices of the edge are in the same set Pi and (ii) the remaining (not yet placed) vertices of the
hyperedge can be added to this set without violating the balance constraint. If such a hyperedge
is found, it is selected with a given probability p, in which case all its unplaced vertices are added
to Pi. In the special case when both sets can be chosen for a hyperedge since none of its vertices
are placed yet, it is added to the set with the smaller number of vertices. If no edge is selected in
an entire iteration, then a finalization stage is reached, and all hyperedges satisfying the two con-
ditions are selected afterwards (not just with probability p as before, but surely). The procedure
stops when no more hyperedge satisfies the two criteria.

This first phase of the algorithm is repeated a certain number of times (denoted by T). Each
generated partial partitioning is evaluated by the number of hyperedges that have all their vertices
already placed into one of the sets. In the end, the partition that had the largest number of such
edges is chosen as the initial state for the second phase.

In the second phase, named conclusion phase, the remaining unplaced vertices are assigned
to one of the sets. For this, a limit parameter ` is used, which is initialized to 1 and doubled in
every step, until it reaches or surpasses the maximum hyperedge size. In each step, the algorithm
iterates over all the hyperedges that still contain an unplaced vertex. If the next edge has at most

8

` vertices placed in one of the sets, then all unplaced vertices in the edge are added to the other
set, but only if this can be done without violating the balance constraint. If both sets satisfy this
condition for an edge in a given step, then one is chosen at random. Finally, at latest when ` is
at least as large as the maximum hyperedge size, all unplaced vertices that appear in at least one
hyperedge are placed in one of the sets; isolated vertices can be placed arbitrarily at the end.

The motivation behind the conclusion phase is to distribute the vertices of the remaining
hyperedges in an asymmetric manner. Note that all hyperedges considered in this phase will
certainly be cut in the final partition. However, this way, if some passes of the FM algorithm are
run on the generated partition, it has a significantly higher chance for further improvement, as
there are more hyperedges that only have a small number of vertices in one of the two sets.

5.2.3 Pseudocode of the algorithm

For the sake of completeness, we also provide a pseudocode for the CFPH algorithm, shown in
Algorithm 1. In order to present a compact description, we develop some notation that simplifies
the code significantly. We denote the input hypergraph by H, its vertex set by V (as before), the
number of its hyperedges by m, its ith hyperedge by ei, and the size of the largest hyperedge in H
by Hmax. We denote a partial partition by a pair (P1, P2). By assigning ∅ to such a partition, we
mean resetting both P1 and P2 to the empty set. For an index j ∈ {1, 2}, let j denote the index
of the other set (that is, 1 = 2 and 2 = 1). Let si,j denote the number of nodes in ei that are
already placed into Pj . Let V al(P1, P2) denote the number of hyperedges that already have all
their vertices placed into one of the sets. We assume that the values of si,j and V al(P1, P2) are
always updated throughout the algorithm.

As before, L denotes the balance parameter for the partitioning. Calculated from L, Limit
specifies the maximum number of nodes allowed in a partition. We also develop the notion of a
‘for loop run until termination’, meaning a loop that iterates over a range of values again and
again until it is terminated by a Break instruction. Finally, we assume the existence of a rand()
function that returns a random number uniformly distributed on [0, 1].

5.3 Parameter tuning for the partitioning methods

Before we can apply the described algorithms in practice, there are some parameters for which a
value has to be chosen. While hMetis is an off-the-shelf partitioning algorithm that has a set of
recommended parameters, our own implementations of the FM and CFPH algorithms both have
a parameter that is yet to be defined. Hence we executed a process of parameter tuning on a set
of formulas chosen randomly from the benchmarks of the SAT competition 2013 [7]. For tuning
the minor parameters of the partitioning algorithms, we used a smaller set of 60 instances, and
for selecting the time limit to use, we examined a larger set of 300 instances.

First of all, we need to specify a reasonable value as the balance constraint for our partitioning
algorithms. We have chosen to accept cuts where both sets contain at least 30% of the vertices of
the hypergraph (thus, L = 0.7).

In case of the FM algorithm, the parameter to tune is the maximum number of passes executed.
This was set to 10, since we found that further passes decrease the size of the cut by less than
1% on average. In case of CFPH, we had to determine the number of times the clean phase is
executed before the best candidate is chosen and the algorithm jumps to the conclusion phase.
This was also set to 10; the improvement after the 10th round was below 2% in average, and in
66% of the cases, no better candidate was ever found after this point. With that, the parameters
of the partitioning algorithms are set.

However, there is one more issue to address: our set of input formulas contains some instances
of immense size, which require far too much time to partition with any of our algorithms. Since
we do not want the partitioning process to significantly reduce the time available for deciding
satisfiability, we need to limit the running time of the partitioning algorithm.

For this, we aimed to identify a ’knee point’, over which increasing the time limit further only
results in marginal growth in the number of finished runs. Fig. 3 shows the percentage of instances

9

Algorithm 1 Constructive formula partitioning heuristic (CFPH)

1: function CFPH(H, L, T , p)
2: Limit← L · |V |
3: P ∗

1 , P
∗
2 ← ∅ . Clean phase

4: for t from 1 to T do
5: P1, P2 ← ∅
6: finalize← false
7: count← 0
8: for i from 1 to m until termination do
9: if count = m then

10: if finalize = true then
11: Break
12: else
13: finalize← true

14: if si,1 + si,2 < |ei| AND ∃j such that si,j = 0 AND |Pj |+ |ei| − si,j ≤ Limit then
15: j ← the index j for which the conditions are true

(if true for both j, then the index of the set with smaller size)
16: if finalize = true OR rand() < p then
17: add the yet unplaced vertices of ei to Pj

18: count← 0
19: count← count + 1

20: if V al(P1, P2) > V al(P ∗
1 , P

∗
2) then

21: (P ∗
1 , P

∗
2) = (P1, P2)

22:

23: (P1, P2) = (P ∗
1 , P

∗
2) . Conclusion phase

24: for ` from 1 to Hmax exponentially (doubled in every iteration) do
25: for i from 1 to m do
26: if si,1 + si,2 < |ei| AND ∃j such that si,j ≤ ` then
27: select such a value j (if both values fit, select one randomly)
28: add the yet unplaced vertices of ei to Pj

return (P1, P2)

10

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0 10 20 30 40 50

In
sa

tn
ce

s
w

h
e

re
 p

ar
ti

ti
o

n
in

g
w

as
 f

in
is

h
e

d

Available time (s)

(a) hMetis

60.00%

70.00%

80.00%

90.00%

100.00%

0 10 20 30 40 50

In
sa

tn
ce

s
w

h
e

re
 p

ar
ti

ti
o

n
in

g
w

as
 f

in
is

h
e

d

Available time (s)

(b) CFPH

60.00%

70.00%

80.00%

90.00%

100.00%

0 10 20 30 40 50

In
sa

tn
ce

s
w

h
e

re
 p

ar
ti

ti
o

n
in

g
w

as
 f

in
is

h
e

d

Available time (s)

(c) FM

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 10 20 30 40 50

In
sa

tn
ce

s
w

h
e

re
 p

ar
ti

ti
o

n
in

g
w

as
 f

in
is

h
e

d

Available time (s)

(d) CFPH+FM

Figure 3: Percentage of dual hypergraphs partitioned within a given time

on which the different partitioning algorithms (executed on the dual hypergraph of the formula)
are finished within time, as a function of the time available. Based on the diagrams, we chose a
time limit of 20 seconds, and used this value in all our further experiments.

