
Optimized Application Deployment in the Fog?

Zoltán Ádám Mann1, Andreas Metzger1, Johannes Prade2, and Robert Seidl3

1 University of Duisburg-Essen, Essen, Germany
2 Nokia, Munich, Germany

3 Nokia Bell Labs, Munich, Germany

Abstract. Fog computing uses geographically distributed fog nodes that
can supply nearby end devices with low-latency access to cloud-like com-
pute resources. If the load of a fog node exceeds its capacity, some non-
latency-critical application components may be offloaded to the cloud.
Using commercial cloud offerings for such offloading incurs financial
costs. Optimally deciding which application components to keep in the
fog node and which ones to offload to the cloud is a difficult combinato-
rial problem. We introduce an optimization algorithm that (i) guarantees
that the deployment always satisfies capacity constraints, (ii) achieves
near-optimal cloud usage costs, and (iii) is fast enough to be run online.
Experimental results show that our algorithm can optimize the deploy-
ment of hundreds of components in a fraction of a second on a commodity
computer, while leading to only slightly higher costs than the optimum.

1 Introduction

Fog computing provides a decentralized infrastructure for supporting applica-
tions in domains like Internet of Things (IoT), cyber-physical systems, or smart
manufacturing (Industry 4.0) [9, 13]. Such applications process data from dis-
tributed end devices. Processing these data in the end devices is often not feasi-
ble because of the very limited capacity (in terms of CPU, storage, battery) of
the devices. Fog computing uses computational resources called fog nodes at the
network edge, which offer higher capacity than end devices. A fog node thus can
host applications that process data from end devices that are in the proximity
of the fog node [1, 23]. This facilitates data processing with low latency, since
modern communication technologies (like 4G and 5G) make the transfer of data
from the end devices to nearby fog nodes very fast (e.g., 5G even offers real-
time guarantees). This does not mean that all of the application’s components
need to reside in the fog node. Some application components, e.g., ones that are
not latency-critical, may even be offloaded to the cloud instead of fog nodes, to
benefit from the virtually unlimited computational capacity of the cloud [3].

This paper focuses on optimizing application component deployment between
a fog node and the cloud. The fog node, which can be considered a small data

? Published in: Proceedings of the 17th International Conference on Service-Oriented
Computing (ICSOC), pp. 283-298, 2019

center at the network edge, hosts a set of applications [10]. Each application
consists of a set of components (e.g., microservices). The fog node offers virtu-
alized, cloud-like resources for hosting the components, e.g., in virtual machines
or containers. Although the computational capacity of a fog node is typically
larger than that of end devices, it is still limited and much lower than that of
the cloud [12]. If the load of the fog node exceeds its capacity, some application
components thus may have to be offloaded to the cloud. However, this offloading
entails two concerns. On the one hand, using a commercial cloud is associated
with financial costs, both for the usage of cloud compute resources and for data
transfers into and out of the cloud. On the other hand, for some of the compo-
nents there may be an affinity requirement prescribing the component to remain
in the fog node, e.g., because the component is critical in terms of latency or
because the component deals with sensitive data that must not be uploaded to
the cloud due to data protection reasons [18]. Deciding which components to
move to the cloud leads to a complex optimization problem, in which capacity
and affinity constraints have to be satisfied while costs stemming from using the
cloud are minimized. In addition, optimizing application deployment is not a
one-off activity. The deployment should be re-optimized regularly during opera-
tion, e.g., when a new application is added or an application is removed, the load
on an application changes, cloud prices change, etc. After such events, the de-
ployment of all applications may be re-optimized. Components can be migrated
between the fog node and the cloud to adapt the deployment in these cases [24].
This requires the optimization algorithm to be fast enough to be used online.

This paper makes the following contributions:
(i) We formalize the problem of optimizing the deployment of application com-
ponents between a fog node and the cloud.
(ii) We devise a heuristic algorithm (FogPart) for the problem. The result
of the algorithm always satisfies the capacity and affinity requirements, when-
ever they can be satisfied. FogPart is a significantly extended version of the
Kernighan-Lin algorithm for balanced graph partitioning [11]. FogPart is a fast
heuristic that iteratively improves an existing partition by a sequence of local
changes, while also being able to escape local optima.
(iii) We demonstrate the applicability of our algorithm by applying it to the
smart manufacturing case study “Factory in a Box”.
(iv) We experimentally evaluate the effectiveness of FogPart in terms of the
resulting cloud usage cost and the algorithm’s execution time and compare it
with an exact algorithm and another heuristic.

