Tracing system-level communication in
object-oriented distributed systems

Zoltan Adam Mann
Budapest University of Technology and Economics
Department of Control Engineering and Information Technology
H-1117 Budapest, Magyar tudésok kéritja 2, Hungary
zoltan.mann@cs.bme.hu

This paper won first prize at the 2001 IEEE Hungary Section Student Paper Contest.

Abstract— Standard tracing mechanisms were usually de-
veloped for use in a single-computer environment. More-
over, they are bound to a specific programming language.
Today’s highly distributed and heterogeneous computing en-
vironments require new tracing methodologies. In this pa-
per, the author collects the requirements that a tracing ar-
chitecture is supposed to fulfill, and investigates how such a
tracing architecture may be implemented in a distributed,
heterogeneous and object-oriented environment. As a prac-
tical contribution, a system for tracing CORBA applications
is presented, based on the interceptor mechanism.

I. INTRODUCTION

As computers are more and more interconnected, the
target of software development also becomes a distributed,
heterogeneous system, rather than a single computer. As
a result, new techniques, methodologies and tools are re-
quired to facilitate the development of distributed soft-
ware. Also, as components of different platform, archi-
tecture and programming language are interconnected, in-
tegration becomes a major challenge. Since the object-
oriented paradigm has provided a very good integration
scheme, object-oriented distributed systems enjoy great
prosperity. This is why the paper focuses on the trac-
ing of object-oriented distributed systems and particularly
on CORBA (Common Object Request Broker Architec-
ture [1]), being the most widely used middleware system.
(For tracing of other middleware systems, see e.g. [2], [3],
4],

Besides these—rather technical-—arguments, there are
also some other factors to consider. The first is the wide
spread of e-business, bringing along a boom for CORBA
and similar middleware technologies as well. Another, not
so widely recognized, but equally important point is the
presence of embedded distributed systems. The idea of us-
ing standard middleware solutions in embedded environ-
ments is gaining popularity. Just consider the various in-
telligent electronic units that can be found on an airplane:
a complex distributed system, where the individual com-
ponents may communicate and co-operate using CORBA.
Obviously, tracing is a vital and complicated task in such
an environment.

A third issue is the ever-growing competition on the mar-
ket. Software development companies are supposed to cre-
ate complex and reliable distributed systems. Parallel to

these requirements, the time-to-market pressure also keeps
growing. This, too, results in the need for methods and
tools to make distributed software development an easier
and quicker task.

This paper addresses the problem of tracing distributed
systems in the following way. First in section II, an
overview is given about tracing in general and then (in
section IIT) more specifically, tracing in a distributed en-
vironment. This is followed by a discussion on the role of
the middleware in section III-D. As a concrete example,
CORBA interceptors are investigated as a possible mean
for tracing in section IV. Sections V and VI present devel-
opment details and an analysis of interceptor-based tracing.
Section VII concludes the paper.

II. TRACING IN GENERAL

Since the term ’tracing’ is rather overloaded (especially
in the context of computer science), its meaning has to be
clarified first (section II-A). Moreover, tracing is often used
as a synonym for debugging. However, tracing is a lot more
than that: section II-B presents other important aims of
tracing. Section II-C covers the basics of standard tracing
mechanisms.

A. The definition of tracing

As with every definition (especially those that try to de-

fine a term that has already been widely used in many
different contexts), it is hard to find a perfect definition
that is flexible enough to include all possible uses, and at
the same time specific enough. The following definition is
probably not perfect either, but it will do for the rest of
this paper.
DEFINITION: Tracing is a step-by-step execution of a pro-
gram or software system, conducted in order to gain extra
information—i.e. information that is not part of the out-
put in a normal execution—or insight on how the program
or software system works.

Note that it is not specified what a step in ’step-by-step
execution’ is. This is by intent so in order to make the def-
inition scalable: steps may be very low-level (e.g. machine
code instructions) but may also be high-level (e.g. commu-
nication events or messages in a distributed application).

