Auto-Adjusting Self-Adaptive Software Systems

Published in the Proceedings of the 15th IEEE International Conference on Autonomic Computing (ICAC), pp. 181-186, 2018

Zoltan Addm Mann and Andreas Metzger
paluno — The Ruhr Institute for Software Technology, University of Duisburg-Essen, Essen, Germany

Abstract—Self-adaptive systems can cope with changes in their
operating environment by modifying their structure and behavior
at run time. Different kinds of changes pose different require-
ments on how the software should adapt: some changes may
require an immediate adaptation, whereas others do not, leaving
more time to find the most suitable action. To address different
kinds of changes, we introduce auto-adjustment, which works
by quickly assessing changes in terms of the resulting require-
ments on the adaptation logic (e.g., their criticality or urgency),
and adjusting the adaptation logic accordingly. Thereby, auto-
adjustment allows dynamically considering the trade-off between
adaptation speed and adaptation quality. Experiments with an
autonomic cloud resource allocation system show that auto-
adjustment leads to an improved trade-off between conflicting
system goals: by allowing 0.3% higher energy consumption, the
number of server overloads can be reduced by 68%.

Index Terms—self-adaptive systems, on-line reconfiguration of
the adaptation logic, cloud resource management

I. INTRODUCTION

Today’s software systems must operate in highly complex
and dynamic environments [1], [2]. Self-adaption has been
proposed to cope with such dynamic environments [3]. Self-
adaptive software continually monitors its environment to
detect changes. If needed, the software modifies its own
structure and behavior at run time to continue meeting its
functional and quality objectives. Self-adaptive software ex-
hibits improved resilience to failures, better resource usage,
and higher performance [4].

However, problems arise if adaptations are done in a way
that is not fit for purpose in a given situation. For example,
some adaptation actions may take more time than others [5].
Not taking this into account may lead to poor adaptation
decisions; e.g., choosing a lengthy adaptation action when a
critical situation calls for immediate action. Similar problems
may arise if the procedure to determine the best adaptation
action takes too long; e.g., many reasoning techniques pro-
posed for computing adaptation actions are computationally
expensive [6]. If the environment is not monitored with
appropriate frequency, this can also lead to problems; e.g., if
sensor readings arrive every ¢ seconds but significant changes
can happen in less than ¢ seconds, the adaptation logic may
not be able to timely observe and handle these changes [7].

The required frequency for executing the adaptation logic
and the allowed duration for computing adaptation actions
depend on the specific system and context, and may even
change dynamically. For instance, a sudden massive increase

in the load on a web application requires a quick reaction to
avoid a serious overload of the system, whereas an adaptation
of the same system is less urgent if the load decreases [8].

As an example, Fig. 1 shows a real workload of a cloud
service. In different periods of time, the workload exhibits dif-
ferent dynamics: sudden decreases, slow increases etc. These
periods impose different requirements on the self-adaptation
of the system. Thus, in such highly dynamic environments, it
is not sufficient to only adapt the system: the adaptation logic
itself must be dynamically modified to address the changing
adaptation requirements. Modification of the adaptation logic
should be fast to enable timely reaction to changed dynamics
(e.g., a change from decreasing to increasing load).

Existing approaches to self-adaptation do not solve this
problem. Running the adaptation logic with the highest possi-
ble speed and frequency prohibits computationally expensive
optimizations, even if such optimizations would be sometimes
possible. Hierarchical approaches, such as the three-layer ar-
chitecture [9], change the adaptation logic only after observing
that the adaptation logic is not appropriate in the current
context — which may be too late. Online learning improves
the adaptation logic by a trial-and-error process, which may
require many observations to converge [10], with negative
consequences on the live system [11].

To address the different kinds of environment changes that
a self-adaptive system may face, we introduce the notion
of auto-adjustment. Auto-adjustment augments the adaptation
logic of a self-adaptive system. It can directly trigger quick
reactions if needed, which sets it apart from most of the related
approaches. To be fast, auto-adjustment is based on a quick
and coarse-grained assessment of the changes currently faced

40000
+£35000
30000
25000
20000
15000

10000

Workload (required CPU capacity)

5000

0 20 40 60 80 100 Time [h]

Fig. 1: Example workload



by the system. As a result of the assessment, the parameters
of the self-adaptive system’s adaptation logic are set to values
that are appropriate for the currently faced changes.

