
Integrating formal, soft and diagrammatic approachesin
high-level synthesisand hardware-softwareco-design

�

AndrásOrbán ZoltánÁdámMann

BudapestUniversityof TechnologyandEconomics�
inti,manusz � @cs.bme.hu

Abstract

In this paper, preliminary results and research direc-
tions in high-level synthesisand hardware-software co-
designare presented. The main methodsare demon-
stratedon two casestudies.Thefirst oneshowsthe us-
age of formal and soft methods(application of graph
theory, constraint logic programmingand a genetical-
gorithm) on the scheduling problem of high-level syn-
thesis. The secondcasestudy demonstratesthe appli-
cation of formal verification techniques,such as model
checking and propositionalprovers. Both casestudies
show methodsthat are usually employedin hardware
designonly, but their usage in software designwould
also be possible. At the end of the paper, a hardware-
softwareco-designframeworkis suggestedthatintegrates
all theseapproacheswith thedesigner-friendly diagram-
matictechniquesof software design.

Keywords: hardware-software co-design;high-level syn-
thesis;formal, softanddiagrammaticmethods;schedul-
ing; designverification

1 Intr oduction

Althoughtherearemany connectionsandmany similari-
tiesbetweenhardwareandsoftwaredesign,thetwo fields
have facedsomewhat different challengesand evolved
in somerespectsquite independently. In recentyears
though,with the continuousneedfor designingsystems
with growing complexity, there is a tendency to place
the level of abstractionof the designprocessashigh as
possible,even higheras the decisionwhetherto realize
componentsin hardwareor software.Thetransformation
from thehigh-leveldesignto thehardwareor software(or
mixed) implementationshouldbe automatedasmuchas
�
This paperhasbeenacceptedfor publication in the proceedings

of the workshop’Integrating Diagrammaticand Formal Specification
Techniques’at Informatik2001(Vienna,25-28September2001)

possible.
To addressthehigh-levelsynthesis(HLS) problem,the

PIPEsystem[2] wasdevelopedattheDepartmentof Con-
trol EngineeringandInformationTechnologyof Budapest
Universityof TechnologyandEconomics.PIPEtakesas
input an ElementaryOperationGraph(EOG), the nodes
of which areelementaryoperations(EOs)– suchas,for
instance,additions– andthe edgesrepresentthe flow of
data,alsospecifyingprecedencesbetweentheoperations.
Theoutputof PIPEis thescheduledandallocatedEOG,
i.e. thestartingtimeof theEOsis determinedandtheEOs
are mappedto physicalprocessors.PIPE also handles
pipeline systems,i.e. the restarttime of the systemcan
bespecifiedandPIPEautomaticallymakesthenecessary
modificationsto theEOG,by insertingbuffersor replicat-
ing EOs.

Although HLS was originally inventedfor hardware
synthesis,its methodologiescanalsobeusedin thecase
of softwaresystems.Thetransitionfromhardwareto soft-
wareis mostnaturallydoneby usingthenotionof ’intel-
lectualproperty’: an IP is basicallya componentwith a
well-definedinterface,but which maybeimplementedin
eitherhardwareof software.Thus,theEOsaremappedto
IPs insteadof processors.Of course,hardware-software
co-synthesis(HSCS)canbelookedat from theotherper-
spective aswell, namelyby designinga softwaresystem,
andthenrealizingtheperformance-criticalpartsin hard-
ware. But as it turns out, finding the optimal partition
betweenhardwareandsoftware,alsotakingcommunica-
tion costsinto account,is muchmorecomplex, involving
NP-hardproblems[2].

At this point of thetransitionfrom HLS to HSCS,the
methodsof softwaredesignalsohave to be considered.
Fortunately, thereis a widespreadstandardof diagram-
matic softwaredesign,namelyUML (Unified Modeling
Language),that also inherits from, and extendsformer
methodologiessuchasOMT. For our aimsit is vital that
UML alsoenablesthe formal specificationof semantics
using constraintsexpressedin OCL (Object Constraint

1

Language),becausethis way diagrammaticdesignmay
beintegratedinto anautomatedverificationandsynthesis
framework.