B. Aims of tracing

As already mentioned, debugging is not the only purpose
of tracing. Indeed, as a part of this work, the following pos-
sible use cases of tracing have been identified in discussions
with programmers and software engineers:

1. Checking of correct behaviour. This is the most
obvious usage: the programmer simply wants to make sure
that the software does what it is supposed to do. Therefore,
he or she runs the program step by step and looks at its
output and inner state.

2. Locating bugs. If the software does not do what it is
supposed to do, then again, tracing can help in identifying
the nature of the error and in finding it.

3. Monitoring crucial applications. Even if the sys-
tem seems to do correctly what it is supposed to, this will
just not be enough in mission-critical applications. For in-
stance, a power plant regulating software will have to be
monitored constantly.

4. Better understanding of how the system works.
Running the software step by step can also serve demon-
stration purposes and thus be used in e.g. university lec-
tures or other courses. Also, if a programmer, developing
a new module for a complex software, would like to obtain
a large picture of how the system works (e.g. how exist-
ing modules co-operate and communicate), they can use
tracing.

5. Extracting documentation. There are already tools
that can extract static documentation from the source code
of the software. On the other hand, tracing could be used
to extract dynamic documentation, e.g. a communication
diagram, while the system is running.

6. Performance analysis (also known as profiling). In
this case, it can usually be assumed that the software be-
haves correctly, but slowly. Therefore, the programmer—or
a performance specialist—runs the system and at the same
time measures the elapsed time in certain functions of the
program. Typically, the goal is not a precise measurement
but rather to identify bottlenecks.

As shown later, all these aims can—and should—be pro-
vided for with essentially the same tracing architecture.
Also, the usability of a tracing tool should be measured on
how well it fulfills these requirements.

However, it has to be noted that the above requirements
need slightly different usage of the underlying tracing ar-
chitecture. Therefore, a tracing tool should support several
modes of operation. For example, the first four use cases
require some on-line user interaction, while the last two do
not. It follows that tracing tools should provide at least
an interactive and a non-interactive mode. Of course other
distinctions are also possible.

C. Typical solutions

Tracing facilities are usually provided by programming
environments and are bound to a particular programming
language. This is quite natural because the programming
language is exactly the level of abstraction that serves for
the interaction of the programmer with the computer. So
tracing, too, is best performed at that level.

Usually the compiler will add extra information (’de-
bug information’) to the machine-level code so that tracing
steps correspond to instructions of the source code and not
to machine-level instructions. When debugging is on, an
interrupt will usually be called at these instruction bound-
aries, resulting in a step-by-step execution of the program.

Also, debuggers typically offer more sophisticated fea-
tures as well (such as Run to cursor, Breakpoints, Condi-
tional breakpoints etc.) and the whole debugging-profiling-
tracing functionality is available through a special user in-
terface, which is usually integrated into the programming
environment.

III. TRACING IN A DISTRIBUTED ENVIRONMENT
A. Difficulties in o distributed environment

As is often the case, the distributedness of the system
can cause several problems.

First of all, the place where trace information is created
and the place where it is needed are probably not the same.
Therefore, the following processes must be arranged sepa-
rately, but not independently:

« Extraction of trace information

o Transport of trace information

¢ Processing and combining trace information

«+ Displaying trace information

This may also cause certain anomalies. For example, since
the communication delays in the distributed system may
vary over space and time, it is possible that the information
that object B obtained a message from object A, becomes
available earlier than the information that object A sent a
message to object B.

It is also possible that some components of the dis-
tributed system stop working correctly or stop working at
all. Transitional network failures can also cause some trace
information, that is just on its way, to be lost.

Time and time-related (such as performance) measure-
ments are made extremely difficult by the usual lack of a
global clock.

If the system is not only distributed but also hetero-
geneous, this poses an even bigger challenge. Namely, as
explained in the previous section, traditional tracing tools
are usually bound to a particular programming language.
If the components of the system are implemented in differ-
ent programming languages, this becomes infeasible.