Auto-adjustment can be used to differentiate between modes
of operation for the adaptation logic. As a simple example,
the adaptation logic may work in normal mode, in which the
best possible adaptation is aimed for, even if that takes some
time. Besides, there can be an emergency mode, in which a
good enough adaptation must be found quickly to cope with
time-critical situations. Auto-adjustment makes a situational
choice among the available modes of adaptation. Thereby,
auto-adjustment allows dynamically considering the trade-off
between adaptation speed and adaptation quality.

II. RUNNING EXAMPLE

We consider a data center with m servers. Each server has
given capacity along multiple resource dimensions, e.g., CPU
and memory. A server that is switched on may host virtual
machines (VMs). At a given point in time, each VM has
specific resource needs (e.g., in terms of CPU and memory).
The load of a server for a specific resource type is the sum
of the needed resources of the VMs that it hosts. If the load
of a server exceeds its capacity for at least one resource type,
then the server is overloaded. Overloading a server results in
performance degradation of the hosted VMs and in turn to
violations of service level objectives; hence, server overloads
should be avoided as much as possible [12]. One of the main
cost drivers in data center operation is the power consumption
of running servers. To minimize power consumption, the
number of servers that are on should be minimized.

The load on cloud services varies over time, leading to
oscillations in the VMs’ resource needs (cf. Fig. 1). To react
to changes in the workload, VMs can be migrated between
servers. When the load of some VMs is low, they can be
consolidated to fewer servers. Unused servers can be switched
off, thus saving energy. When the load of the VMs is high,
more servers need to be switched on so that the VMs can be
spread across more servers, thereby avoiding server overloads.

To sum up, data center operators must continually re-
optimize the mapping of VMs to servers to react to changes in
the workload. The considered adaptation actions are switching
servers on or off and migrating VMs between servers. The
objectives are: (i) minimizing power consumption, (ii) avoid-
ing server overloads. The resulting optimization problem is
computationally challenging to solve optimally, but different
algorithms exist to solve it heuristically [13], [14].

III. PROBLEM DEFINITION

In self-adaptive systems, the quality of the adaptation pro-
cess has several important characteristics. E.g., how quickly
does the system adapt to changes? What is the maximum
frequency and maximum magnitude of change that the system
can cope with? How stable is the self-adaptive system against
short temporary changes? In practice, the adaptation logic
of a self-adaptive system is designed based on assumptions
about the required quality of the adaptation process for a

observe

Auto-adjust

configure
[ — IR Ny,
' MAPE ﬂ\
i Monitor Analyze Plan Execute

Fig. 2: Augmenting the MAPE loop with auto-adjustment

given application. Often, these assumptions are implicit and
are based on experience and common sense [4], [8]. In the
running example, if the cloud provider decides to re-optimize
the placement of VMs every ¢ seconds, this is based on the
assumption that on a time scale smaller than ¢, no big change
in the workload takes place that would need faster reaction.
A design decision that in one iteration of the adaptation logic
at most one server is turned on, is based on the assumption
that the changes in the workload between two consecutive
invocations of the adaptation logic can be absorbed by the
addition of a single new server.

If changes are more frequent and/or have bigger amplitude
than assumed, the adaptation logic may not react adequately
to the changes. In the running example, multiple problems
can arise if the changes in the workload are not in line with
the assumptions underlying the operation of the adaptation
logic. For instance, if the adaptation logic is not executed with
sufficient frequency, the adaptation logic may detect only with
delay that the workload is rising. Or, if the workload is rising
more rapidly than assumed in the design of the adaptation
logic, the adaptation logic may run analysis and planning
techniques that take too long for a timely reaction.

If the adaptation logic is not working in line with the current
context dynamics, this may be harmful. It is not easy to design
the adaptation logic in such a way that it can effectively cope
with different kinds of dynamics. As shown in Fig. 1, different
types of context changes may exist, posing very different
requirements on the adaptation logic.

The problem that we address can be summarized as follows:
the dynamics (frequency and magnitude of changes) of the
context of a self-adaptive system may change over time,
leading to different requirements towards the adaptation logic.
The operation of the adaptation logic should be in line with
the current context dynamics. This requires a systematic way
to detect the current context dynamics and reason on how the
adaptation logic should operate to cope with it.