5.4 Choosing the most appropriate partitioning algorithm

To sum up, we considered the following four algorithms for partitioning hypergraphs in our ex-
periments:

• FM: Our implementation of the FM algorithm, initialized with a randomized balanced
partition

• hMetis: The Metis implementation of the MLFM algorithm

• CFPH: The CFPH algorithm

• CFPH+FM: The FM algorithm, initialized with the partition returned by CFPH

We have chosen not to include the further FM versions from [41] in this set. The reason
for this in case of the multimove FM and soft gain FM variants was that hMetis managed to
find significantly smaller cuts than these algorithms in almost all cases. The running time of the
edgemoving FM, on the other hand, scales poorly, and therefore it cannot be used in practice for
bigger hypergraphs.

Given this set of four algorithms, our aim is to develop a heuristic which, based on simple
properties of the hypergraphs (such as number of vertices, number of edges or average hyperedge
size), chooses the algorithm in this set which will probably return the best cut. In fact, since our

11

Table 1: Number of times when each model-algorithm combination turned out to be the best

hMetis FM CFPH CFPH+FM

Primal 21 4 0 5
Dual 121 0 91 58

input is not a hypergraph but a Boolean formula, we need more than that: we have to choose
a combination of partitioning model (primal or dual hypergraph) to represent the formula and
partitioning algorithm (one of the above four) to apply on the chosen model. If we find that the
properties of the formula have an important role in determining the combination that gives the
best result on the formula, then we can indeed develop a heuristic which uses the most appropriate
partitioning model and algorithm with high probability. This approach of heuristically choosing
the most promising algorithm from a set of candidates, known as the algorithm portfolio approach,
has been successfully applied to various problems before [24,51].

5.4.1 Empiric results with the partitioning methods

To evaluate the different partitioning algorithms, we ran all combinations of partitioning models
and algorithms on the training set of 300 instances that were previously used in the process of
parameter tuning. For each instance, we chose the model and algorithm that lead to the smallest
cut (ties were broken based on smaller runtime). We made an exception in the case of CFPH+FM,
since running the FM heuristic after the CFPH algorithm often yielded only a minor improvement
or no improvement at all; therefore, CFPH+FM was only considered better than CFPH in case
it returned a cut that was at least 1% smaller than the cut returned by CFPH.

The results of the experiment are shown in Table 1. For each combination of model and
algorithm, the table shows the number of instances on which the algorithm turned out to be
the most effective. We can clearly see that in the vast majority of cases, one of four certain
combinations yields the smallest cut.

Unfortunately, if we examine the 21 formulas for which Primal - hMetis was found to be the
most successful combination, we see that they do not exhibit strong similarities in any of the basic
parameters of the formula. The fact that there is no simple characterization of the cases when
this combination finds the best cut means that there is no straightforward way to determine when
our heuristic should select this model and algorithm for partitioning. Therefore, we decided to
develop a heuristic that only chooses a partitioning algorithm from the other three candidates
(Dual - hMetis, Dual - CFPH and Dual - CFPH+FM).

5.4.2 Connection to the properties of the formula

We found that the domain where these three methods are successful can be mostly characterized
using two parameters of the input formula. One of these is the average variable occurrence (LtV
ratio) in the formula, which corresponds to the average hyperedge size in the dual hypergraph.
As mentioned in Section 5.2.1, the MLFM heuristic (implemented by hMetis) yields significantly
worse results with the growth of average hyperedge size, which was precisely the motivation for
designing the CFPH algorithm. Therefore, above a given LtV ratio, CFPH returns better cuts
than hMetis.

Note that the performance of CFPH also gets weaker as average hyperedge size grows. However,
it is significantly less sensitive to this parameter than FM-like algorithms, and therefore, above a
certain LtV ratio, it begins to find smaller cuts than those. The sensitivity of the two algorithms
to LtV ratio is easily seen in Fig. 4, which shows the average quality of the cut returned by the
algorithms in different intervals of the LtV ratio.

The other notable difference between the three partitioning algorithms is a result of the time
limit: since hMetis takes too much time on larger formulas, it is better to run CFPH or CFPH+FM

12

0%

20%

40%

60%

80%

100%

[2; 5) [5; 10) [10; 20) [20; 50) [50; 150) [150; 500) [500; 1500)

Si
ze

 o
f

cu
t

(p
e

rc
e

n
ta

ge
 o

f
va

ri
ab

le
s)

LtV ratio

hMetis CFPH

Figure 4: Average quality of cut returned for different LtV ratios

above a certain formula size. Our experiments suggest that over approximately 300,000 clauses,
hMetis is almost always interrupted by the timeout.

These results are illustrated in Fig. 5. Each point in the figure corresponds to a formula in
the training set, located according to its LtV ratio and number of clauses. Each point is labeled
with the partitioning algorithm that finds the smallest cut in the dual hypergraph of the formula.
Fig. 5a) shows the results when the algorithms are run without a time limit, while 5b) shows the
case when a time limit of 20 seconds is imposed.

It is clearly visible from the figures that hMetis is indeed the best choice in case of formulas
with a small LtV ratio. Furthermore, if a time limit of 20 seconds is introduced, then hMetis is
only beneficial to use under a certain number of clauses. As for the other two algorithms, while
there also tends to be a region where CFPH dominates the graph and one where CFPH+FM does,
these are not separable from one another as clearly as hMetis is from the other two algorithms.
Considering the fact that CFPH+FM often finds a better cut than CFPH but never a worse one,
and that running both CFPH and FM still finishes within time in almost all cases, we decided
to always run the FM algorithm after CFPH (that is, choose the CFPH+FM algorithm) in this
region. Therefore, the final form of our heuristic is the following:

• if the input formula has at most 200,000 clauses and an LtV ratio at most 30, we call hMetis
on the dual hypergraph

• otherwise, we call CFPH+FM on the dual hypergraph

6 Partitioning-based solving techniques

As described in Section 4, formula partitioning can be introduced into a SAT solver by finding a
set of variables that separates the formula, and assigning values to these variables first. This only
requires us to modify the part of the solver that is responsible for choosing the decision literals;
all other parts of the solver can be left intact.

Like numerous other state-of-the-art SAT solvers, glucose uses the VSIDS heuristic to select
its decision variables. Despite its simplicity, VSIDS is known to be a very effective heuristic, and is
thoroughly investigated in the corresponding literature [44,48]. Its outstanding success is usually
attributed to the fact that it increases the locality of the search, and that it only imposes a very
small computational overhead.

13

1

10

100

1000

10000

100 1 000 10 000 100 000 1 000 000 10 000 000 100 000 000

L
tV

 r
a
ti

o

Number of clauses

Dual hMetis Dual CFPH Dual CFPH+FM

hMetis

CFPH+FM

(a) without time limit

1

10

100

1000

10000

100 1 000 10 000 100 000 1 000 000 10 000 000 100 000 000

L
tV

 r
a
ti

o

Number of clauses

Dual hMetis Dual CFPH Dual CFPH+FM

CFPH+FM

hMetis

(b) with a time limit of 20s

Figure 5: Best partitioning algorithm for each formula of the training set

14

6.1 Hard partitioning

When introducing formula partitioning into glucose, our main goal is to make the formula fall
apart as early as possible in the solution process, while not modifying the original VSIDS rule for
decision variable selection to a larger extent than necessary. One possible method to implement
this is the hard partitioning approach, depicted in Fig. 6a.