The results show that the cost of the deployment found by FogPart is
on average only 2.1% higher than the results of the exact algorithm. At the
same time, FogPart is orders of magnitude faster, taking less than 300ms on a
commodity computer to optimize the deployment of 450 components. FogPart
delivers near-optimal results very quickly, making it applicable to practical use.

Legend:

component (no affinity req.)

component (with affinity req.)

application

connector (within the fog / cloud)

connector (between fog and cloud)

end device

Fog node Cloud

A1

A2

A3

Fig. 1: Schematic example of applications deployed in a fog node and the cloud

2 Problem formalization

Fig. 1 gives a schematic overview of the addressed problem. We are given a set A
of applications to be deployed. An application A ∈ A is represented by an undi-
rected graph A = (VA, EA), where VA is the set of components of application A
and EA is the set of connectors among the components. VD denotes the set of end
devices connected to the fog node, and ED is the set of connectors between end
devices and application components. The set of all end devices and components
is V = VD ∪

⋃
{VA : A ∈ A}. The set of all connectors between end devices and

components as well as among components is E = ED ∪
⋃
{EA : A ∈ A}.

For a component v ∈ V , p(v) ∈ R+ is the compute capacity required by v. As
an example, this can be the number of CPU cores required by v. The predicate
s(v) is used to model the affinity requirement. The predicate is true if and only
if v must remain in the fog node. If v ∈ VD, then p(v) = 0 and s(v) = true. For
a connector e ∈ E, h(e) ∈ R+ denotes the amount of data exchanged along e.

P ∈ R+ denotes the compute capacity (e.g., number of CPU cores) of the
fog node. The cost of renting a compute unit (vCPU) in the cloud is denoted by
c1, the unit cost of data transfer between the fog node and the cloud by c2.

A deployment is a function d : V → {fog, cloud} that maps each component
to either the fog node or the cloud. We use %(d) to denote the total compute
capacity occupied in the fog node by deployment d: %(d) =

∑
v∈V, d(v)=fog p(v).

A valid deployment must respect the following constraints:

%(d) ≤ P, (1)

∀v ∈ V : s(v)⇒ (d(v) = fog). (2)

Constraint (1) ensures that the total compute power required by the compo-
nents in the fog node does not exceed the capacity of the fog node. Constraint
(2) ensures that all affinity requirements are observed.

Our aim is to find a solution that minimizes the financial cost. For a deploy-
ment d, the set of connectors between the fog node and the cloud is defined as
E(d) = {uv ∈ E : d(u) 6= d(v)}. Then, the cost of deployment d is:

cost(d) =
∑

v∈V, d(v)=cloud

c1 · p(v) +
∑

e∈E(d)

c2 · h(e), (3)

where the first term is the cost of leased cloud resources and the second term is
the cost of data transfers between the fog node and the cloud. Hence our aim is
to minimize (3) while satisfying (1) and (2).

For a connector between an end device v1 and a component v2, s(v1) =
true ensures that v1 cannot be moved to the cloud. If d(v2) = cloud, then the
connector crosses the boundary between fog and cloud, and thus it contributes
to the costs in the second term of (3), otherwise it does not.

The deployment must be adapted in three cases: (i) when a new application
is added, (ii) when an application is removed, (iii) when something changes in
the deployed applications or in their environment.

Note that, in contrast to approaches aiming at placing one application on
several fog nodes [4], our problem formulation focuses on the placement of a
set of applications in a single fog node and the cloud. This is why our problem
formulation differs from others in the literature (e.g., we use affinity requirements
to ensure that latency-critical components are placed in the fog node, instead of
working with application deadlines). Our approach fits the needs of a provider
of an edge data center (an example application scenario is presented in Sec. 4).

3 The FogPart algorithm

The FogPart algorithm we propose to address the above optimization problem
works on a model of the system. This means that the algorithm tentatively allo-
cates and moves the components between the fog node and the cloud. Only after
the algorithm terminates, the best found configuration is enacted by actually
carrying out the necessary allocations and migrations.