IV. THE AUTO-ADJUSTMENT APPROACH

To tackle the issues described in Sec. III, we introduce
an approach called auto-adjustment. We use the well-known
MAPE reference model as a basis [3]. MAPE separates
adaptation into four steps: Monitoring, Analysis, Planning, and
Execution. As shown in Fig. 2, our approach adds a further
step called Auto-adjust. The Auto-adjust step continually as-
sesses the situation using the data provided by the Monitoring
step and automatically configures the MAPE steps so that
their behavior is always aligned with the current situation.
For the latter, the adaptation logic should be configurable
via appropriate parameters (like in [15]). To react quickly to



Parameter
settings

Context
situation class

Monitoring
data

Categorization
of situation

Determining
parameters

TABLE I: Context situation classes — example

Fig. 3: Proposed structure of the Auto-adjust step

changes in the dynamics of the environment, auto-adjustment
must be fast. Therefore, it uses a quick and coarse-grained
assessment of the current state. Then, it just adjusts parameters
of the adaptation logic.

1) Interplay with the MAPE steps: As shown in Fig. 2, the
Auto-adjust step gets information from Monitoring and may
set parameters of each MAPE step or the MAPE loop as a
whole. Fig. 2 shows logical connections between the MAPE
steps and the Auto-adjust step; it does not specify the order of
execution of the steps. There are multiple possible scenarios
for the order of execution of the steps: For example, Auto-
adjust may wait until the monitor step is finished to get the
results of monitoring, but it is also possible that Auto-adjust
needs only a part of those results which can be made available
earlier. Likewise, Analyze may start after Auto-adjust finished,
or they can run in parallel and Auto-adjust may decide to abort
Analyze if it turns out that an urgent reaction is needed.

2) Inputs: Auto-adjust gets a subset of the output of
Monitoring that also Analyze is based on. This way, no
further sensors are needed for Auto-adjust; the existing sensors
that are anyway used by the adaptation logic can be reused.
Whether the whole Monitoring data for Analyze is also passed
to Auto-adjust or only a subset thereof, depends on the time
requirements. If the Monitor step involves lengthy processing
of sensor data, then it may be necessary to feed Auto-adjust
with raw or partially processed data instead so that it does not
have to wait for that processing to finish. Otherwise, all the
Monitoring output can be provided to Auto-adjust.

3) Outputs: The outputs of Auto-adjust control the way
the adaptation logic works. For this purpose, the operation of
the adaptation logic should be controllable through a set of
parameters. We assume that reconfiguring the adaptation logic
by changing parameters is fast, e.g., by switching between
available algorithms. Lengthy reconfigurations like synthesiz-
ing a new controller or re-compiling a program should be
avoided to be able to react quickly to critical changes.

Each MAPE step can have parameters. E.g., the number of
past observations to take into account may be a parameter for
Analyze. Further parameters may relate to the MAPE loop as
a whole, e.g., the frequency of carrying out the MAPE loop.

4) Processing: Let the input of Auto-adjust be a vector x
of monitoring data from some domain D (e.g., if monitoring
consists of n real-valued monitoring signals, then D = R™).
The output of Auto-adjust is a vector y of parameter values
in a range R (e.g., if there are k binary parameters, then R =
{0, 1}*). Moreover, Auto-adjust may have a state s € S, based

x€D GDXS—C cec hiCxS—R yeRr Class  Characterization A P F
f:DXS—R C1 Load is quickly growing A1 P B
Cs Load is decreasing; there are over- Ax P> Fi

State update State loaded servers

o:DXS—>S SES . .
I Cs Load is decreasing; there are no over- Az Ps; F
X Auto-adjust

loaded servers

Co None of the above applies Ay Py F

on previous inputs. Then, the operation of Auto-adjust can be
described as a function f : D x S — R, coupled with an
internal state updating function ¢ : D x S — S. To compute
f, we propose decomposing it into two sub-steps and thus
sub-functions g and h with f = h o g (see Fig. 3):

g: Coarse-grained categorization of the current situation
and the type of change that is going on, based on the
monitoring input. Let C' be a set of context situation
classes; then ¢ : D x S — C maps each possible
monitoring input to a context situation class.

h: Determining appropriate parameter settings based on the
identified situation. This can be formalized as a function
h : C xS — R, mapping each context situation class
to the appropriate parameter settings.

To be fast, the first sub-step may be carried out using
thresholds on the observed values, and the second sub-step
using event-condition-action rules. The thresholds and the
rules may be static, but they may also be changed dynamically
(e.g., by learning), as long as this does not affect the speed of
Auto-adjust (e.g., by performing the learning off-line).