The paper is organizedas follows. Section 2 de-
scribesthe schedulingandallocationproblems,whereas
section3 andsection4 presenttheauthors’resultson ap-
plying formal andsoft methodson the schedulingprob-
lem. Section5 describesa casestudyconductedby the
authorsto uncover the stateof the art in formal verifica-
tion techniques.After presentingall thesepreliminaryre-
sults,section6 concludesthepaperby describinghow all
thesemethodsmaybeintegratedto form agenericHSCS
framework,andhow theparticipatingfieldswouldbenefit
from this.

2 Schedulingand allocation in HLS

The task of the scheduleris to find an optimal valid
schedulingin a given EOG. Usually, thereis an ASAP
(As SoonAs Possible)andALAP (As LateAs Possible)
valuefor thestartingtimeof eachEO.Theschedulermust
fix thestartingtimesbetweenASAPandALAP, but at the
sametime it hasto makesurethattheprecedencesspeci-
fiedby theEOGaresatisfied.

Now what is understoodby anoptimalschedule?Ac-
tually, optimality shouldbe measuredin termsof hard-
warecosts,i.e. the numberof processorsneeded.How-
ever, it is by no meanstrivial to calculatethe numberof
processorsfor agivenschedule:this is exactly thetaskof
allocation.

Allocation mapsthe EOs to physicalprocessors.It
hasto make surethat concurrentoperationswill not be
mappedto thesameprocessor. Thiscanberepresentedby
anothergraph,theso-calledconcurrency graph:its nodes
are againthe EOs, but this time the (undirected)edges
betweentwo nodesmeanthat thecorrespondingtwo op-
erationsareconcurrent.Obviously, allocationis equiva-
lent to the coloring of this graph. Allocating in a min-
imal numberof processorsmeansfinding the chromatic
numberof the concurrency graph,which is an NP-hard
problem.

Although thereare relatively fastheuristicallocation
algorithms, they are not fast enoughto be called as a
subroutineperhapsthousandsof timesby the scheduler.
Therefore,anotherquantitywaschosenas the objective
functionin thescheduler, aquantitythatis easierto com-
putebut theoptimality of whichprobablyimpliestheop-
timality of thenumberof processorsaswell: thenumber
of compatible(i.e. not concurrent)pairs. If the number
of compatiblepairsis high, thismeansthatthereareonly
few edgesin theconcurrencegraphandthereforeits chro-
maticnumberis probablysmall,sothenumberof neces-

saryprocessorsis low.
Sinceallocationis NP-hard,this impliesthat thejoint

problem of schedulingand allocation is also NP-hard.
Oneof theauthors’theoreticresultsis the proof that the
schedulingproblem(as definedabove) is also NP-hard
(see[1]). It is questionablewhetherit is useful to di-
vide an NP-hard problem into two NP-hard problems.
The reasonfor this decompositionis that thereare sig-
nificant differencesbetweenNP-hard problemsaswell,
especiallyconcerningapproximatesolutions. Note that
in many casesit is not vital to find theabsoluteoptimum
but only agoodenoughsolution.

In thecaseof the allocationproblemthereareindeed
quiteefficient heuristicalgorithms.Unfortunatelythis is
not thecasewith scheduling.In PIPEfor instance,since
the actualoptimizationis donein the scheduler, it is the
mostcritical systemcomponentconcerningbothrunning
time andthequality of the foundsolution. For big input
graphs,the runningtime of PIPEis essentiallythe same
asthatof thescheduler. (PIPEcontainsa so-calledforce-
directedscheduler[10].) This motivatesthe searchfor
betterandbetterschedulingalgorithms.