Before running the solver, we call a partitioning algorithm on the formula, obtaining a set of
variables D that makes the formula fall apart into subformulas F1, F2 when removed, such that
all other variables are only present in F1 or in F2. The set of variables appearing in Fi is denoted
by Xi (i ∈ {1, 2}). In the solver, we modify the variable selection rule by introducing priority
levels, that is, assigning an integer priority from {2, 1, 0} to each variable. We assign the highest
priority to the variables in D, second highest priority to the variables in X1 and lowest priority to
the variables in X2.

Given the priority levels, the decision variable selection is modified as follows: we always pick
a decision variable from the highest priority level that still has an unassigned variable, and among
those variables, we select the variable with highest activity value. This way, highest priority
variables ensure that (if we found a relatively small cut) the formula will be split early on, and
when choosing between variables with the same priority, we can still expect VSIDS to make
relatively good decisions.

Note that it is not obvious that separating the two lower priority levels from each other is
necessary. However, it was already shown by Biere and Sinz in [11] that solving independent parts
of the formula separately can notably improve solver performance.

Also note that being a CDCL solver, glucose repeatedly adds learned clauses to the formula,
by which F1 and F2 may cease to be independent at some point. That is, before the formula is
split, it is possible that the solver adds some learned clauses that contain variables from both X1

and X2. We chose to ignore this phenomenon, since our experiments showed that the number of
such clauses usually stays relatively small. It is important to note that even if F1 and F2 are not
independent, this does not impair the correctness of the approach.

Partitioner

D
Subformula

F1 with
variables X1

Subformula
F2 with

variables X2

Solver

Prio 2: D

Ordering:
VSIDS

Prio 1: X1

Ordering:
VSIDS

Prio 0: X2

Ordering:
VSIDS

(a) hard partitioning

Partitioner

D
Subformula

F1 with
variables X1

Subformula
F2 with

variables X2

Solver

in
it

ia
l

ac
ti

vi
ty

D X1 X2

Ordering: VSIDS

(b) soft partitioning

Figure 6: Conceptual overview of the hard partitioning and soft partitioning approaches

6.2 Soft partitioning

The hard partitioning solver described above is a possible implementation of a formula partitioning
technique into a SAT solver. However, our empirical results with this approach were rather

15

disappointing: although it can solve some instances that the original glucose algorithm cannot,
but it timed out on several other instances that glucose could solve (see Section 6.3 for details).
This implies that although formula partitioning may be a beneficial approach, but by making it
the primary aspect of decision variable selection, we gain less than what we lose by not allowing
VSIDS to make decisions based on locality.

Therefore, we devised another solver version to overcome this problem, to which we will refer
to as soft partitioning solver. The idea behind soft partitioning, depicted in Fig. 6b, is to initially
guide the solver in the direction of splitting the formula, but allow VSIDS to override these
decisions once it has a deeper understanding of the formula.

To do this, no priority levels are used, but instead, the initialization value of variable activities
is modified. We introduce three new parameters I2, I1, I0 of the solver, and when initializing
activity values, we set the activity of all variables in D to I2, all variables of F1 to I1 and all
variables of F2 to I0 (we assume I2 ≥ I1 ≥ I0). At the beginning of the solution process, activity
values will be close to their initialization values, and the solver will first choose variables from D
as decision variables. However, the values will repeatedly be updated, and if a variable from X1 or
X2 appears in significantly more conflicts than one from D, its activity value will eventually grow
larger and it will be selected over the other variable. This way, the advantages of partitioning and
VSIDS can be combined: at the beginning, decisions are based on partitioning, but later, when
VSIDS can already make more informed decisions, it becomes the dominant factor.

6.3 Empirical experience with the solver variants (on the training set)

As described, we have three different solver variants available for comparison: the original glucose,
the hard partitioning solver and the soft partitioning version (the latter with different possible
initialization values). Our next aim is to gather some experience with the practical behavior of
these solver variants, and to tune their parameters. In order not to compromise the later validation
study, we used the training set for this purpose (see Section 3.1).

For the soft partitioning solver, we evaluated three different parameter sets that assign different
importance to the highest priority level, and thus, implement different compromises between the
original glucose and the hard partitioning solver. Each such version is identified by the tuple
(I2, I1, I0) of initialization values; the three tested versions were (3, 1, 0), (25, 2, 0) and (200, 2,
0).

We first investigated the behavior of the solvers on all benchmarks of the 2012 SAT Challenge
and the 2013 SAT Competition. Not surprisingly, all partitioning algorithms return cuts of very
bad quality on randomly generated formulas, since these benchmarks do not exhibit a structure.
This way, the partitioning solvers are unable to split the formula early in the solution process as
intended, hence we cannot expect partitioning-based methods to yield good results in this case.
Since we did not want these instances to influence our final choice of solver parameters, we only
included the application (APP) and hard combinatorial (HC) benchmarks of the corresponding
years in the training set. This yields a training set of 1770 formulas.

In our experiments, we found that the relationship between the performance of the different
solvers shows a strong dependency on the time available for solving an instance. We decided to
select two specific time limits that are considerably different, a larger one of 500 seconds and a
smaller one of 50 seconds, and focus on training the partitioning solvers for these specific times.
However, to get a wider perspective on the properties of the different versions, we also executed
some experiments with further time limit values.

It is important to note that, when talking about a time limit in case of a partitioning solver,
we also include the time used for partitioning in the runtime of the algorithm. So, for example,
a time limit of 50 seconds means that 50 seconds are available altogether for partitioning and
solving. We apply this principle throughout our experiments to ensure a fair comparison.

Table 2 shows the number of instances successfully solved within a time limit of 500 seconds
by the different algorithms. It is clear that the hard partitioning solver is not competitive with the
other approaches. On the other hand, if we consider the whole training set, all the soft partitioning

16

Table 2: Number of successfully solved instances by solver variants, with a time limit of 500s

2012 2013 All
APP HC APP HC

of formulas 570 600 300 300 1770
glucose 378 301 100 106 885

Soft part. (3, 1, 0) 379 294 103 110 886
Soft part. (25, 2, 0) 385 299 104 107 895

Soft part. (200, 2, 0) 387 290 103 106 886
Hard part. 177 237 42 64 520

Table 3: Number of successfully solved instances, with a time limit of 50s

2012 2013 All
APP HC APP HC

of formulas 570 600 300 300 1770
Glucose 157 209 27 37 430

Soft part. (3, 1, 0) 154 218 22 57 451
Soft part. (25, 2, 0) 160 220 26 60 466

Soft part. (200, 2, 0) 165 223 26 60 474
Hard part. 80 180 12 44 316

variants solve slightly more instances than glucose. The improvement compared to glucose is
highest (approximately 1%) for the (25, 2, 0) version.

The improvement becomes much more significant if we choose a smaller time limit for solving
the benchmarks. Table 3 shows the results for the time limit of 50 seconds. We can see that
all three soft partitioning variants perform significantly better than the original glucose. In this
case, the most successful version increases the number of solved instances by more than 10%. Note
that in this case, the version yielding the best results is clearly the one with largest initialization
value.