V. APPLICATION TO THE RUNNING EXAMPLE

1) Context situation classes: Deriving the relevant classes
of context situations (C) should be based on the goals of
the adaptation logic, the opportunities that could be used to
achieve those goals, and the situations that should be avoided.
In our case, VMs should be consolidated to as few servers
as possible. Consolidation opportunities arise mainly if the
load of VMs is decreasing. Second, server overloads should
be avoided or eliminated quickly. Server overloads arise if
the load of VMs increases or because of the overhead of
migrations. Third, to keep the number of VM migrations low,
VMs with non-correlating load patterns should be consolidated
to the same server because they can co-reside on the same
server for a long time without causing overloads [16].

On this basis, we can derive the context situation classes,
C ={Cy,...,Cs} (see Table I, first two columns).

2) Needed monitoring input: The context situation classes
in Table I can be identified based on two types of information:
growth rate of the load and existence of overloaded servers. To
compute function g, we thus need to monitor this information.
Monitoring has to collect information for the adaptation logic
anyway on the load of VMs and servers. From that, it can
be determined whether there are overloaded servers. The load
of different VMs may experience different growth rates; we
use an aggregate metric that shows whether there is an overall



growth in load: the ratio of VMs whose load grew by at least
a given percentage since the last measurement.

3) Required behavior: In C1, the risk of server overloads
is high. The adaptation logic must react quickly and prevent
or mitigate overloads. The analyze step should be restricted
to identifying the servers most prone to overload. Planning
should be restricted to quickly finding a (not necessarily
optimal) plan for relieving the highly loaded servers with
migrations. The MAPE loop should be restarted soon to check
if the problem is solved or further actions are necessary.

In Cy, the adaptation logic should quickly relieve over-
loaded servers. Analysis should be restricted to identifying the
affected servers, while planning should be restricted to quickly
devising a plan to relieve those servers with migrations.

In Cs5, no immediate action is required. The adaptation logic
should aim for long-term goals. Analysis should assess which
subsets of VMs have load patterns that are compatible for
long-term co-residence. Planning should find the best possible!
allocation of VMs to servers based on the analysis results.

In Cpy, only small changes occur between subsequent
MAPE cycles, hence the adaptation logic should address those
changes. Analysis should identify the changes, while planning
should address them with appropriate local actions.

4) Parameters: The Analyze and Plan steps need to be
configured, as well as the frequency of the MAPE loop. For
Analyze, a parameter A is needed to choose among four
different behaviors:

o Aj: Identify servers that are either overloaded or likely
to become overloaded soon

e Aj: Identify overloaded servers

o Aj: Assess which subsets of VMs have load patterns that
are compatible for long-term co-residence

o Ay: Identify significant changes since the last invocation

For the Plan step, a parameter P is needed to choose among
four different behaviors:

e P;: Quickly find a plan for relieving highly loaded servers
e P5: Quickly find a plan to relieve overloaded servers
o Ps: Find the globally best allocation of VMs to servers
o P;: Devise a set of local actions to address changes

The parameter F', for defining the frequency of the MAPE
loop, has two values: Fj for normal execution, and F5 for
more frequent execution of the loop. Table I shows the map-
ping between the context situation classes and the parameter
settings (i.e., the function h).

VI. EXPERIMENTAL EVALUATION

1) Implementation: We based our implementation on
CloudSim, a widely-used cloud simulator [18]. In CloudSim,
adaptive resource management is realized by a VM consolida-
tion algorithm which combines analysis and planning. It deter-
mines a set of migrations to (i) relieve overloaded servers and
(ii) consolidate VMs to as few servers as possible. CloudSim

I'Since finding the optimal allocation is computationally intractable [17], it
is still necessary to use a heuristic or a timeout, but in this case, planning is
allowed to take significantly longer than in the two preceding cases.

contains a built-in VM consolidation algorithm, which is a fast
heuristic [19]. We created an alternative VM consolidation
algorithm using integer linear programming (ILP) [20]. The
ILP-based algorithm is significantly slower than the built-in
heuristic, but usually gives better results. When the ILP-based
algorithm does not find a valid solution within the available
time budget, the built-in heuristic is used as fallback.