When a new application is added, FogPart first places each new component
v as follows: if s(v) = true (i.e., v is subject to an affinity requirement), then v
is placed in the fog node, otherwise in the cloud. Afterwards, the algorithm re-
optimizes the deployment. When an application is removed, all its components
are removed from the deployment, and a re-optimization is carried out. When
there is a change in the deployed applications (e.g., in the CPU requirements of
some components, the amount of data transfer between components, the affinity
requirements of components) or in the environment (e.g., in the unit price of
using the cloud or the capacity of the fog node), FogPart first ensures that the
affinity requirement continues to hold by moving any affected component from
the cloud to the fog node, and then performs re-optimization.

Re-optimization works the same way in each case. Re-optimization is based
on iterative improvement: it starts from a – not necessarily valid – deployment
and tries to improve it (making it valid and decreasing its cost) through a series of
local changes. In each step, one component is moved either from the fog node to
the cloud or vice versa; however, if the current deployment violates the capacity
constraint, then only moves from the fog node to the cloud are allowed. The idea
of the algorithm is to move the component leading to the highest decrease in
cost, captured by the gain of the components.

Definition 1. Let d be a deployment and v ∈ V a component. Let d′ be the
deployment obtained from d by moving v. Then, given deployment d, the gain of
moving v is defined as

gain(d, v) =

{
−∞ if d is valid, d′ is invalid,

cost(d)− cost(d′) otherwise.

The algorithm prefers moves with higher gain values. To escape local optima,
the move with highest gain is made even if its gain is negative, i.e., the move
increases the cost (except if the gain is −∞). To avoid infinite loops, each com-
ponent may be moved only once during a re-optimization. When no further move
is possible, the deployment with the lowest cost that was encountered during the
algorithm is taken as the resulting new deployment.

The above re-optimization procedure in FogPart is an extended version of
the Kernighan-Lin (KL) algorithm for balanced graph partitioning [11, 17]. Vari-
ants of the KL algorithm have been successfully applied to different partitioning
problems [16, 19–21], thanks to the fact that it is a fast heuristic which can escape
local optima. Applying the KL algorithm to our optimization problem required
several extensions, since the original algorithm supports only edge costs, whereas
our problem also contains costs related to vertices, as well as hard constraints
on capacity and affinity, which are not supported by the original algorithm.

Algorithm 1 Deployment re-optimization

1: procedure re-optimize(d)
2: bestDeployment← d
3: bestCost← cost(d)
4: L← {v ∈ V : ¬s(v)}
5: end← (L = ∅)
6: while ¬end do
7: bestGain← −∞
8: for v ∈ L do
9: if %(d) ≤ P or d(v) = fog then

10: g ← gain(d,v)
11: if g > bestGain then
12: bestComp← v
13: bestGain← g
14: end if
15: end if
16: end for
17: if bestGain > −∞ then
18: forced← (%(d) > P)
19: flip d(bestComp)
20: L.remove(bestComp)
21: if forced or cost(d) < bestCost

then
22: bestDeployment← d
23: bestCost← cost(d)
24: end if
25: end if
26: end← (L = ∅ or bestGain = −∞)
27: end while
28: d← bestDeployment
29: end procedure

Algorithm 2 Calculation of the
gain of moving a component

1: procedure gain(d, v)
2: if d(v) = fog then
3: r ← −c1 · p(v)
4: else if %(d) ≤ P and %(d)+

p(v) > P then
5: return −∞
6: else
7: r ← c1 · p(v)
8: end if
9: for vw ∈ E do

10: if d(v) = d(w) then
11: r ← r − c2 · h(vw)
12: else
13: r ← r + c2 · h(vw)
14: end if
15: end for
16: return r
17: end procedure

A more detailed description of the re-optimization procedure is given in Al-
gorithm 1. The algorithm starts by setting “bestDeployment” and “bestCost”
to the current deployment respectively its cost (lines 2-3). The list L contains
the components that may be moved. In line 4, L is initialized to the set of all
components without affinity requirements; the components with affinity require-
ments are not movable since they must remain in the fog node. In each iteration,
one component is moved and it is removed from L (line 20); the procedure ends
if L becomes empty, as captured by the Boolean variable “end” (lines 5, 6, 26).