If we investigate solver performance for various different time limits, then we can see that there
is a general tendency for soft partitioning solvers to show larger improvement as we reduce the
time available to the solvers. Also, for larger time limits, soft partitioning versions with smaller
initialization values usually outperform versions with larger initialization values, while for smaller
ones, the better results are usually obtained by larger initialization values. These trends are visible
in Table 4 (the table also includes the original glucose, which corresponds to the initialization
values (0, 0, 0)).

These phenomena can be explained by the intuition that given more time, the VSIDS heuristic
is able to make more intelligent decisions, since it has access to significantly more refined activity
values. When we select a smaller time limit, VSIDS will not be able to gather enough information
to make a sophisticated choice, thus selecting decision variables based on insight from partitioning
will yield better results. However, as the amount of available time is increased, VSIDS will begin
to outperform the decision strategy that aims to partition the formula. Too strong initialization
is counterproductive in this case, since it may still override VSIDS at the point where it is already
able to make more reasonable decisions. However, even for a larger time limit, initializing activities
with small values can still be beneficial, since it guides the solver in the beginning of the decision
process when VSIDS is not yet well-informed enough.

It is another natural idea to examine the performance of the new solver separately on satisfiable
and unsatisfiable formulas. Table 5 compares glucose and the most successful soft partitioning
solver for both time limits, dividing the successfully solved formulas into two groups according
to their satisfiability. We see that in both cases, the vast majority of the improvement can be
attributed to the satisfiable category. This implies that while the soft partitioning solver does not

17

Table 4: Number of solved instances for various time limits and initializations

Time limit 20 s 50 s 100 s 500 s
Glucose 310 430 540 885

Soft part. (3, 1, 0) 317 451 563 886
Soft part. (25, 2, 0) 323 466 569 895

Soft part. (200, 2, 0) 324 474 580 886
Soft part. (1000, 100, 0) 331 464 582 877

Table 5: Number of solved instances, separated according to satisfiability

(a) 500 s

SAT UNSAT All
Glucose 519 366 885

Soft part. 528 367 895

(b) 50 s

SAT UNSAT All
Glucose 301 129 430

Soft part. 344 130 474

seem to outperform glucose in deciding unsatisfiability, it is indeed remarkably better at finding
a satisfying assignment if it exists.

We also experimented with parameter combinations where the two lower priority levels are
separated further apart (that is, where there is a larger difference between the second and third
parameter of the soft partitioning solver). However, we have found that these versions did not
yield a notable improvement over the previously discussed parameter sets.

Altogether, according to the results on the training set, in the case of the 500 seconds time
limit, the best results were returned by the (25, 2, 0) soft partitioning solver, while for 50 seconds,
the (200, 2, 0) soft partitioning solver turned out to be the most successful one. Hence we chose
these solvers to be the most promising ones to use in the corresponding cases, and evaluated their
performance on a separate set of validation formulas (see Section 7).

We can summarize our findings on the training set as follows:

• the overall performance of the hard partitioning solver is not competitive with that of the
original glucose

• the soft partitioning solver, on the other hand, is able to solve a higher number of problem
instances than glucose

• as we reduce the amount of time available, the performance increase obtained by using the
soft partitioning solver becomes more significant

• for smaller time limits, better results are usually obtained by a stronger initialization of
VSIDS

• the soft partitioning solver clearly outperforms glucose on satisfiable formulas, while the
efficiency of the two solvers is close to identical on unsatisfiable formulas

6.4 Heuristic for choice of solver

Even in the cases when glucose and the soft partitioning solver manage to solve a similar number
of formulas in time, there is a number of formulas on which only one of them succeeds. Therefore,
given the original glucose and a version of the soft partitioning solver, it is a natural question
whether we can characterize the cases where one of the two outperforms the other. Using the
previously mentioned algorithm portfolio approach, this could allow us to devise a combined
solver that merges the advantages of the two solvers, solving more instances than either of the
two.

18

Hence, we aimed at developing a heuristic rule based on which we can decide to use either
glucose or the soft partitioning solver, both for the 50 seconds and the 500 seconds case. For
both time limits, we settled for using a simple rule that chooses according to only one of the basic
characteristics of the input formula, by selecting a single splitting point in the range of the given
feature, and using one of the solvers for formulas where the feature is below this value and the
other solver where it is above. We also experimented with possibilities that are based on more
than one feature of the formula, but we found that these do not result in better characterization
of the success of solvers; on the other hand, since they are more complex, they increase the risk
of overfitting our decision rule to the properties of the training set.

For the case of 500 seconds, the LtV ratio turned out to be the feature that best describes
the relationship between the two solvers. The optimal division of the training set is obtained by
choosing a ratio of 16.5 as a splitting point, and running the soft partitioning solver for smaller
LtV ratios and the original glucose for larger ones. This combination of the solvers succeeds on
912 instances of the training set; compared to the 885 solved by glucose and the 895 by the (25,
2, 0) soft partitioning solver, the combined solver clearly outperforms both underlying solvers.

For the 50 seconds time limit, the best division is achieved by splitting according to the size of
the cut returned by the partitioning algorithm. We found that the combined solver would give the
best results on the training set if the soft partitioning solver was applied below a cut size of around
42,000 variables, and the original glucose was run above this value. Note that this division means
selecting the soft partitioning solver in almost all cases; however, this is not surprising since the
soft partitioning solver usually outperforms the original glucose for this time limit. The division
increases the number of solved instances to 484 (while only 430 are solved by glucose and 474 by
the (200, 2, 0) soft partitioning solver). Hence, the combined solver is again considerably better
than both underlying solvers.

The complete process of selecting a partitioning algorithm and a solver version to use is summa-
rized on the flowcharts of Fig. 7. Note the slight structural difference between the two charts: in
the 500 seconds case, the solver can be chosen before running the partitioning algorithm, whereas
in the 50 seconds case, the choice depends on the output of the partitioning algorithm. Also, the
condition for the second decision in Fig. 7 a) can be simplified, as it is already known at this point
that the LtV ratio is below 16.5, so there is no need to check whether it is below 30 or not.

7 Validation

Given our different solver variants, it remains to evaluate their performance on the validation
benchmark set. This set was chosen to include the application and hard combinatorial benchmarks
of the 2014 SAT Competition and the benchmarks of the 2015 SAT Race. Thus the validation set
is disjoint from the training set.

For the case of the 500 seconds time limit, we compared three different solver variants: the
original glucose, the soft partitioning solver described in Section 6.2 with parameters (25, 2,
0), and the combined solver configured for this case as described in Section 6.4. Table 6 shows
the number of instances solved within 500 seconds for these variants. We can see that the soft
partitioning solver is indeed capable of successfully improving on the performance of glucose: it
solves 19 instances more than glucose, which approximately means a 7% increase in the number
of solved formulas. This is a significantly better result than the one obtained on the training set.

On the other hand, the table also shows that our combined solver gave weaker results than the
soft partitioning solver on this set of formulas. A more careful analysis of the results showed that
this is only due to the fact that the soft partitioning solver produced much better results on this
set of formulas than on the training set. Of course, this does not change the fact that in this case,
the combined solver did not manage to improve on the soft partitioning solver at all. However, it
is worth noting that it still significantly outperformed glucose.