Based on these two VM consolidation algorithms, we im-
plemented a simplified variant of the scheme described in
Sec. V. The simplification relates to the fact that the available
VM consolidation algorithms are not decomposed according
to the MAPE model, so that fine-grained control of the MAPE
steps is not possible. We use two context situation classes: (i)
emergency mode, in which the adaptation logic must quickly
react to prevent server overloads and (ii) normal mode, in
which there is sufficient time to aim for a placement of the
VMs that is as good as possible. For adjusting the adaptation
logic, two parameters are provided: one for the choice between
the two VM consolidation algorithms and another to choose
the re-optimization interval, i.e., the time before the adaptation
logic is invoked again.

2) Experiments: We simulated a cluster of 100 servers,
hosting 500 VMs. The servers belong to three types, with
CPU capacities of 2000, 4000, and 8000 MIPS (million
instructions per seconds). The VMs’ requested CPU size
ranges from 200 to 1500 MIPS, and their actual CPU size
is always defined as percentage of their requested size, as
explained below. Re-optimization is normally carried out every
5 minutes (i.e., Thormar = 300s); for emergency mode, it is
set to Tse = 150s. The ILP-based algorithm is given a time
budget of 60 seconds; the execution time of the heuristic
algorithm is negligible (below 1 second). We performed two
experiments, both lasting 5000 seconds. In each experiment,
three approaches were compared: (i) always using the heuristic
algorithm, (ii) always using the ILP-based algorithm, (iii) the
auto-adjusting approach.

In the first experiment, the load of the VMs decreased from
90% to 10% in the first 2000 seconds, followed by constant
load for 1000 seconds, and then increased back to 90%. As
Fig. 4a shows, the number of active servers closely follows this
trend for all three approaches, showing that all algorithms react
to the changes. When the workload decreases, the ILP-based
and the auto-adjusting approaches yield very similar results;
the heuristic leads to slightly more active servers. When the
load is constant, all three approaches lead to practically the
same results. When the workload increases, the heuristic and
the auto-adjusting approaches increase the number of active
servers faster, so the ILP-based approach leads to the least
active servers. Fig. 4b shows the cumulated number of server
overloads, which is O when the load decreases or remains
constant. When the workload starts to increase, each approach
leads to some overloads. The auto-adjusting approach is the
fastest to get into a mode in which it does not generate
further server overloads. Thus, the other two approaches
lead to significantly more server overloads. The ILP-based
approach leads to the highest number of server overloads.



(a) Development of 90 |
the number of active £§8 —-=-heuristic ——ILP-based -#+—auto-adjusting
servers over time £ 60
B
v 50
£ 40
« 30
< 20
10
0
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500 time [s]
(b) Cumulated num- g 200
ber of server over- <
. > 150 —s—heuristic —+—ILP-based —+—auto-adjusting
loads over time g
2
& 100
S
g
- 50
S
E W
S
f o
© 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500 time [s]
(C? Situation  deter- m] m] m] m] m] m] m] m] m] m] ® & & & ¢ o O ¢ O
mined by the auto-
‘ O normal oemergency‘

adjustment approach
0 300 600 900

1200 1500

1800 2100 2400 2700 3000 3300 3600 3900 4200 4500 time [s]

Fig. 4: Results of the first experiment

Fig. 4c shows how the auto-adjusting approach classifies the
situation during its invocations: normal mode is active when
the workload decreases or remains constant; when the load
starts to increase, emergency mode is activated, leading to
more frequent invocations of the MAPE loop.

In the second experiment, the workload has similar shape,
but the changes are much smaller: the load starts again at
90%, but decreases only to 80%, remains constant, then
increases again to 90%. The number of active servers again
closely follows the workload for all three approaches. The
number of active servers is similar for the ILP-based and the
auto-adjusting approaches, while it is consistently higher for
the heuristic. The number of server overloads is O for all
approaches. The situation determined by the auto-adjusting
approach is normal mode throughout the second experiment.

3) Analysis of the results: Auto-adjustment activated emer-
gency mode when the load was quickly rising (right half of
Fig. 4), while it remained in normal mode in all other cases.
This was a sensible choice: when the load increased quickly,
emergency mode allowed quick and frequent re-optimization
of the VM placement, thus leading to significantly less server
overloads. In all other cases, this was not necessary (there
were no server overloads), and using normal mode made it
possible to fully utilize the consolidation possibilities, thereby
using less active servers.

The results of the three approaches, aggregated over the
two experiments, are summarized in Table II. The ILP-based
approach leads to the best energy consumption, closely fol-
lowed by our approach (the difference is only 0.3%); the
heuristic leads to more than 16% higher energy consumption.