In each iteration, first the component to be moved is determined (“best-
Comp”). For that purpose, “bestGain” is initialized to −∞ (line 8), and then
all movable components are checked (lines 8-16). Line 9 ensures that moving a
component from the cloud to the fog node is not considered if the fog node is
already overloaded. Lines 10-14 determine the component with the highest gain.
If an allowed move is found, then it is performed (line 19) and the corresponding

Fig. 2: Factory in a Box (FiaB): outside and inside view

component is removed from L (line 20). If the fog node was overloaded before the
move, then the move is forced to be from the fog node to the cloud, as captured
by the Boolean variable “forced”. In this case, “bestDeployment” and “bestCost”
are certainly updated with the changed deployment and its cost, otherwise they
are updated only if the changed deployment is better than the best deployment
encountered so far in terms of costs (lines 18, 21-24). The loop ends if there are
no more movable components (L = ∅) or there are no valid moves, i.e., there are
only moves that would invalidate the deployment (“bestGain” = −∞) (line 26).
Finally, the best deployment found is chosen (line 28).

The gain of a component is computed by Algorithm 2, in line with Definition
1. If the component v is currently in the fog node, then moving it to the cloud
would increase costs by c1 ·p(v) (lines 2-3). If v is in the cloud, then moving it to
the fog node would decrease costs by the same amount (lines 6-7). However, if
the move violates the capacity constraint of the fog node, then the move is not
allowed, resulting in a gain of −∞ (lines 4-5). In lines 9-15, the connectors of
v are investigated. For a connector vw, if v and w are either both in the cloud
or both in the fog node, then the move would increase costs by c2 · h(vw) (lines
10-11); otherwise, it would decrease costs by the same amount (lines 12-13).

4 Case study

To demonstrate the applicability of our approach and illustrate its operation, we
applied it to a case study from the smart manufacturing domain, called “Factory
in a Box” (FiaB). FiaB is an innovative factory solution, representing a com-
plete production environment, integrated in a standard 20-feet freight container
(see Fig. 2). It can host many different types of production lines, ranging from
chemical processes, electronic device manufacturing to consumer goods. It ac-
commodates a heterogeneous internal communication infrastructure, including
novel mobile and fixed telecommunication technologies (e.g., private LTE and
5G) to serve various applications in the Industrial IoT environment. In addition
to the computing capabilities within the FiaB (which we consider as the fog
node), it connects to a cloud infrastructure using a public network.

Table 1: Characteristics of components in the FiaB case study

Application Component Required CPU cores Affinity Req.

A1 AM task manager 1 no
iWh manager 1 no
Robot control 1 yes
Manual assembly SW 2 no
Order management 2 no
Supply management 2 no
Tool management 1 yes
Process management 1 yes
ERP system 2 no

A2 FiaB remote management 1 no
Shop floor management 1 yes

A3 Sensor evaluation SW 1 no
Sensor dashboard 1 no

Table 2: Characteristics of connectors in the FiaB case study

App. Connector (endpoint1 ↔ endpoint2) Data transfer [GB/day]

A1 AR/VR glasses (device) ↔ Manual assembly SW 15
Tool management ↔ Process management 1
AM task manager ↔ Tool management 2
iWh manager ↔ Tool management 0.5
Robot control ↔ Tool management 2
AM task manager ↔ Process management 0.1
Robot control ↔ Process management 0.1
Manual assembly SW ↔ Process management 1
ERP system ↔ Order management 1
Order management ↔ Supply management 0.1
Order management ↔ Process management 0.1

A2 Shop floor management ↔ FiaB remote management 5

A3 Sensor evaluation SW ↔ Sensor dashboard 2.5

For managing the production, multiple applications are needed. The charac-
teristics of the application components respectively the connectors are shown in
Table 14 and Table 2. The unit costs of compute resources and of data trans-
fers to and from the cloud are determined based on Amazon EC2 pricing5. The
hourly rental fee of a t2.small instance is USD 0.023, leading to a daily fee of
USD 0.552, which is used as c1. The transfer of 1GB of data to or from Amazon
EC2 costs USD 0.09, which is used as c2. The fog node has 12 CPU cores.

Running FogPart to add application A1, first the components with affinity
requirements (Robot control, Tool management, Process management) are put
into the fog node and all other components are tentatively put into the cloud.
Then, Algorithm 1 is executed to optimize the deployment. Algorithm 1 moves

4 Abbreviations: AM = Additive Manufacturing, iWh = inbound Warehouse, VR/AR
= virtual reality / augmented reality, ERP = Enterprise Resource Planning

5 https://aws.amazon.com/ec2/pricing/on-demand/

Robot control Tool management

Process management

Manual assembly SW

Order management

Supply management

ERP systemAR/VR glasses

Fog node Cloud

iWh manager

AM task manager

Fig. 3: Deployment of the first application in the FiaB case study

Robot control

Shop floor management

Tool management

Process management

AM task manager

iWh manager

Manual assembly SW

Order management Supply management

FiaB remote management

ERP systemAR/VR glasses

Fog node Cloud













Fig. 4: Deployment of the second application. The numbers show the order in
which the components are allocated and moved by FogPart

five further components from the cloud to the fog node, until the capacity of the
fog node is exhausted, leading to the deployment shown in Fig. 3.