For the 50 seconds case, we evaluated the original glucose, the (200, 2, 0) soft partitioning
solver, and the combined solver for 50 seconds. The results for this case are shown in Table 7. It
is clear that for this case, the soft partitioning solver succeeds on 15 instances more than glucose,

19

choice of

solver

apply glucose

of clauses ≤ 200 000 # of clauses > 200 000

LtV ratio ≤ 16.5

input: CNF formula

LtV ratio > 16.5

choice

of partitioning

algorithm

use hMetis to
find a cut in the
dual hypergraph

use CFPH+FM to
find a cut in the
dual hypergraph

apply the soft
partitioning solver
with the found cut

(a) 500 seconds case

choice

of partitioning

algorithm

 choice of

solver

LtV ratio ≤ 30 and

of clauses ≤ 200 000

LtV ratio > 30 or

of clauses > 200 000

cut size > 42 000 cut size ≤ 42 000

input: CNF formula

use hMetis to
find a cut in the
dual hypergraph

use CFPH+FM to
find a cut in the
dual hypergraph

apply glucose
apply the soft

partitioning solver
with the found cut

(b) 50 seconds case

Figure 7: Summary of the solving process for both time limits

Table 6: Number of successfully solved instances for the 500 s case

2014 2015 All
APP HC

of formulas 300 300 300 900
Glucose 85 67 124 276

Soft part. (25, 2, 0) 92 72 131 295
Combined solver 93 70 128 291

20

Table 7: Number of successfully solved instances for the 50 s case

2014 2015 All
APP HC

of formulas 300 300 300 900
Glucose 26 36 59 121

Soft part. (25, 2, 0) 26 45 65 136
Combined solver 29 44 66 139

which is an even more remarkable increase of about 12% in the number of solved formulas. The
combined solver is able to outperform even this, solving about 15% more formulas than the original
solver.

Note that we are not measuring the performance of solvers by their running time, but by the
number of solved instances, where an increase of a few percents is indeed a remarkable improve-
ment. For example, in the HC category of the 2014 SAT Competition, a solver with only 2%
weaker performance than the winning algorithm was already not among the top three solvers, and
a performance difference of 12% already excluded the solver from the top ten places.

Also, we can observe that for both time limits, the soft partitioning solver gave consistently
better results than glucose in all subcategories of the validation set.

Therefore, as a conclusion of the tests, we can deduce that introducing soft partitioning is
indeed a reliable way to further enhance solver performance. The performance improvement
obtained with this method shows a strong dependence on the time available for solving: as the
time limit is reduced, the improvement becomes more significant. Also, the 50 second case shows
that a combined algorithm created from a soft partitioning solver and a regular one can surpass
even the soft partitioning solver in performance.

8 Further analysis

The aim of this section is to present some further insight into the operation of the soft partitioning
solver, including the reasons and limits of its effectivity. Specifically, we investigate how the
solver’s focus changes among the different priority levels along the solution process, the influence of
different activity initialization methods on the solver’s progress, the impact of the used partitioning
method on overall effectiveness, the types of problem instances on which the new approach excels,
and the effect of time limits above 500 seconds.

8.1 Example run

To gain deeper insight into how partitioning and partition-based SAT solving work, we present
detailed information on the operation of the algorithms on the 38bits 10.dimacs.cnf problem
instance of the 2015 SAT Race. This formula has 448 variables and 12,700 clauses, and is known
to be satisfiable. The formula length (total number of literals) is 91,605, so that the LtV ratio is
roughly 204.5.

We apply our program optimized for the 50sec time limit, as presented in Figure 7b. Since the
LtV ratio is greater than 30, the program decides to use the CFPH+FM heuristic for partitioning
the dual hypergraph. The partitioning heuristic finishes in about 1 second and returns a cut with
50 variables. Since the cut is small, the next step is to use the soft partitioning solver with the
variables grouped into three priority levels (level 0: cut variables, levels 1 and 2: the variables in
the two disjoint subformulas that would arise after removing the variables of level 0). The initial
activity of the variables on level 0 is set to 200, on level 1 to 2, and on level 2 to 0.

The solver finds a solution after roughly 31 seconds. It is interesting to analyze how the solver
makes use of the partitioning information it received in the form of the three priority levels during
those 31 seconds. To this end, Figure 8a shows how the decisions of the solver are spread across

21

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

R
at

io
 o

f
d

e
ci

si
o

n
s

Time [s]

Level 0 Level 1 Level 2

(a) Full time range

0

0.2

0.4

0.6

0.8

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

R
at

io
 o

f
d

e
ci

si
o

n
s

Time [s]

Level 0 Level 1 Level 2

(b) First 0.1 sec

Figure 8: Temporal development of the ratio of decisions on the different priority levels

the priority levels, as a metric of how much time the solver spends on each priority level, and how
this changes as time passes. Since the beginning of the plot seems somewhat chaotic, we zoom
in on the first 0.1 second in Figure 8b. (0.1 second might seem like a negligibly short period of
time, but the solver actually makes over 21,000 assignments during that period and in particular,
it makes decisions with far-reaching consequences.)

Based on the two plots, the solution process consists of the following phases:

1. At the very beginning (until about 0.025 sec), the solver mainly focuses on level 0, i.e., the
cut variables. For example,

• The first 89 decisions are made on level 0.

• From the first 200 decisions, 150 are made on level 0.

• After 0.01 second, already 44 of the 50 variables on level 0 are assigned values.

2. Between 0.025 and 1 second, the solver spends most of its time on level 1. Level 2 is hardly
touched, but the solver often jumps back to level 0.

3. Between 1 and 5 seconds, the time share of level 0 further decreases. The solver still spends
most of its time on level 1, but more and more often, the solver goes on to work with level
2.

22

150

170

190

210

230

250

270

290

310

0 5 10 15 20 25 30 35 40

M
ax

 n
r.

 o
f

b
ac

kb
o

n
e

 v
ar

ia
b

le
s

w
it

h
 c

o
rr

e
ct

 v
al

u
e

Time [s]

Partitioning Occurrence-based Random

Figure 9: Comparison of different VSIDS activity initialization methods

4. From 5 seconds onwards, the focus of the solver shifts to level 2. Although the solver spends
less and less time on the other two levels, their time share remains non-negligible.

This analysis reinforces that the solver indeed makes use of the partitioning information: it
first focuses on level 0, then on level 1, and finally on level 2. But since partitioning information is
taken into account only indirectly through the initial activity values of the variables, the pattern is
not so crisp. There are no strict phase boundaries, and in particular, beside the dominant priority
level of each phase, the share of the other priority levels remains non-negligible.

An interesting consequence is that for the above behavior to happen, the formula does not
have to be completely cut into disjoint parts. When most of the cut variables have values, the
ties between the two other priority levels are weak, so that the solver can already start focusing
on one of the emerging subformulas.

8.2 Impact of VSIDS activity initialization

In order to better highlight the effect of the partition-based initialization of activity values, we also
experimented with two other initialization methods (beyond the default initialization of glucose).
In the random method, the activity of each variable is initialized with a random value from the
same interval as used by our soft partitioning method ([0,200]). In the occurrence-based method,
the initial activity of each variable is proportional to the number of its occurrences in the formula,
again taking the numbers from the same interval.