In thenext two sectionstwo schedulingalgorithmsare
presentedthatcanreplacetheschedulerin PIPE.A more
detaileddescriptionanda thoroughevaluationof the al-
gorithmsis givenin [1].

3 Geneticalgorithm

The authorsfirst applieda generalheuristic– a genetic
algorithm(GA [7]) – to theschedulingproblem.Theap-
plication involvesspecifyingwhat individuals,thepopu-
lation,geneticoperationsandthefitnessfunctionare.

Actually, theschedulingproblemis fortunatefrom the
point of view of a geneticalgorithm. The applicability
of geneticalgorithmsrequiresthat the solutionsof the
optimizationproblemcanbe representedby meansof a
vectorwith meaningfulcomponents.Thereis anobvious
vectorrepresentationin the caseof the schedulingprob-
lem: genesarethe startingtimesof the EOs. The order
of thegenesis not indifferenteither: for theefficiency of
recombinationit is vital thatgenesnext to eachotherdo
representcorrelativepiecesof information.

Choosingthe populationis not that straight-forward.
The questionto answeris whether non-valid schedul-
ings(i.e. schedulingsviolatingsomeprecedencesdefined
by the EOG) shouldalso be allowed. Sincenon-valid
schedulingshavenorealphysicalmeaning,it seemsto be
logicalatfirst glanceto work with valid schedulingsonly.
Unfortunately, therearetwo majordrawbacksto this ap-
proach. First, this may constrainefficiency severely.
Namely, it may be possibleto get from a valid individ-

2

ual to a muchbettervalid individual througha coupleof
non-valid individuals,whereasit maynot bepossible(or
perhapsonly in hundredsof steps)to get to it through
valid ones. In sucha case,if non-valid individuals are
not permitted,onewould hardly arrive to the goodsolu-
tion. Theotherproblemis thatit is hardto guaranteethat
geneticoperationsdo not generatenon-valid individuals
even from valid ones. This holdsfor both mutationand
recombination.

For thesereasonstheauthorsdecidedto permitany in-
dividual in thepopulation,not only valid ones.Of course
theschedulermustproducea valid schedulingat theend.
In order to guaranteethis, theremustbe valid individu-
als in the initial populationandthefitnessfunctionmust
bechosenin sucha way thatvalid individualsdo not be-
comeextinct. Theauthors’furtherresultis a theoremfor
generatingseveralvalid individuals[1].

As geneticoperations,mutation, recombinationand
selectionwere used. Mutation is donein the new pop-
ulation; eachindividual is chosenwith the sameproba-
bility. Recombinationis realizedascross-over, from two
individualsof theold populationtwo new individualsare
generated.The roulettemethod[7] is usedfor choosing
the individuals to recombinate.Selectionis realizedas
filling somepartof thenew populationwith thebestindi-
vidualsof theold population.

Thefitnesshastwo components:thefirst oneis theac-
tualobjectivefunction,namelythenumberof compatible
pairs. If only valid individualswereallowed, the fitness
would be equalto the objective function. But non-valid
individualsarealsoallowed; however, they shouldhave
lower fitnessvalues.This is why a secondcomponentof
the fitnessis needed.Sincetheseindividualsshouldbe
motivatedto be lessandlessinvalid, the secondcompo-
nentof the fitnessis a measureof the invalidity, namely
the numberof collisions, i.e. the numberof precedence
rules(edgesof theEOG)thatareviolated.Sothefitness
is monotonouslyincreasingin thenumberof compatible
pairsandmonotonouslydecreasingin thenumberof col-
lisions.

Althoughoptimizationcanbemademoreefficient by
meansof a largepopulation,theschedulermustgiveonly
onesolutionat the end. However, theremay be dozens
of valid individualswith a high objectivevaluein thelast
population.So the bestvalid individualsarechosenand
the allocationprocessis run for all of them. Afterwards
the bestone is chosen(in termsof usedprocessorsand
not compatiblepairsanymore)asoutput.