When application A2 is deployed, first its component with an affinity require-
ment (Shop floor management) is put into the fog node and the other component
(FiaB remote management) into the cloud. When re-optimizing the deployment,
FogPart is confronted with an invalid deployment requiring 13 CPU cores in
the fog node. Hence, FogPart first makes a forced move: the AM task manager
is moved from the fog node to the cloud. This way, the deployment becomes
valid, and it even reaches a local optimum: only moves from the fog node to the
cloud are possible, which increase costs. FogPart makes one of these worsening
moves: the Supply management is moved from the fog node to the cloud. As it
turns out, this worsening move pays off: it frees up 2 CPU cores in the fog node,
so that in the next two steps the FiaB remote management and iWh manager
components can be moved to the fog node. The resulting deployment is better
than the local optimum found earlier, as the heavy traffic between the Shop floor
management and FiaB remote management components does not leave the fog

Robot control

Shop floor management

Tool management

Process management

AM task manager

iWh manager

Manual assembly SW Sensor evaluation SW

Sensor dashboard

Order management

Supply management

FiaB remote management

ERP systemAR/VR glasses

Fog node Cloud









Fig. 5: Deployment of the third application (numbering as in Fig. 4)

node anymore. FogPart tries further moves but they do not lead to lower costs,
hence the deployment shown in Fig. 4 is activated in the end.

When deploying application A3, the new components (Sensor evaluation SW,
Sensor dashboard) are put into the cloud. Since the capacity of the fog node
is exhausted, only worsening moves are possible. The algorithm moves the iWh
manager from the fog node to the cloud, after which it becomes possible to move
the AM task manager from the cloud to the fog node. This leads to a better
deployment, which also further moves cannot improve. In fact, the resulting
deployment, which is shown in Fig. 5, is optimal.

These examples illustrate how FogPart continually ensures satisfaction of
the requirements, and at the same time optimizes costs. In particular, the ex-
amples show how FogPart can escape local optima.

5 Experimental evaluation

To evaluate the costs of the solutions delivered by the FogPart algorithm as well
as its execution time, we experimentally compare the performance of FogPart
to two competing algorithms:
(i) Solving the optimization problem with an integer linear programming (ILP)
solver as a typical example of an exact algorithm.
(ii) A simple heuristic based on the first-fit (FF) principle, as a typical example
of a greedy algorithm. FF first deploys all components with affinity requirements
in the fog node. The remaining components are deployed in the fog node if they
fit, and otherwise in the cloud.

We implemented the three algorithms as a Java program that we made pub-
licly available6. The experiments were performed on a Lenovo ThinkPad X1 lap-
top with Intel Core i5-4210U CPU @ 1.70GHz and 8GB RAM. The ILP-based
algorithm uses the Gurobi Optimizer, version 7.0.2, as an external solver. The
ILP solver was executed in single-threaded mode with a timeout of 60 seconds.

We simulated the following scenario:

6 https://sourceforge.net/p/vm-alloc/hybrid-deployment/

– 10 applications are randomly generated with the following parameters:
• |VA| = 30
• p(v) is uniformly chosen from {1, 2, 3, 4} for each v ∈ VA

• s(v) is true with probability 0.1 for each v ∈ VA

• (VA, EA) is a complete graph
• h(e) is uniformly chosen from [0.0, 3.0] for each e ∈ EA

– Starting with A = ∅, the applications are added one by one in the first 10
steps. Afterwards, 10 change steps are carried out, and finally the applica-
tions are removed one by one. Each change step performs one of the following
actions (each with equal probability):
• For each application, pick 3 random components and either increase or

decrease their number of CPU cores by 1.
• For each application, pick a random component v and let s(v) := ¬s(v).
• For each application, pick 10 random connectors and change their traffic

intensity by multiplying with 2 or 0.5.
• Change c1, the unit cost of compute resources, by either increasing or

decreasing it by 10%.
– As before, c1 = 0.552 and c2 = 0.09 (in line with Amazon EC2 pricing)
– P = 150