We use again the problem instance of Section 8.1. For the purpose of comparing the effect of the
three activity initialization methods, we wanted to measure the progress that each solver variant
makes with time. Measuring the real progress of a CDCL solver is a non-trivial undertaking.
Here, we used the following methodology: first, we determined the backbone of the SAT instance,
i.e., the set of variables whose values are the same in all solutions [36]. In our case, we found
out through a sequence of solver runs with different assumptions that the formula has a backbone
with 398 variables. Then, we measure the progress by the best solution found so far in terms of
the number of backbone variables having their correct values.

Figure 9 compares the effect of the three activity initialization methods on the sample problem
instance. The figure gives rise to the following findings:

23

Table 8: Number of instances solved within 50 seconds, separated according to which partitioning
heuristic is used

(a) Region where CFPH+FM is used

2014 2015 All
APP HC

Glucose 25 8 11 44
Soft part. 25 17 13 55
Combined 28 17 13 58

(b) Region where hMetis is used

2014 2015 All
APP HC

Glucose 1 28 48 77
Soft part. 1 28 52 81
Combined 1 27 53 81

• The partitioning-based solver variant starts approximately 1 second later than the others.
This is due to the time it takes to partition the formula.

• In the beginning, the partitioning-based solver variant makes steady progress so that, despite
the initial disadvantage, it gets ahead of the occurrence-based solver variant already at about
3 seconds.

• Although its pace decreases, the partition-based solver variant makes still clearly faster
progress than the other solver variants, so that at about 14 seconds, it also passes by the
third solver variant.

• At about 32 seconds (1 second for partitioning plus 31 seconds for solving), the partition-
based solver finds a solution. The other two solver variants are lagging behind. (The plot
does not show it, but the other solver variants finish at around 136 and 142 seconds.)

To sum up our findings: for the partition-based method, initialization takes longer and thus
the actual solving starts later, but the initial disadvantage is compensated by faster progress in
the solving phase, which in the end leads to finding the solution significantly faster than with the
two other methods.

8.3 Impact of the partitioning heuristic

As shown in Section 7, the soft partitioning solver achieves a significant overall improvement over
glucose. In the partitioning phase, sometimes the CFPH+FM heuristic, sometimes hMetis is
used, as decided automatically based on the characteristics of the formula. Therefore, it is not
clear how much the two heuristics contribute each to the overall success of the approach.

In order to clarify this, Table 8 shows the data of Table 7 separated according to the partitioning
heuristic used. From this, we can draw multiple conclusions: (i) both partitioning heuristics
contribute positively to the success of the proposed method, (ii) hMetis is used more often than
CFPH+FM, (iii) the contribution of CFPH+FM to the overall improvement over glucose is
higher than that of hMetis.

8.4 Impact of the problem instance

It is also interesting to analyze whether the improvement of the presented method over glucose

arises only on a special family of problem instances. To this end, Table 9 lists the problem instances
of the validation set that the soft partitioning technique managed to solve within 50 seconds but
glucose did not, along with their number of variables and clauses. Table 10 shows a similar list
for a time limit of 500 seconds.

As can be seen, both lists are quite heterogeneous, containing instances from the application
and hard combinatorial categories from 2014 and the 2015 competition, several different types
of applications / constructions, and spanning several orders of magnitudes in their sizes. This
suggests that the advantage of soft partitioning over glucose is not only due to a specific family
of instances, but is rather a more general phenomenon.

24

Table 9: Problem instances of the validation set solved by the soft partitioning solver that were
not solved by glucose (time limit: 50 seconds)

Benchmark #Vars #Clauses

2014/application/9vliw m 9stages iq3 C1 bug8.cnf 521,179 13,378,580
2014/application/E02F20.cnf 10,420 393,557
2014/application/openstacks-p30 3.085-SAT.cnf 324,116 1,376,650
2014/application/openstacks-sequencedstrips-nonadl-
nonnegated-os-sequencedstrips-p30 3.085-SAT.cnf

324,116 1,376,650

2014/hard combinatorial/jkkk-one-one-10-34-sat.cnf 11,607 65,748
2014/hard combinatorial/ndist.b.20499.cnf 266,479 368,961
2014/hard combinatorial/ndist.b.20998.cnf 272,966 377,943
2014/hard combinatorial/ndist.b.22495.cnf 292,427 404,889
2014/hard combinatorial/ndist.b.22994.cnf 298,914 413,871
2014/hard combinatorial/ndist.b.23992.cnf 311,888 431,835
2014/hard combinatorial/ndist.b.24491.cnf 318,375 440,817
2014/hard combinatorial/ndist.b.25489.cnf 331,349 458,781
2014/hard combinatorial/ndist.b.26487.cnf 344,323 476,745
2014/hard combinatorial/ndist.b.27485.cnf 357,297 494,709
2014/hard combinatorial/ndist.b.29481.cnf 383,245 530,637
2015/main/42bits 12.dimacs.cnf 538 14,509
2015/main/E02F20.cnf 10,420 393,557
2015/main/gss-18-s100.cnf 31,364 93,785
2015/main/manthey DimacsSorterHalf 29 8.cnf 4,495 14,793
2015/main/manthey DimacsSorter 28 7.cnf 3,507 11,386
2015/main/manthey DimacsSorter 31 0.cnf 4,358 14,320
2015/main/manthey single-ordered-initialized-w48-b8.cnf 11,520 87,592
2015/main/manthey single-ordered-initialized-w54-b9.cnf 16,281 126,603
2015/main/mrpp 4x4 12 12.cnf 2,672 14,307
2015/main/mrpp 8x8 24 11.cnf 9,854 70,443
2015/main/openstacks-p30 3.085-SAT.cnf 324,116 1,376,650

25

Table 10: Problem instances of the validation set solved by the soft partitioning solver that were
not solved by glucose (time limit: 500 seconds)

Benchmark #Vars #Clauses

2014/application/002-80-8.cnf 13,408 308,225
2014/application/UCG-15-10p0.cnf 199,304 743,886
2014/application/aaai10-planning-ipc5-pathways-17-step21.cnf 53,919 304,454
2014/application/atco enc1 opt1 04 32.cnf 57,220 550,700
2014/application/beempgsol2b1.cnf 26,455 76,531
2014/application/gss-18-s100.cnf 31,364 93,785
2014/application/hwmcc10-timeframe-expansion-k45-
pdtpmsgoodbakery-tseitin.cnf

98,935 296,401

2014/application/korf-17.cnf 6,664 89,966
2014/application/openstacks-p30 3.085-SAT.cnf 324,116 1,376,650
2014/application/openstacks-sequencedstrips-nonadl-
nonnegated-os-sequencedstrips-p30 3.085-SAT.cnf

324,116 1,376,650

2014/application/smtlib-qfbv-aigs-lfsr 004 127 112-tseitin.cnf 350,506 874,435
2014/application/vmpc 29.cnf 841 120,147
2014/hard combinatorial/Hidoku enu 7.cnf 4,711 22,674
2014/hard combinatorial/ccp-s9-facto1.cnf 234 3,510
2014/hard combinatorial/jkkk-random-132906006148277-10-
10-34-SUM-sat.cnf