4 CLP-basedsolution

As an alternative solution, the authorsimplementedan-
otheralgorithmfor the schedulingproblemin HLS. It is
basedonConstraintLogic Programming(CLP[6]). More
specifically, it usestheCLP(FD) library of SICStusPro-
log, a library capableof handlingfinite domainvariables
andconstraintsdefinedon them. Contraryto thegenetic
algorithmpresentedabove,thissolutionis fully determin-
istic. It makes useof a heuristicbasedon engineering
experience,aswell as the power of CLP to reachgood
solutionsby traversingonly afractionof thesearchspace.

The algorithm, called CCLS (Compatibility Con-
trolled List Scheduling)is a variantof list schedulingal-
gorithms[2]. The main ideaof all list schedulingalgo-
rithmsis thatthenodesaretraversedonceandtheir start-
ing timeis fixedto thepositionthatseemsto bebestin the
givensituation.Theorderof thenodesis determinedac-
cordingto agivenheuristicderivedfrom practicalexperi-
ence.Theadvantageof thismethodis its speed,while the
majordisadvantageis that it examinesonly a minor part
of the whole statespace,thusoften yielding suboptimal
solutions.

CCLStriesto eliminatethis disadvantagebut simulta-
neouslykeeptheadvantagesby a goodcompromise.In-
steadof takingevery nodeoneby oneandfixing it to its
currentlyoptimalplace,smallgroupsareformedfrom the
nodes,andthegroupsarefixedto theiroptimalplacecon-
sideringtheaspectof thewholegroup. With this change
morepossibilitiesin thesearchspaceareadverted,there-
fore a betterresultcanbeachieved,but thenodesaretra-
versedstill only once,so the algorithmremainsreason-
ably fast.

Obviously, theeffectivenessof thealgorithmdepends
significantly on the size of the groups(grp). grp � 1
correspondsto theclassicallist scheduling;if grp equals
the numberof the nodes,then the whole statespaceis
searched.By changingthe value of grp, the effective-
ness/requiredtimeratiocanbeadjustedasnecessary.

The objective function is the numberof compatible
pairs.In orderto determinethisnumberin agivenstateof
thealgorithm,everynodehasto befixed,i.e. thestarting
time of eachnodemustbeexactly specified.As a conse-
quence,the algorithmhasto start from a valid schedule
andchangein eachstepthe startingtime of somenodes
to getabetter, but still valid schedule.Thecurrentimple-
mentationstartswith the ALAP schedulewhich is guar-
anteedto bevalid. In a generalstepof thealgorithm,all
thepossiblepositioningsof thenodesin thecurrentgroup
areconsidered,the bestoneis chosen,andin later steps
thesenodesremainunchanged.This resultsin theadvan-
tagethat if thereis not enoughtime to wait until theend

3

of the algorithm,it canbe interruptedat any time andit
will still producea fairly good,andvalid schedule.

Thebiggestproblemin theimplementationof theout-
lined algorithm is that the fixation of a nodecan affect
the mobility domainof other nodes,and thesechanges
have to be updatedcontinuouslyin every stepof the al-
gorithm. It is possiblethat by timing a nodeto another
time slot, oneof the precedencesdefinedby the EOG is
hurt. In orderto correctthis,oneof its neighborshasto be
movedaswell, sothechangemayneedto bepropagated
throughthe whole EOG. This is quite a difficult task in
a traditionalprogramminglanguagelike C. That is why
CLP waschosen,becauseit makessurethat the defined
constraintsarenotviolated.

To every nodea constraintvariablewasorderedthat
denotesthestartingtime of thatnode.Theinitial domain
of thesevariablesis the [ASAP, ALAP] interval. To de-
fine the constraintthat adjacentnodesin the elementary
operationgraphshouldberun sequentially, let usassume
that an edgegoesfrom nodevi to v j . Let Vi andVj be
the correspondingvariablesandlet di be the durationof
nodevi . The following constraintexpressesthat v j can
only bestartedafterfinishingvi : Vi � di � Vj . This kind
of constraintmustbedefinedfor everyedgein theEOG.