B. Solution framework

In this, work, the following framework was used for trac-
ing distributed systems (see figure 1):
e In every component of the distributed system, a new
process is installed which gathers trace information. More
specifically, it intercepts incoming and outgoing calls.
o There is an additional component which is responsible for
collecting trace information from the other components, as
well as for displaying it appropriately (denoted as tracer).
o Collecting trace information may either be implemented
in a push or in a pull model. In any case, communication
may either be arranged using the common channels of the
distributed system or through dedicated channels.

Conmponent A

+ gathering
trace info

tracer

Conponent B

+ gathering
trace info

Net wor k

Conponent C
+ gat hering
trace info

Fig. 1.

The distributed tracing model

From a software engineering point of view, it is vital
to have a central tracer component. It encapsulates all
details concerning the tracing mode, the level of verbosity,
the output format, output device specific information etc.
Otherwise (that is, if trace information were also output in
a distributed way) the output of trace information could
easily become inconsistent.

Another vital aspect is the scope of tracing: it is logical
to lay emphasis on large-scale communication. The rea-
son is that standard tracing techniques may be used very
well to trace execution inside a component. For that, it
is still the particular programming language that was used
to implement the component in question, that can pro-
vide the best tracing facility. The real challenge in tracing
distributed applications is to trace the communication be-
tween the components.

C. Instrumentation

One of the key issues in building a tracing system such
as the one depicted in figure 1 is, how to gather trace infor-
mation. The process of adding this new feature to existing
code is called instrumentation.

The most widely used solution is manual instrumenta-
tion. This means that the programmer has to add extra
pieces of code in order to notify the tracer about what is
going on. Typically, the tracer provides some functions for
this. So the programmer will call these functions at every
point in the software that is potentially critical. Usually
this means that the tracer needs to be notified just be-
fore and just after every function call of the original code,
and/or at the beginning and end of each function. The no-
tification should include information such as the initiator
and the target of the call, parameters, return value etc.,
since this information is an important part of the tracer
output.

Assume, for instance, that the original code contains the
following call:
result=server->do("Joe",42);

After instrumentation, the code becomes something like
this:
tracer->before(this,server,"do","Joe",42);

result=server->do("Joe",42);
tracer->after(this,server,"do","Joe",42,result) ;

As can be seen, manual instrumentation is tedious and
error-prone. Moreover, it is necessary for manual instru-
mentation to possess the source code. Therefore, the goal
is automatic instrumentation, meaning that the program-
mer’s extra work should be minimized (ideally eliminated).
In the next sections it is explored how this can be supported
by the middleware.

D. The role of the middleware

As already mentioned, traditional tracing solutions are
specific to particular programming languages, because the
programming language is the very level of abstraction on
which the programmer handles the computer, and so it is
the programming environment itself that can provide the
best tracing facilities.

When moving on to distributed systems, an additional,
higher level of abstraction appears, namely that of system-
level communication, supported by the middleware. (In
some cases, this also results in the appearance of a higher-
level language, e.g. Interface Definition Language (IDL)
in the case of CORBA.) The same way that specific pro-
gramming environments can provide the best traditional
tracing solutions, it is the middleware itself that may—and
should—provide the best solutions for system-level tracing.

(If the whole distributed system is developed in a sin-
gle programming environment, then this environment will
be capable of providing tracing solutions for multiple ab-
stracion levels, not only for system-level communication.
An example for such a system is GRADE [5]. However,
this kind of distributed software development is not typi-
cal, largely because middleware systems have to be able to
integrate legacy applications as well.)

Moreover, the problems of distributed tracing (men-
tioned in section III-A) are typical tasks of the middle-
ware. So it is again the middleware itself that can provide
the best support for message delivery, time stamping, event
handling etc.

In the next section, this idea is illustrated on the exam-
ple of CORBA: a mechanism is presented that can be used
to provide automatic instrumentation for CORBA applica-
tions and thus achieving tracing of system-level communi-
cation.