39,677 203,349

2014/hard combinatorial/jkkk-random-132906006427000-10-
10-35-OR-sat.cnf

41,391 192,150

2014/hard combinatorial/jkkk-random-132906006493326-10-
10-35-OR-sat.cnf

41,366 191,911

2014/hard combinatorial/rook-40-0-1.cnf 67,117 257,392
2014/hard combinatorial/rook-48-0-1.cnf 115,101 444,424
2014/hard combinatorial/sgen4-sat-160-8.cnf 160 384
2014/hard combinatorial/toughsat factoring 426s.cnf 2,009 10,395
2015/main/002-80-8.cnf 13,408 308,225
2015/main/48bits 13.dimacs.cnf 688 18,146
2015/main/6s167-opt.cnf 4,640 13,077
2015/main/aes 64 1 keyfind 1.cnf 596 2,376
2015/main/atco enc1 opt1 04 32.cnf 57,220 550,700
2015/main/jgiraldezlevy.2200.9086.08.40.22.cnf 2,200 9,086
2015/main/jgiraldezlevy.2200.9086.08.40.81.cnf 2,200 9,086
2015/main/jgiraldezlevy.2200.9086.08.40.85.cnf 2,200 9,086
2015/main/manthey DimacsSorterHalf 31 2.cnf 5,408 18,446
2015/main/manthey DimacsSorterHalf 36 0.cnf 4,551 14,683
2015/main/openstacks-p30 3.085-SAT.cnf 324,116 1,376,650
2015/main/vmpc 29.cnf 841 120,147

26

Table 11: Number of instances solved, from the instances of 2013, for different time limits

(a) 1000 sec

APP HC All
Glucose 142 130 272

Soft part. 147 131 278

(b) 2000 sec

APP HC All
Glucose 169 164 333

Soft part. 161 166 327

8.5 Higher time limits

As already mentioned, the suggested method excels for relatively short time limits like 50 seconds,
and its effect is less pronounced for higher time limits like 500 seconds. Nevertheless, it can be
interesting to check what happens for even higher time limits.

Table 11 shows the results of some experiments with higher time limits. As can be seen, for
a time limit of 1000 seconds, the soft partitioning solver has some slight advantage over glucose

for both application and hard combinatorial instances. For 2000 seconds, the small advantage
on hard combinatorial instances can still be observed, but on application instances, glucose has
become better.

9 Conclusion

In the paper, we examined the concept of solving SAT problems through dividing the input formula
into two smaller parts. Our aim was to investigate how such an approach can be best implemented
in the context of modern SAT solvers.

We investigated different models for reducing the problem to hypergraph partitioning, and
compared multiple methods to find a small balanced cut in a hypergraph. We examined previously
developed high-performance partitioning algorithms (FM, MLFM) and their appropriateness for
this application. For hypergraphs where hyperedge size is beyond the reach of these methods,
we developed the CFPH algorithm. We also showed that the domains where these algorithms
outperform each other can be roughly characterized by some simple features of the hypergraph,
allowing us to develop an effective heuristic that combines these approaches to always choose the
most promising partitioning method.

We presented two different techniques (hard partitioning and soft partitioning) to implement
partitioning-based formula solving in a CDCL SAT solver. Both approaches necessitate only
modest changes within the SAT solver. We introduced these modifications into a state-of-the-
art SAT solver, and evaluated the performance of the resulting algorithms on a wide variety of
formulas obtained from the SAT competitions of recent years. One of the two techniques, the soft
partitioning solver turned out to be a very successful approach that yields a notably better success
rate than the original solver if the time available for solving is relatively small. Also, for the case of
small time limit, we managed to merge the original and the soft partitioning solver in a combined
algorithm that gives even better results than the soft partitioning solver. On the other hand, we
found that the partitioning approach does not yield a significant performance increase for large
time limits. Since the time available for the solvers in SAT competitions is usually in a larger
magnitude, this may explain why partitioning-based techniques are rarely applied in SAT solvers
optimized for the competitions. On the other hand, there are a number of real-world use cases
where SAT solvers must work with much lower time limits, e.g. in the context of rapid design space
exploration [47] or interactive verification tools [13]. In such cases, a well-tuned partitioning-based
approach can yield substantial benefits.

There are various opportunities for further improvement. The most important open question is
whether further changes to the solver or to the approach can allow us to significantly outperform
the original solver for larger time limits, too. One such possibility is to experiment with techniques
that partition the formula into more than two parts, either by an algorithm designed for this

27

purpose (for example, for the minimum multicut or the minimum multiway cut problem [38,
Chapter 5]) or by applying the presented partitioning methods recursively. Also, developing
more sophisticated partitioning algorithms or further partitioning models might allow us to split
the formula even earlier in the solution process. Another question worth investigating is whether
further refining the underlying SAT solver to our setting of partitioning, for example, by prohibiting
learned clauses to connect the two subformulas, has notable positive effect on the performance of
partitioning-based solvers.

Acknowledgments

The work of Z. Á. Mann was partially supported by the Hungarian Scientific Research Fund (Grant
Nr. OTKA 108947).

References

[1] Eyal Amir and Sheila McIlraith. Partition-based logical reasoning for first-order and propo-
sitional theories. Artificial Intelligence, 162(1):49–88, 2005.

[2] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The community structure of SAT
formulas. In International Conference on Theory and Applications of Satisfiability Testing
(SAT 2012), pages 410–423, 2012.

[3] Carlos Ansótegui and Jordi Levy. On the modularity of industrial SAT instances. In 14th
International Conference of the Catalan Association for Artificial Intelligence, pages 11–20,
2011.

[4] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In 21st International Joint Conference on Artificial Intelligence, volume 9, pages 399–404,
2009.

[5] Gilles Audemard and Laurent Simon. Refining restarts strategies for SAT and UNSAT. In
Principles and Practice of Constraint Programming – Proceedings of CP 2012, pages 118–126.
Springer, 2012.

[6] Adrian Balint, Anton Belov, Daniel Diepold, Simon Gerber, Matti Järvisalo, and Carsten
Sinz, editors. Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions, vol-
ume B-2012-2. University of Helsinki, 2012. Department of Computer Science Series of Pub-
lications B.

[7] Adrian Balint, Anton Belov, Marijn J.H. Heule, and Matti Järvisalo, editors. Proceedings of
SAT Competition 2013: Solver and Benchmark Descriptions, volume B-2013-1. University of
Helsinki, 2013. Department of Computer Science Series of Publications B.

[8] Tomás Balyo, Markus Iser, and Carsten Sinz. SAT Race 2015. Available at: http://baldur.
iti.kit.edu/sat-race-2015/sr15.pdf.

[9] Roberto J. Bayardo Jr. and Joseph Daniel Pehoushek. Counting models using connected
components. In Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-
00), pages 157–162, 2000.

[10] Anton Belov, Daniel Diepold, Marijn J.H. Heule, and Matti Järvisalo, editors. Proceedings
of SAT Competition 2014: Solver and Benchmark Descriptions, volume B-2014-2. University
of Helsinki, 2014. Department of Computer Science Series of Publications B.

[11] Armin Biere and Carsten Sinz. Decomposing SAT problems into connected components.
Journal on Satisfiability, Boolean Modeling and Computation, 2:201–208, 2006.

28

[12] Per Bjesse, James Kukula, Robert Damiano, Ted Stanion, and Yunshan Zhu. Guiding SAT
diagnosis with tree decompositions. In Theory and Applications of Satisfiability Testing –
Selected Revised Papers of SAT 2003, pages 315–329. Springer, 2004.