TABLE II: Aggregated results

Approach Consumed energy [kWh] Nr. of server overloads
heuristic 62.64 130
ILP-based 53.87 173
auto-adjust 54.03 41

Concerning server overloads, our proposed approach achieves
the best results, leading to 68% and 76% less server overloads
than the heuristic respectively the ILP-based approach. This
shows that auto-adjustment can lead to substantial benefits.

VII. RELATED WORK

The problem that a fixed adaptation logic may not be appro-
priate in all situations has been recognized [21]. To address
this problem, several authors suggested adding extra layers
to a self-adaptive system’s adaptation logic. These additional
layers monitor the adaptations and modify the adaptation
logic if adaptation performance is unsatisfactory. The first
such approach was the three-layer architecture, in which the
managed element (the lowest layer) is adapted using reactive
plans by the adaptation logic of the middle layer, while the
task of the upper layer is to devise new plans [9]. The three-
layer model was later refined by other authors [22].

Other hierarchical approaches use online learning to im-
prove the performance of the adaptation logic; e.g., by learning
models that capture knowledge about the environment [23]. A
concern with this approach is that while online learning is
converging, the self-adaptive system may execute ineffective



adaptations, which can have negative consequences, because
the ineffective adaptations happen in the live system [11].

These hierarchical approaches are based on two critical
assumptions. First, it is assumed that the environment is largely
stable — in the sense that changes are small — for longer periods
of time, with occasional transitions between stable states. This
is true in many cases; however, in highly dynamic settings
without lengthy epochs of stability, these approaches are not
appropriate. In the three-layer architecture, the time it takes
to recognize that the lower layers cannot deal appropriately
with the current situation and to wait for the upper layer to
elaborate new adaptation plans may lead to non-acceptable
delays. In online learning, the time it takes to converge to an
acceptable solution may not be acceptable.

The second assumption is that, during the transient periods
after changes in the dynamics of the environment, subopti-
mal adaptations can be tolerated. This implicit assumption
is mirrored by the fact that in the evaluation of previous
approaches, either only aggregated metrics were used to judge
the performance of the methods, or transient periods were
simply excluded. Again, this assumption may not hold in some
domains, first because of the already mentioned dynamism
(practically, there may only be transient periods), and second
because in some systems, a bad adaptation can have wide-
ranging negative consequences.

In contrast, our auto-adjusting approach recognizes in time
the need for changing the adaptation logic and quickly re-
configures it appropriately. Therefore, our approach is better
suited for highly dynamic environments.

Several authors proposed adopting methods from control
theory to engineer self-adaptive software because of the
similarities between the two fields and the benefits of the
mathematically well-founded approaches of control theory
[24]. However, guaranteeing desirable properties like stability
or quick responses by means of control theory requires strong
assumptions: e.g., that there is enough time for converging to
a stable state, the frequency of changes between stable states
is bounded, and disturbances and transients are secondary and
can be identified [7]. As discussed above, such assumptions
may not hold in highly dynamic settings.

Particularly relevant classes of systems in control theory are
auto-tuning systems and adaptive control, which are capable
of optimizing their own parameters to optimize the fulfillment
of an objective function [25], [26] However, auto-tuning for
self-adaptive software systems is challenging and has not yet
been successfully achieved [7].

VIII. CONCLUSIONS

In this paper, we proposed auto-adjustment as a means to
keep the adaptation logic of a self-adaptive system in line
with the changing context dynamics. With auto-adjustment, it
is possible to switch on the fly between available modes of
adaptation, satisfying different requirements on the adaptation
logic. A case study of an adaptive cloud resource management
system showed that dynamically choosing from just two

different modes of adaptation can lead to an improved trade-
off between system goals.

Interesting paths for future research include the combina-
tion of auto-adjustment with machine learning and prediction
techniques to further improve its potential.

Acknowledgments. This work received funding from the European
Union’s Horizon 2020 research and innovation programme under
grant agreements no. 731678 (RestAssured) and 780351 (ENACT).

REFERENCES

[1] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-
adaptive software needs quantitative verification at runtime,” Commun.
ACM, vol. 55, no. 9, pp. 69-77, 2012.

[2] Z. A. Mann and A. Metzger, “Optimized cloud deployment of multi-

tenant software considering data protection concerns,” in Proc. CCGrid,

2017, pp. 609-618.