IV. CORBA INTERCEPTORS

Interceptors are objects implementing the Interceptor
interface [6]. There are two kinds of interceptors: Server-
RequestInterceptors and ClientRequestInterceptors.
Both interfaces define callback methods that are invoked
by the Object Request Broker (ORB) at specific points of
a CORBA call. See figure 2 for the flow of control.

Both kinds of interceptors must be registered with the
ORB. That is, the interceptors are registered with a lo-
cal ORB object, in a specific name space. After that, the
ServerRequestInterceptor will intercept all incoming re-
quests and outgoing replies, whereas the ClientRequest-
Interceptor will intercept all outgoing requests and in-
coming replies.

Client Server
Request Request
Client Interceptor Stub Skeleton Interceptor Servant
methodX ()
send_request()
reveive_request()
oo
methodX ()
N PR
send_reply()
receive reply()
,,,,,,,,,,,, >

Client i Server

Fig. 2. Interception points during a CORBA call

The interceptors obtain information concerning the cur-
rent call in a RequestInfoobject. This includes a reference
to the target of the call, the name of the invoked oper-
ation, the list of parameters, the return value (if already
available), a—possibly empty—list of thrown exceptions,
and a list of so-called service contexts. Service contexts
can be used for out-of-band communication between inter-
ceptors in different components: an interceptor may add
extra information to a service context, which can in turn
be accessed later by another interceptor.

Interceptors may also alter some of the information con-
tained in the RequestInfo object. For instance, an inter-
ceptor might change the target of the call. This way, load
balancing or fault tolerance schemes may be integrated into
an existing application, without modifying its actual source
code. Also, interceptors can be used for security purposes,
e.g. for transparent authentication. These are probably the
goals that interceptors were actually developed for.

Interceptors were first defined in CORBA 2.3 [1]. How-
ever, this 9-page definition was quite under-specified. (For
a comparison: the current draft interceptor specification
consists of 254 pages [7].) This resulted in a number of
proprietary solutions from different vendors. The problem
was recognized by the OMG, which issued a Request For
Proposals [8] in September 1998. After some iterations of
proposals and discussions, the leading vendors of the field
came to an agreement, and handed in their Joint Submis-
sion in December 1999 [9]. The architecture described in
this submission seems to be the de facto standard since
then. It has also been incorporated into the CORBA 3.0
draft.

Since the Joint Submission is available, vendors are work-
ing on their interceptor implementation in order to make
it conform with the specification. The ORB used in this
work, TAO [10], was one of the first to introduce support
for interceptors; however, also in a proprietary way. TAO
version 1.1, which is at the time of writing still the latest
commercially supported version of TAO, reflects that pro-
prietary mechanism. On the other hand, there have been
a number of changes of TAO since then, bringing also its

interceptor support closer to the specification. At the time
of writing, the latest version is 1.1.14.

V. AN INTERCEPTOR-BASED TRACING ARCHITECTURE

From the above it should be clear that although inter-
ceptors were not designed specifically for tracing purposes,
they can indeed be used to trace CORBA applications. For
this, only a subset of their functionality is needed, namely
that they are informed of every CORBA call.

In order to trace every call, a ServerRequest-
Interceptor and a ClientRequestInterceptor must be
registered in every component. Each interceptor sends the
trace information to the central tracer object through
the usual communication channels of the system, i.e. using
CORBA calls. In other words, the tracer has to be im-
plemented as a CORBA servant, its notification methods
defined in IDL.

This way, every remote procedure call (RPC) generates
four events: (i) when the client issues a request; (ii) when
the request reaches the server; (iii) when the server sends its
reply; and (iv) when the reply arrives back at the client. If
needed, all this information may be displayed. On the other
hand, the user interface of the tracer may be configured
so that, say, only one event is shown for each RPC. Since
this is controlled centrally, the consistency of the output is
guaranteed.