Thetaskof definingthenumberof compatiblepairsis
rathercomplicated,becausethecompatibilityrelationof a
pairof nodesdependsonseveralfactors.TheCONCHECK

algorithmdescribedin [2] hadto be implementedto de-
terminethecompatibilityof apairof nodesandto ordera
Booleanvariableto it (1 if compatible,0 if not). Thesum
of theseBooleanvaluesis thenumberof compatiblepairs
which CCLStriesto maximize.

5 The designverification problem

Theprecedingsectionsdescribedseveralmethodsfor au-
tomatedsystemsynthesisprovided that a high-level for-
mal specificationof the modelexists. This sectiondis-
cussespossibletechniquesto formally specify software
or hardwaresystemsandafterwardsverify themagainst
severalcriteria.

Hardwareandsoftwaresystemswill inevitably grow in
scaleandfunctionality. Becauseof this increasein com-
plexity, the likelihoodof subtleerrorsis becomingmuch
greater. Moreover, someof theseerrorsmaycausecatas-
trophiclossof money, time,or evenhumanlife. A major
goal of software and hardwareengineeringis to enable
developersto constructsystemsthat operatereliably de-
spitethiscomplexity. Onewayof achieving thisgoalis by
using formal methods,which are mathematically-based
languages,techniques,andtools for specifyingandveri-
fying suchsystems.Theuseof formal methodsdoesnot

a priori guaranteecorrectness.However, they cangreatly
increaseour understandingof a systemby revealing in-
consistencies,ambiguities,andincompletenessthatmight
otherwisegoundetected.

Verification systemsconsist of the following three
parts:

1. Framework to specify the model: in most casesa
formaldescriptionlanguageis availablefor thatpur-
pose.

2. Specificationlanguagefor the property to verify:
somekind of temporallogic is expected.

3. Verification method to decidewhetheror not the
givenpropertyis truein themodel.

5.1 Hardwareverification

The mostcommontechniquein hardwareverificationis
theso-calledmodelchecking. It is – accordingto theclas-
sificationof verificationsystems– an automatic,model-
based,propertyverificationmethod,which is mostlyap-
plied to parallel, reactive systemsafter systemdevelop-
ment.

Thefirst papersaboutmodelcheckingappearedat the
beginning of the eighties;at that time it waspossibleto
handlesystemswith a coupleof thousandsof statesonly.
In thefirst partof theninetiesanew techniquecalledsym-
bolic modelchecking was developedby Burch, Clarke,
McMillan andDill [4] andBerthet,CoudertandMadre
[5], which in extremecasesmakesit possibleto dealwith
10100 statesdue to an effective representationof states
called binary decisiondiagrams(BDDs). Recently, an
alternative approachhasbeenproposed:the verification
problemis transformedto an equivalentsatisfiability in-
stanceandsolved by meansof highly efficient proposi-
tionalprovers.Representativesof thatareboundedmodel
checking [3] and the usageof Booleanexpressiondia-
grams(BEDs)insteadof BDDs.

The authorscomparedsymbolicmodelcheckingand
verificationwith propositionalproversin acasestudy[9].
To demonstratethepowerof thesemethodsandthewide
rangeof their applicability, theselectedbenchmarkprob-
lem wasnot from the field of hardwaredesign:different
versionsof an NP-hardgame,calledpeg-solitaire, were
used.

Peg-solitaireis a boardgamein which theobjective is
to reachadesiredfinal situationfromastartingpositionof
thefiguresby asequenceof correctsteps.A stepis either
a horizontalor a vertical jump with an arbitrary figure
over a neighboringone that mustbe taken off the table
afterthejump.

4

Informal
Specification Specification

Formal

HW

SW
mov AX,3
add DX,2
push EBP

(UML+OCL,
Specification

Verification

Synthesis

(HLS+HSCS=SLS)

(Model Checking,
Theroem proving)

Z,EOG,...)