J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”

Computer, vol. 36, no. 1, pp. 41-50, 2003.

J. Camara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. Schmerl,

and R. Ventura, “Incorporating architecture-based self-adaptation into

an adaptive industrial software system,” J. Syst. Softw., vol. 122, pp.

507-523, 2016.

[5] G. A. Moreno, J. Camara, D. Garlan, and B. Schmerl, “Proactive self-
adaptation under uncertainty: A probabilistic model checking approach,”
in Proc. ESEC/FSE, 2015, pp. 1-12.

[6] J. M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela, B. Schmerl,

and D. Garlan, “Improving self-adaptation planning through software

architecture-based stochastic modeling,” J. Syst. Softw., vol. 115, pp.

42-60, 2016.

A. Filieri et al., “Control strategies for self-adaptive software systems,”

ACM Trans. Auton. Adapt. Syst., vol. 11, no. 4, 2017, article 24.

C. Klein, M. Maggio, K.-E. Arzén, and F. Hernidndez-Rodriguez,

“Brownout: Building more robust cloud applications,” in Proc. ICSE,

2014, pp. 700-711.

[9] J. Kramer and J. Magee, “Self-managed systems: an architectural

challenge,” in FOSE, 2007, pp. 259-268.

H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A comparison of

reinforcement learning techniques for fuzzy cloud auto-scaling,” in Proc.

CCGrid, 2017, pp. 64-73.

R. R. Filho and B. Porter, “Defining emergent software using continuous

self-assembly, perception, and learning,” ACM Trans. Auton. Adapt.

Syst., vol. 12, no. 3, pp. 16:1-16:25, 2017.

Z. A. Mann, “Resource optimization across the cloud stack,” IEEE

Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 169-182, 2018.

, “Modeling the virtual machine allocation problem,” in Proc. Int.

Conf. on Mathematical Methods, Mathematical Models and Simulation

in Science and Engineering, 2015, pp. 102-106.

E. Ahvar, S. Ahvar, Z. A. Mann, N. Crespi, J. Garcia-Alfaro, and

R. Glitho, “CACEV: a cost and carbon emission-efficient virtual ma-

chine placement method for green distributed clouds,” in Proc. 13th

IEEE Int. Conf. on Services Computing, 2016, pp. 275-282.

M. Hinchey, S. Park, and K. Schmid, “Building dynamic software

product lines,” IEEE Computer, vol. 45, no. 10, pp. 22-26, 2012.

L. Chen and H. Shen, “Consolidating complementary VMs with

spatial/temporal-awareness in cloud datacenters,” in Proc. IEEE INFO-

COM, 2014, pp. 1033-1041.

Z. A. Mann, “Approximability of virtual machine allocation: much

harder than bin packing,” in Proc. 9th Hungarian-Japanese Symp.

Discrete Math. Appl., 2015, pp. 21-30.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and

R. Buyya, “CloudSim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algo-

rithms,” Software Pract. Exper., vol. 41, no. 1, pp. 23-50, 2011.

Z. A. Mann, “Cloud simulators in the implementation and evaluation of

virtual machine placement algorithms,” Software: Practice and Experi-

ence, vol. 48, no. 7, pp. 1368-1389, 2018.

, “Two are better than one: An algorithm portfolio approach to

cloud resource management,” in Proc. ESOCC, 2017, pp. 93-108.

C. Krupitzer, F. M. Roth, M. Pfannemiiller, and C. Becker, “Comparison

of approaches for self-improvement in self-adaptive systems,” in Proc.

ICAC, 2016, pp. 308-314.

3

=

[4

=

[7

—

[8

[t

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(171

(18]

[19]

[20]

[21]



[22]

(23]

[24]

[25]
[26]

M. U. Iftikhar and D. Weyns, “ActivFORMS: Active formal models for
self-adaptation,” in Proc. SEAMS, 2014, pp. 125-134.

S. Kounev, J. O. Kephart, A. Milenkoski, and X. Zhu, Eds., Self~Aware
Computing Systems. Springer International Publishing, 2017.

A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in Proc.
ICSE, 2014, pp. 299-310.

K. Astrom and B. Wittenmark, Adaptive control. Courier Corp., 2013.
J. Grohmann, N. Herbst, S. Spinner, and S. Kounev, “Self-tuning
resource demand estimation,” in Proc. ICAC, 2017, pp. 21-26.