Fig. 6a shows the costs achieved by the three algorithms after each algo-
rithm call. As expected, the costs monotonously increase in the first 10 steps
and decrease in steps 20-30. In steps 1-2 and 29-30, it is possible to deploy all
components in the fog node, leading to 0 costs; this optimal deployment is found
by all algorithms. In the other steps, some components must be deployed in the
cloud, leading to non-zero costs. Consistently across all steps 3-28, the results
of FogPart are only slightly higher than those of the ILP-based algorithm,
whereas the FF algorithm yields significantly higher costs. The costs achieved
by FogPart are on average 2.19% higher than the costs achieved by the ILP-
based algorithm; the costs of FF are 29.32% higher than those of ILP.

Fig. 6b shows the execution time of the three algorithms in each step. The
time is shown in milliseconds, using logarithmic scale. The execution time of the
ILP-based algorithm is consistently significantly higher than the execution time
of the two heuristics. The average execution time of the ILP-based algorithm is
roughly 26 seconds, while the average execution time is only about 36 millisec-
onds for FogPart and 1 millisecond for FF. In 8 cases, the execution time of
the ILP-based algorithm reaches the timeout threshold of 60 seconds.

To evaluate scalability, we repeated the same call sequence as above, with
varying number of components per application. In Fig. 7a, we report the total
costs achieved by the three algorithms aggregated along the whole call sequence
of adding, changing, and removing 10 applications. The number of components
per application increased from 15 to 45 in increments of 5, thus leading to 150-
450 components within a call sequence. Consistently across all application sizes,
the cost of the deployments found by FogPart is only slightly higher than
the costs achieved with ILP, whereas the costs achieved by FF are significantly
higher. On average, FogPart leads to 2.1% higher costs than ILP, whereas FF

0

100

200

300

400

500

600

1 6 11 16 21 26

C
o
st

Step

ILP FOGPART FF

(a) Financial costs

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1 6 11 16 21 26

Ex
ec

u
ti

o
n

 t
im

e
[m

s]

Step

ILP FOGPART FF

(b) Algorithm execution time (logarithmic scale)

Fig. 6: Results of first adding, then changing, and finally removing 10 applications

leads to 24.3% higher costs than ILP. Interestingly, as the number of components
grows, the relative difference between the algorithms’ results decreases. This is
because, as the number of components grows, also the number of components
with affinity requirements grows, using up an increasing part of the fog node’s
capacity, and leaving less optimization opportunities for the deployment of the
components without affinity requirements. E.g., when each application consists
of 45 components, the expected number of CPU cores needed by the components
with affinity requirements is 112.5, using up 75% of the capacity of the fog node.

Fig. 7b shows the total execution time – aggregated over the whole call
sequence – of the three algorithms (note the logarithmic scale of the vertical
axis). The execution time of FF is very low (tens of milliseconds for the whole
call sequence), that of FogPart is somewhat higher but still quite low (less
than 2 seconds in each case for the whole call sequence in total), and that of

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

15 20 25 30 35 40 45

To
ta

l c
o

st
s

Number of components per application

ILP FOGPART FF

(a) Financial costs

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

15 20 25 30 35 40 45

To
ta

l e
xe

cu
ti

o
n

 t
im

e
[m

s]

Number of components per application

ILP FOGPART FF

(b) Algorithm execution time (logarithmic scale)

Fig. 7: Impact of increasing the number of components

ILP is much higher (more than 20 minutes for a call sequence when the number
of components is over 300). As the number of components grows, the execution
time of both FogPart and ILP tends to grow. However, the growth rate is
very different in the two cases. When the number of components grows from 150
to 450 – a threefold increase – the execution time of FogPart increases by a
factor of 5.7, suggesting a moderate polynomial complexity. At the same time,
the execution time of ILP grows by a factor of 26, suggesting an exponential
execution time, damped down by the timeout of 60 seconds per run.