[13] Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding bugs in an Alpha microprocessor
using satisfiability solvers. In Proceedings of the 13th International Conference on Computer
Aided Verification (CAV 2001), pages 454–464, 2001.

[14] Max Böhm and Ewald Speckenmeyer. A fast parallel SAT-solver – efficient workload balanc-
ing. Annals of Mathematics and Artificial Intelligence, 17(2):381–400, 1996.

[15] Andrew E. Caldwell, Andrew B. Kahng, and Igor L. Markov. Design and implementation
of the Fiduccia-Mattheyses heuristic for VLSI netlist partitioning. In Algorithm Engineering
and Experimentation – Selected Papers of ALENEX’99, pages 182–198. Springer, 1999.

[16] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community structure in
very large networks. Physical Review E, 70(6):066111, 2004.

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, 3rd edition, 2009.

[18] Ali Dasdan and Cevdet Aykanat. Two novel multiway circuit partitioning algorithms using
relaxed locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 16(2):169–178, 1997.

[19] Vijay Durairaj and Priyank Kalla. Exploiting hypergraph partitioning for efficient Boolean
satisfiability. In Proceedings of the 9th IEEE International High-Level Design Validation and
Test Workshop, pages 141–146. IEEE, 2004.

[20] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory and Applications of
Satisfiability Testing – Selected Revised Papers of SAT 2003, pages 502–518. Springer, 2004.

[21] Charles M. Fiduccia and Robert M. Mattheyses. A linear-time heuristic for improving network
partitions. In Proceedings of the 19th Design Automation Conference, pages 175–181. IEEE,
1982.

[22] Martin Fürer and Shiva Prasad Kasiviswanathan. Exact MAX 2-SAT: Easier and faster. In
SOFSEM 2007: Theory and Practice of Computer Science – Proceedings of the 33rd Confer-
ence on Current Trends in Theory and Practice of Computer Science, pages 272–283. Springer,
2007.

[23] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability solvers. In
Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge
Representation, pages 89–134. Elsevier, 2008.

[24] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence, 126(1):43–62,
2001.

[25] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algorithms for the satisfia-
bility (SAT) problem: A survey. In Ding-Zhu Du and Panos M. Pardalos, editors, Handbook
of Combinatorial Optimization, pages 379–572. Springer, 1999.

[26] Marijn Heule and Oliver Kullmann. Decomposing clause-sets: Integrating DLL algorithms,
tree decompositions and hypergraph cuts for variable- and clause-based graph representations
of CNFs. Technical report, University of Wales Swansea, 2006. CSR 2-2006.

[27] Marijn J.H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer:
Guiding CDCL SAT solvers by lookaheads. In Hardware and Software: Verification and
Testing, pages 50–65. Springer, 2011.

29

[28] Achim G. Hoffmann. The dynamic locking heuristic – a new graph partitioning algorithm.
In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’94),
volume 1, pages 173–176. IEEE, 1994.

[29] Jinbo Huang and Adnan Darwiche. A structure-based variable ordering heuristic for SAT. In
Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03),
volume 3, pages 1167–1172, 2003.

[30] Ruoyun Huang, Yixin Chen, and Weixiong Zhang. SAS+ planning as satisfiability. Journal
of Artificial Intelligence Research, 43(1):293–328, 2012.

[31] Robert G. Jeroslow and Jinchang Wang. Solving propositional satisfiability problems. Annals
of Mathematics and Artificial Intelligence, 1:167–187, 1990.

[32] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph
partitioning: applications in VLSI domain. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 7(1):69–79, 1999.

[33] George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. VLSI Design,
11(3):285–300, 2000.

[34] George Katsirelos and Laurent Simon. Eigenvector centrality in industrial SAT instances. In
Principles and Practice of Constraint Programming, pages 348–356, 2012.

[35] Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49(2):291–307, 1970.

[36] Philip Kilby, John Slaney, Sylvie Thiebaux, and Toby Walsh. Backbones and backdoors
in satisfiability. In Proceedings of the 20th National Conference on Artificial Intelligence
(AAAI’05), pages 1368–1373, 2005.

[37] Wei Li and Peter Van Beek. Guiding real-world SAT solving with dynamic hypergraph
separator decomposition. In 16th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2004), pages 542–548. IEEE, 2004.

[38] Zoltán Ádám Mann. Optimization in computer engineering–Theory and applications. Scien-
tific Research Publishing, Inc. USA, 2011.

[39] Zoltán Ádám Mann. Typical-case complexity and the SAT competitions. In Proceedings
of the 5th Pragmatics of SAT Workshop (POS-14), volume 27 of EasyChair Proceedings in
Computing, pages 72–87, 2014.

[40] Zoltán Ádám Mann, András Orbán, and Viktor Farkas. Evaluating the Kernighan-Lin heuris-
tic for hardware/software partitioning. International Journal of Applied Mathematics and
Computer Science, 17(2):249–267, 2007.

[41] Zoltán Ádám Mann and Pál András Papp. Formula partitioning revisited. In Proceedings
of the 5th Pragmatics of SAT Workshop (POS-14), volume 27, pages 41–56. EasyChair Pro-
ceedings in Computing, 2014.

[42] Ruben Martins, Vasco Manquinho, and Inês Lynce. An overview of parallel SAT solving.
Constraints, 17(3):304–347, 2012.

[43] Anthony Monnet and Roger Villemaire. Scalable formula decomposition for propositional
satisfiability. In Proceedings of the Third C* Conference on Computer Science and Software
Engineering, pages 43–52. ACM, 2010.

[44] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Ma-
lik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Annual Design
Automation Conference, pages 530–535. ACM, 2001.

30

[45] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Laurent Simon.
Impact of community structure on SAT solver performance. In International Conference on
Theory and Applications of Satisfiability Testing (SAT 2014), pages 252–268, 2014.

[46] Tai Joon Park and Allen Van Gelder. Partitioning methods for satisfiability testing on large
formulas. In Automated Deduction – Cade-13, pages 748–762. Springer, 1996.

[47] Thomas Schlichter, Martin Lukasiewycz, Christian Haubelt, and Jurgen Teich. Improving
system level design space exploration by incorporating SAT-solvers into multi-objective evo-
lutionary algorithms. In IEEE Computer Society Annual Symposium on Emerging VLSI
Technologies and Architectures, pages 309–316, 2006.

[48] Ohad Shacham and Emmanuel Zarpas. Tuning the VSIDS decision heuristic for bounded
model checking. In Proceedings of the 4th International Workshop on Microprocessor Test
and Verification: Common Challenges and Solutions, pages 75–79. IEEE, 2003.

[49] Daniel Singer and Anthony Monnet. JaCk-SAT: A new parallel scheme to solve the satisfiabil-
ity problem (SAT) based on join-and-check. In Parallel Processing and Applied Mathematics
– Revised Selected Papers of PPAM 2007, pages 249–258. Springer, 2008.

[50] Jose Torres-Jimenez, Luis Vega-Garcia, Cesar A. Coutino-Gomez, and Francisco J. Cartujano-
Escobar. SSTP: An approach to solve SAT instances through partition. In 4th WSEAS
International Conference on Information Science, Communications and Applications (ISA
2004), pages 484–403, 2004.

[51] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research, pages 565–606, 2008.

31