Figure1: Visionof systemengineering

Several versionsof the game– varying in size and
shapeof the boardanddealingwith different initial and
final situations– havebeendescribedasSMV (Symbolic
ModelVerifier [8]) models,andthepropertyit is not true
that thegameis solvablehasbeenspecifiedin CTL (com-
putationtreelogic). The SMV systemverifiesthe prop-
erty andin thecaseof a negativeanswerit alsogenerates
a counter-example,i.e. it solvesthegame.

In the otherapproachthe prover SATO (Satisfiability
TestingOptimized[11]) hasbeenusedto testthesatisfi-
ability of a propositionalformula equivalentto the solu-
tion of thegame.To transformtheverificationproblemto
a satisfiabilityproblemtwo kindsof variableshave been
introduced(thenumberof fieldsontheboardis n ands is
thenumberof steps):

� xi � j : true,if f the j-th field is occupiedin thei-th step,
0 � i � s, 0 � j 	 n.

� hi � j � k: true, if f the figure on the j-th field jumps in
the i-th stepin directionk, 1 � i � s, 0 � j 	 n, k
�
north � east � south � west � .

The rulesof the gamecanbe specifiedwith thesevari-
ables,for exampleto expresstheconsequencesof a jump
with thefigureonthe j-th field in thei-th stepin direction
east:

hi � j � east � xi � j � xi � j � 1 ��� xi � j � 2 �
� xi � 1 � j ��� xi � 1 � j � 1 � xi � 1 � j � 2 �

shouldbe declared. With formulassimilar to this, the
whole behavior of the gamecanbe described;after that
it shouldbetransformedto CNF andbegivenasinput to
SATO.

Both methodswere able to solve non-trivial game-
instancesbut the limit of their applicabilitywasalsoex-
ploredwith biggerexamples.Thecalculationwith BDDs
makessymbolicmodelcheckingvery memory-intensive
in contrastto the satisfiability approach,which can be
rather time-consuming. On the other hand, the results

were also comparedto a naive searchalgorithm imple-
mentedin C, basedonrecursiveexhaustivesearch,which
demonstratedthepowerof formal verificationmethods.

Despitetheir imperfectionthesemethodsprovedto be
useful,andin the nearfuture they couldbe integratedin
theautomatedsystem-developmentprocess.

5.2 Software verification

In the presentsoftware-developmentpractice it is still
rather rare to use formal specificationand verification
methods,althoughthesizeandcomplexity of currentsoft-
waresystemswouldrequireformalproofof softwarecor-
rectness.The informal requirementsof thesystemgiven
by theprocurershouldfirst beformally specifiedandthe
specificationshouldbeverified.

Formal methodssupportpreciseandrigorousspecifi-
cationof thoseaspectsof a computersystemthat canbe
expressedin the language.Sincedefiningwhata system
shoulddoandunderstandingtheimplicationsof thesede-
cisions,are the most troublesomeproblemsin software
engineering,the useof formal methodshasmajor bene-
fits. In fact, practitionersof formal methodsfrequently
usethemsolely for recordingprecisespecifications,not
for formal verification.

Formal methodscan deal with many areasof con-
cernto softwareengineers,but have not beenmuchused
otherthanin researchorganizations.Areasin which re-
searchersareexploring formal methodsincludesoftware
safetyandsecurity, fault tolerance,responsetime, space
efficiency, reliability, humanfactors,andsoftwarestruc-
turedependencies.

The most commonly used specification language,
UML, is not a formal language. It is a standarddia-
grammaticmethodto capturesystembehavior, but an
UML specificationcanoftenbe interpretedin many dif-
ferent ways. An extension of UML is OCL (Object
ConstraintLanguage)thatallows thedeveloperto define
several pre- andpost-conditions,invariantsor guardsto
specificelementsof the UML model. Therehave been

5

someefforts to formally verify UML-OCL designs(see
e.g.http://i12www.ira.uka.de/key).