6 Related work

Some approaches have already been proposed in the literature for the optimized
deployment of applications in the fog [4]. Mahmud et al. proposed a heuristic

to allocate application components in a multi-layer fog system [14]. Taneja and
Davy developed a greedy algorithm for placing application modules in the cloud
and on fog nodes [27]. Skarlat et al. devised a genetic algorithm for optimizing
the deployment of IoT applications on fog nodes [26]. Da Silva et al. considered
the deployment of distributed stream processing applications on cloud and edge
resources with the aim of minimizing application latency [25]. Cai et al. addressed
the deployment of complex event processing applications on edge resources with
the aim of minimizing the average application latency [5]. Mouradian et al. use
tabu search to minimize the makespan of applications consisting of virtual net-
work functions in the context of mobile fog nodes [22]. However, these approaches
suffer from some serious limitations. First, some approaches support only appli-
cations with a special structure (cycles of four vertices [14], series-parallel graphs
[25, 22], or directed acyclic graphs [5]). In contrast, our algorithm works for any
application topology. Second, some approaches do not consider the costs of using
the cloud at all [5, 25], or do not take data transfers between application com-
ponents into account [26, 27], which, however, can lead to significant costs. In
contrast, our algorithm explicitly minimizes the costs of using the cloud, includ-
ing costs for both compute resources in the cloud and data transfer between the
fog node and the cloud. Third, some approaches were based on simple greedy
algorithms [14, 27] that consider only one application at a time and deploy its
components sequentially. In contrast, our algorithm optimizes the deployment of
all applications together, which increases the probability of finding overall good
solutions, and uses special techniques to escape local optima.

Similar problems also arise when optimizing the deployment of applications in
hybrid clouds. Several authors investigated the problem of scheduling a workflow
using the resources of a hybrid cloud [2]. Chopra et al. proposed an algorithm
for minimizing costs while respecting a given deadline [8]. Chang et al. proposed
an agent-based mechanism to continually re-optimize the deployment of the jobs
of a workflow in a hybrid cloud [7], while Zhu et al. addressed the scheduling
of deadline-constrained workflows with stochastic tasks [29]. Another related
area is the allocation of massively parallel tasks using the resources of a hybrid
cloud. Van den Bossche et al. addressed the allocation of tasks to hybrid clouds
taking into account application deadlines and cloud resource costs [28]. Candeia
et al. aimed at maximizing profit, taking into account the benefit of finishing a
set of compute tasks early and the costs of using cloud resources [6]. Malawski
et al. used mixed integer nonlinear programming to allocate tasks to hybrid
cloud resources, subject to deadline constraints, minimizing costs [15]. In all
these papers, the communication structure between tasks is either constrained
to be acyclic, which is an unrealistic assumption for many applications, or not
considered at all. In contrast, our approach works with arbitrary communication
topologies among the components of an application.

7 Conclusions

This paper addressed the problem of deploying application components on a fog
node or in the cloud, such that components which need to be kept close to the
end devices are deployed on the fog node, the capacity of the fog node is not
overloaded, and the costs of using the cloud for computation and data transfer
are minimized. We devised a heuristic for this problem. Our experimental results
suggest that the results of our algorithm are close to optimal, while the algorithm
is very fast so that it can be used online.

In the future, we aim to extend our approach to handle further constraints
(e.g., modeling a more fine-grained control of latency) and optimization objec-
tives (e.g., relating to energy consumption).
Acknowledgments. Research leading to these results received funding from the
European Union’s Horizon 2020 research and innovation programme under grant
agreements no. 731678 (RestAssured) and 731932 (TransformingTransport).

References

1. Abbas, Z., Li, J., Yadav, N., Tariq, I.: Computational task offloading in mobile
edge computing using learning automata. In: IEEE ICCC. pp. 57–61 (2018)

2. Alkhanak, E.N., Lee, S.P., Rezaei, R., Parizi, R.M.: Cost optimization approaches
for scientific workflow scheduling in cloud and grid computing: A review, classifi-
cations, and open issues. Journal of Systems and Software 113, 1–26 (2016)

3. Bermbach, D., Pallas, F., Pérez, D.G., Plebani, P., Anderson, M., Kat, R., Tai, S.:
A research perspective on fog computing. In: ICSOC. pp. 198–210 (2017)

4. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to place your apps in the fog –
state of the art and open challenges. arXiv preprint, arXiv:1901.05717 (2019)

5. Cai, X., Kuang, H., Hu, H., Song, W., Lü, J.: Response time aware operator place-
ment for complex event processing in edge computing. In: ICSOC. pp. 264–278
(2018)

6. Candeia, D., Araújo, R., Lopes, R., Brasileiro, F.: Investigating business-driven
cloudburst schedulers for e-science bag-of-tasks applications. In: CloudCom. pp.
343–350 (2010)