Since emphasis is laid on tracing high-level communi-
cation between components of the distributed system, the
components involved in a particular RPC have to be iden-
tified. In order to achieve this, every component regis-
ters itself at the tracer, whereupon it gets an unique ID.
Later on, when a call is issued from this component, the re-
quest is intercepted by the corresponding ClientRequest-
Interceptor, which in turn packs the ID of the compo-
nent into a service context and adds it to the call. When
the request arrives at the server side, and is intercepted
by the ServerRequestInterceptor, the ID of the caller is
extracted. At this point the ServerRequestInterceptor
knows enough (namely the ID of the caller and its own ID,
which is now the ID of the callee) to inform the tracer
about the call. The first two events can be generated.
Similarly, at the third event, i.e. when the ServerRequest-
Interceptor intercepts the outgoing reply, it adds its own
ID in a service context to the call, so that this information
is also known at the fourth event.

Communication events are also identified using IDs, so
that the tracer can recognize events belonging to the same
RPC. Therefore, when the tracer is first notified of an
RPC (i.e. when the first two events are fired), it generates
and returns an unique communication ID. This ID is then
also added to the call in a service context and included in
later notifications to the tracer (when the third and fourth
events are fired). It is then the tracer’s responsibility to
group the events belonging to the same RPC and handle
them appropriately, e.g. by sorting them using the CORBA
Time Service.

When interceptors themselves issue calls, care must be
taken to avoid infinite loops. Namely, the interceptor will
also intercept the calls it issued itself, and if it makes a

call again, this results in an infinite recursion. To avoid
this, the interceptors must check whether the target of the
intercepted call is the tracer, and if it is, they should do
nothing.

What exactly the tracer will display, depends on the
mode it is used in. It has already been stated that the
tracer must have at least two working modes: interac-
tive and non-interactive mode. In interactive mode, the
tracer waits for user input inside the notification methods,
thus blocking the whole system; in non-interactive mode
the trace information is just displayed and the notification
methods return immediately. Either way, the trace infor-
mation can be directed to the display or to a file (textual
or as a communication diagram in PostScript format). The
output is configurable, e.g. it can be specified whether to
display all events or just certain kinds of events, if time-
stamps should also be displayed or not etc. Another mode
of operation (the so-called local mode) is presented in sec-
tion VI, which is useful for performance measurements.

Lastly, let us examine to what extent instrumentation
can be automated. Since the used version of TAO did
not yet support the standard registration mechanism of in-
terceptors, they had to be registered manually, both with
the ORB and the tracer. For this purpose, a new class
(InterceptorLauncher) was created, which encapsulates
in its constructor the details of the registration mechanism.
So there is a single line of code that has to be inserted into
the source code of every component (at the startup code of
the component, before the first CORBA call that the com-
ponent is involved in), creating an InterceptorLauncher
object, which in turn automatically creates and registers
the necessary interceptors, and stores the ID obtained from
the tracer. Also, a name can be specified as an argument
to the constructor of InterceptorLauncher, which will be
used by the tracer when displaying events related to the
component in question.

After this initialization, all tracing is done automatically;
no manual instrumentation is necessary. Only the insertion
of one line of code is needed for each component. But this,
too, can be a problem, especially if the source code is not
available. The standard registration mechanism of inter-
ceptors, as defined by the Joint Submission, will probably
remedy this problem. Until this gets integrated into TAQ,
a slightly modified version of the TAO dynamic link library
was developed, which automatically loads the interceptors.
Using this library instead of the normal one, no code mod-
ifications are needed, not even a re-compile or a re-link.

VI. EVALUATION OF INTERCEPTOR-BASED TRACING
A. Implementation

The software was implemented in Visual C++-, using the
previously mentioned ORB TAOQO, and tested on Windows
NT workstations. The program currently supports three
output modes: textual description of the communication
events on screen and in file, as well as communication di-
agrams in PostScript format. Moreover, it provides three
modes of operation:

1. Interactive mode. Tracing information is displayed on

the graphical user interface of the tracer, and user input
is needed in each step to continue execution. The extent
of the displayed trace information can be fine-tuned using
several options: the set of RPC events to be displayed can
be specified for both synchronous and asynchronous calls.
The essential use cases of this mode are: Checking of cor-
rect behaviour; Locating bugs; Better understanding of the
operation of the system.
2. Non-interactive mode. The only difference from inter-
active mode is that the execution of the program being
traced is not suspended. Essential use cases: Checking of
correct behaviour; Monitoring crucial applications; Better
understanding of the operation of the system; Extracting
documentation.
3. Local mode. No central tracer is installed, but the in-
terceptors write the locally collected information to a (lo-
cal) file. This is a stripped-down variant of the tracing
architecture with limited functionality, but since network
communication is kept at a minimum, this is the fastest op-
eration mode. The system automatically switches to this
mode if the interceptors cannot find the tracer. No GUI
is available, therefore the tracing options must be speci-
fied in a file named tracer.ini. The essential use case is:
Performance analysis.

The implemented software performed very well in the
tests, thus proving three important claims:
o The aims of tracing, as defined in section II-B, can all be
provided for with essentially the same tracing architecture;
o The interceptor mechanism of CORBA provides a suit-
able framework for such a tracing architecture;
o In general, the middleware can provide powerful support
for tracing with meta-objects.
The implementation also revealed some shortcomings of the
interceptor mechanism of TAQO, which have been fixed by
the TAO team since then or are likely to be fixed in the
near future.

B. Owverhead analysis

Although the implemented software performed very well
functionally, it is clear that the overhead generated by in-
terceptors can be problematic in some applications, most
notably if tracing is used for time-related measurements.
First, a simple model for the estimation of the overhead is
presented, followed by the corresponding empirical results.

Assuming that the participating computers are much
faster than the network connecting them, the overhead can
be roughly calculated as the additional time caused by ad-
ditional network traffic. Let ¢. denote the average time
needed for a call through the network, and s the server-
side processing time of a particular RPC. (Usually, it can-
not be assumed—even under the above assumption—that
ts = 0, because the server-side processing may also involve
calls to other servants.) It follows that the duration of the
whole RPC is T = 2¢. + t5 (see figure 3).

Now consider the case in which interceptors are also
present and they notify the tracer about every RPC event.
That is, an overhead of 2t. + t; is induced at every RPC
event—where t; denotes the time consumed in the intercep-
tors and the tracer—summing up to 7" = T+ 4(2t. + t;) =

Client Servant

Fig. 3. Duration of a RPC

10t. + t5 + 4t;. Thus, the relative overhead is

T'—T 8t +4t
T 2.+t

(1)

The worst case is when t; = 0, i.e. when server-side pro-
cessing is not time-consuming compared to communication:

8tc + 4ty ty)

Twe = Tc =4+ 25

Consequently, the relative overhead can be even more than
4 in the worst case, yielding a more than 5 times slow-
down. The amount by which the relative overhead exceeds
4 depends on the amount of time spent in the interceptors
and in the tracer. Most notably, if the tracer has to
refresh some complicated GUI, this might take considerable
time. Thus, t; can be relatively high even in the case of
non-interactive operation.

Of course, the situation is much better if the time needed
for server-side processing is not negligible. It can be seen
from (1) that if ¢, is high enough, the overhead can become
arbitrarily small.

One possible solution to the problem of the potentially
high overhead is to declare the services of the tracer as
oneway. Thus, the messages towards the tracer do not
block the interceptors, and this way the system does not
have to wait until the notification reaches the tracer,
which does the necessary processing, and the call returns.
Hence, such a solution would minimize the overhead. But
of course this is only possible if the methods of the tracer
do not return any results.

Local mode represents another solution: if tracing is
used for time-related measurements, interceptors generate
no additional network traffic by notifying the tracer about
every RPC event, but write out every collected information
(including timestamps) to local files. Normally, it can be
assumed that when it comes to performance analysis, the
system is already behaving correctly. Thus, caching can be
used (usually provided by the operating system by default)
to further decrease the overhead. However, if the system
is not reliable enough, this can be switched off (so that no
RPC events are lost in the case of a crash); this way, the
trade-off between speed and reliability can be tuned. If,
for some reason, the overall communication scenario of the
system is needed, this might be assembled afterwards from
the individual log files.