Someof the most well-known formal methodscon-
sist of or include specification languagesfor record-
ing a system’s functionality. Examplesof those are
Z, Dynamic Logic, Communicating Sequential Pro-
cesses(CSP),Larch,FormalDevelopmentMethodology
(FDM). A semi-formalgraphicalmethodis DFD (Data
Flow Diagram),acompletelyformaloneis thePetrinets.

The reasonswhy formal methodsare not yet widely
usedin software-developmentinclude:

� Toolsfor formal softwarespecificationandverifica-
tion arenotintegratedinto theindustrialsoftwareen-
gineeringprocess

� Usersof verificationtoolsareexpectedto know syn-
tax andsemanticsof oneor moreformal languages.
Even worse, often a knowledge of the employed
logic calculusandproof strategiesis necessary.

� Formal methodscan prove that an implementation
satisfiesaformalspecification,but they cannotprove
thata formal specificationcapturesa user’s intuitive
informal understandingof asystem.

6 Conclusion

In our vision of systemengineering(seeFigure 1), the
systemis first informally specifiedin a high-level lan-
guagenearto the mentalityof the user. After that, with
the aid of formal specificationmethodsthe system’s be-
havior shouldbe definedcompletelyand precisely, and
thegeneratedspecificationshouldbecheckedagainstthe
intentionswith formalverificationtechniques.Thisphase
is possiblynot only onesinglestepbut is rathera cyclic
processof verifying thesystemagainstrequirementsand
synthesizingsystempartsfrom the requirements.Note
thatuntil this stageof developmentit is not evendecided
whichpartsof thesystemwill berealizedin softwareand
which in hardware.

After a formal model of the systemis produced,the
instrumentsof HLS andHSCScanbe appliedto realize
anoptimizedimplementationautomatically. Theintegra-
tion of all thesetechnologiesleadsto theso-calledSystem
LevelSynthesis, whichasindicatedin its nameis aneven
higher-orderabstractionthatdoesnotdistinguishbetween
softwareandhardwaredesign.

References
[1] P. Arató, Z. A. Mann,andA. Orbán. Formalmethodsin

high-level synthesis.To bepublished.

[2] P. Arató, T. Visegrády, andI. Jankovits. High levelsynthe-
sisof pipelineddatapaths. JohnWiley andSons,2001.

[3] A. Biere,A. Cimatti,E. M. Clarke,andY. Zhu. Symbolic
modelcheckingwithout BDDs. In Toolsand Algorithms
for ConstructionandAnalysisof Systems, pages193–207,
1999.

[4] J. R. Burch, E. Clarke, K. McMillan, D. Dill, and L.
Hwang. Symbolic model checking: 1020 statesandbe-
yond. In Proc. of the 5th Annual IEEE Symposiumon
Logic in ComputerScience, pages428–439,1990.

[5] O.C.BerthetandJ.C.Madre.New ideasonsymbolicma-
nipulationsof finite statemachines.In IEEEInternational
ConferenceonComputerDesign, 1990.

[6] D. Diaz. CLP(FD),User’s Manual, 1996.

[7] W. Kinnebrock. Optimierungmit genetischenund selek-
tivenAlgorithmen. Oldenbourg, 1994.

[8] K. L. McMillan. TheSMVlanguage, 2000.

[9] A. Orbán.AnalysezweierformalerVerfikationsmethoden.
Master’s thesis,UniversiẗatKarlsruhe,2001.

[10] P. G.PaulinandJ.P. Knight. Force-directedschedulingfor
thebehaviouralsynthesisof ASICs. IEEETransactionson
ComputerAidedDesign, 1989.

[11] H. Zhang. SATO: An efficient propositionalprover. In
W. McCune, editor, Proceedingsof the 14th Interna-
tional ConferenceonAutomatedDeduction, volume1249.
Springer-Verlag,1997.

6