7. Chang, Y.S., Fan, C.T., Sheu, R.K., Jhu, S.R., Yuan, S.M.: An agent-based work-
flow scheduling mechanism with deadline constraint on hybrid cloud environment.
International Journal of Communication Systems 31(1), e3401 (2018)

8. Chopra, N., Singh, S.: Deadline and cost based workflow scheduling in hybrid cloud.
In: ICACCI. pp. 840–846 (2013)

9. Dastjerdi, A.V., Buyya, R.: Fog computing: Helping the Internet of Things realize
its potential. Computer 49(8), 112–116 (2016)

10. Deng, S., Xiang, Z., Yin, J., Taheri, J., Zomaya, A.Y.: Composition-driven IoT
service provisioning in distributed edges. IEEE Access 6, 54258–54269 (2018)

11. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal 49(2), 291–307 (1970)

12. Lai, P., He, Q., Abdelrazek, M., Chen, F., Hosking, J., Grundy, J., Yang, Y.:
Optimal edge user allocation in edge computing with variable sized vector bin
packing. In: ICSOC. pp. 230–245 (2018)

13. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: A taxonomy, survey and
future directions. In: Internet of Everything, pp. 103–130. Springer (2018)

14. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application module
management for fog computing environments. ACM ToIT 19(1), 9 (2018)

15. Malawski, M., Figiela, K., Nabrzyski, J.: Cost minimization for computational
applications on hybrid cloud infrastructures. FGCS 29(7), 1786–1794 (2013)

16. Mann, Z.Á.: Partitioning algorithms for hardware/software co-design. Ph.D. thesis,
Budapest University of Technology and Economics (2004)

17. Mann, Z.Á.: Optimization in computer engineering – Theory and applications.
Scientific Research Publishing (2011)

18. Mann, Z.Á., Metzger, A.: Optimized cloud deployment of multi-tenant software
considering data protection concerns. In: CCGRID. pp. 609–618 (2017)

19. Mann, Z.Á., Orbán, A., Farkas, V.: Evaluating the Kernighan-Lin heuristic for
hardware/software partitioning. AMCS 17(2), 249–267 (2007)

20. Mann, Z.Á., Papp, P.A.: Formula partitioning revisited. In: 5th Pragmatics of SAT
Workshop. vol. 27, pp. 41–56. EasyChair Proceedings in Computing (2014)

21. Mann, Z.Á., Papp, P.A.: Guiding SAT solving by formula partitioning. Interna-
tional Journal on Artificial Intelligence Tools 26(4), 1750011 (2017)

22. Mouradian, C., Kianpisheh, S., Abu-Lebdeh, M., Ebrahimnezhad, F., Jahromi,
N.T., Glitho, R.H.: Application component placement in NFV-based hybrid
cloud/fog systems with mobile fog nodes. IEEE JSAC 37(5), 1130–1143 (2019)

23. Nan, Y., Li, W., Bao, W., Delicato, F.C., Pires, P.F., Zomaya, A.Y.: A dynamic
tradeoff data processing framework for delay-sensitive applications in cloud of
things systems. Journal of Parallel and Distributed Computing 112, 53–66 (2018)

24. Ravindra, P., Khochare, A., Reddy, S.P., Sharma, S., Varshney, P., Simmhan, Y.:
ECHO: An adaptive orchestration platform for hybrid dataflows across cloud and
edge. In: ICSOC. pp. 395–410 (2017)

25. da Silva Veith, A., de Assuncao, M.D., Lefevre, L.: Latency-aware placement of
data stream analytics on edge computing. In: ICSOC. pp. 215–229 (2018)

26. Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., Leitner, P.: Optimized IoT
service placement in the fog. Service Oriented Comp. Appl. 11(4), 427–443 (2017)

27. Taneja, M., Davy, A.: Resource aware placement of IoT application modules in
fog-cloud computing paradigm. In: IEEE IM. pp. 1222–1228 (2017)

28. Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling
in hybrid IaaS clouds for deadline constrained workloads. In: IEEE CLOUD. pp.
228–235 (2010)

29. Zhu, J., Li, X., Ruiz, R., Xu, X.: Scheduling stochastic multi-stage jobs to elastic
hybrid cloud resources. IEEE TPDS 29(6), 1401–1415 (2018)