It has to be noted that the above model can also be used
if the whole ’distributed’ system is actually located on the

r =

same computer. In this case, too, inter-process communi-
cation is the most time-consuming factor since it involves
cotext, switches which are known to be very costly on mod-
ern processors. Care has to be taken though in local mode
to make sure that every process writes to a separate file.

Finally, some empirical measurements were conducted
on the implemented tracing tool. A detailed evaluation is
beyond the scope of this paper; here just the worst-case fig-
ures are presented for each working mode. A test applica-
tion was implemented, which also included an empty func-
tion on the server side (specifically for testing the worst-
case scenario, i.e. when t; = 0). The client called this
function 10.000 times. Table I contains the average dura-
tion of this operation (averaged from 5 measurements each;
all measurements were performed on a PII/300 PC, under
Microsoft Windows NT 4.0).

TABLE I

EMPIRICAL RESULTS

Duration Relative
[sec] overhead [%)]
Without interceptors 29.5 -
Non-interactive mode 191.5 549
Local mode, without | 41.5 41
caching
Local mode with | 33.8 15
caching

The figures of table I clearly justify the above estimates
and show that non-interactive mode (which in this case
generated a more than 6 times slow-down) is not useable
for time-related measurements. However, local mode with
caching presented a worst-case overhead of 15%, which is
low enough to enable measurements aiming at finding per-
formance bottlenecks.

VII. CONCLUSION

This paper has addressed the increasingly important
problem of tracing distributed, heterogeneous applications.
The most important contributions are:

« An investigation of the possible use cases of tracing.

¢ It has been shown that interceptors can be used to trace
CORBA applications.

o The resulting tracing architecture can provide for all of
the identified use cases.

o A new tool for tracing CORBA applications, which was
found useful in empirical evaluations.

e A simple mathematic model for the estimation of the
overhead generated by interceptors, which was justified by
practical measurements.

REFERENCES

[1] Object Management Group, “The common object request bro-
ker: Architecture and specification, 2.3 ed.,” http://cgi.omg.
org/cgi-bin/doc?formal/98-12-01, 1998.

[2] A. L. Beguelin, “Xab: a tool for monitoring PVM programs,”
in Proceedings Workshop on Heterogeneous Processing WHP’93.
Apr. 1993, pp. 92-97, IEEE Computer Society Press.

[3] G. Hunt and M. Scott, “Intercepting and instrumenting COM
applications,” in Proceedings of the 5. Conference on Object-
Oriented Technologies and Systems, USENIX, 1999.

(4]

(5]

(6]

(7]

(8]
(9]

S. A. Donthy, “How to eliminate debugging problems for
RMI-based applications,” JavaWorld Java Tip 56, http://www.
javaworld.com/javaworld/javatips/jw-javatip56_p.html,
2001.

P. Kacsuk et al, “GRADE: A graphical development and debug-
ging environment for parallel programs,” Parallel Computing
Journal, Elsevier, vol. 22, no. 13, pp. 1747-1770, Feb. 1997.

N Wang, K. Parameswaran, and D. Schmidt, “The design and
performance of meta-programming mechanisms for object re-
quest broker middleware,” in Proceedings of the 6. USENIX
conference on object-oriented technologies and systems, 2001.
“Interceptors FTF published draft of CORBA core and ser-
vices chapters,” ftp://ftp.omg.org/pub/docs/ptc/00-03-03.
pdf, 2000.

“OMG portable interceptors request for proposals,” ftp://ftp.
omg.org/pub/docs/orbos/98-09-11.

“Portable interceptors. joint revised submission,” ftp://ftp.
omg.org/pub/docs/orbos/99-12-02, 1999

[10] “Real-time CORBA with TAO (The ACE ORB),” http://www.

cs.wustl.edu/~“schmidt/TAO.html.

