Integrating formal, soft and diagrammatic approachesn
high-level synthesisand hardware-software co-desigr

AndrasOrban

ZoltanAdamMann

BudapestJniversity of TechnologyandEconomics
{inti, mnusz}@s. bne. hu

Abstract

In this paper preliminary results and reseach direc-
tions in high-level synthesisand hardware-softwae co-
designare presented. The main methodsare demon-
strated on two casestudies. Thefirst one showsthe us-
age of formal and soft methods(application of graph
theory constaint logic programmingand a genetical-

gorithm) on the scheduling problem of high-level syn-
thesis. The secondcasestudy demonstatesthe appli-

cation of formal verification techniques,sud as model
cheding and propositional provers. Both casestudies
show methodsthat are usually employedin hardware
designonly, but their usage in softwae designwould
also be possible At the end of the paper a hardware-

softwae co-desigrframevorkis suggestedhatintegrates
all theseapproacheswith the designesfriendly diagram-
matictechniquesof softwae design.

Keywords. hardware-softwae co-design;high-level syn-
thesis;formal, softand diagrammaticmethods;schedul-
ing; designverification

1 Intr oduction

Althoughtherearemary connectionsandmary similari-
tiesbetweerhardwareandsoftwaredesignthetwo fields
have faced somevhat different challengesand evolved
in somerespectsquite independently In recentyears
though,with the continuousneedfor designingsystems
with growing compleity, thereis a tendeng to place
the level of abstractiorof the designprocessashigh as
possible,even higher asthe decisionwhetherto realize
componentsn hardwareor software. The transformation
from thehigh-level designto the hardwareor software(or
mixed) implementatiorshouldbe automatedas muchas

*This paperhasbeenacceptedor publicationin the proceedings
of the workshop’Integrating Diagrammaticand Formal Specification
Techniquesat Informatik 2001 (Vienna,25-28 SeptembeR001)

possible.

To addresshehigh-levelsynthesigHLS) problem the
PIPEsysten2] wasdevelopedatthe Departmenbf Con-
trol EngineeringandinformationTechnologyof Budapest
University of TechnologyandEconomics.PIPEtakesas
input an ElementaryOperationGraph(EOG), the nodes
of which areelementaryoperationg EOs)— suchas, for
instance additions— andthe edgesrepresenthe flow of
data,alsospecifyingprecedencelsetweertheoperations.
The outputof PIPEis the schedulecandallocatedEOG,
i.e. thestartingtime of theEOsis determinecandthe EOs
are mappedto physical processors.PIPE also handles
pipeline systemsi.e. the restarttime of the systemcan
be specifiedandPIPEautomaticallymakesthe necessary
modificationgo the EOG, by insertingbuffersor replicat-
ing EOs.

Although HLS was originally inventedfor hardware
synthesisjts methodologiezanalsobe usedin the case
of softwaresystemsThetransitionfrom hardwareto soft-
wareis mostnaturallydoneby usingthe notion of ’intel-
lectual property’: an IP is basicallya componentwith a
well-definedinterface but which may beimplementedn
eitherhardwareof software. Thus,the EOsaremappedo
IPsinsteadof processorsOf course hardware-softvare
co-synthesigHSCS)canbelookedat from the otherper
spective aswell, namelyby designinga softwaresystem,
andthenrealizingthe performance-criticapartsin hard-
ware. But asit turnsout, finding the optimal partition
betweerhardwareandsoftware,alsotakingcommunica-
tion costsinto accountjs muchmorecomplex, involving
NP-hardproblemd2].

At this point of the transitionfrom HLS to HSCS,the
methodsof software designalso have to be considered.
Fortunately thereis a widespreadstandardof diagram-
matic software design,namelyUML (Unified Modeling
Language) that also inherits from, and extendsformer
methodologiesuchasOMT. For our aimsit is vital that
UML alsoenableghe formal specificationof semantics
using constraintsexpressedn OCL (Object Constraint



Language) becausehis way diagrammaticdesignmay
beintegratedinto anautomatedrerificationandsynthesis
framework.

The paperis organizedas follows. Section?2 de-
scribesthe schedulingand allocationproblems,whereas
section3 andsection4 presenthe authors’resultson ap-
plying formal and soft methodson the schedulingprob-
lem. Section5 describesa casestudy conductedby the
authorsto uncover the stateof the art in formal verifica-
tion techniquesAfter presentingll thesepreliminaryre-
sults,section6 concludeghe paperby describinghow all
thesemethodanaybeintegratedto form agenericHSCS
frameawork, andhow theparticipatingfieldswould benefit
from this.

2 Schedulingand allocation in HLS

The task of the scheduleris to find an optimal valid
schedulingin a given EOG. Usually, thereis an ASAP
(As SoonAs Possibleand ALAP (As Late As Possible)
valuefor thestartingtime of eachEO. Theschedulemust
fix thestartingtimesbetweemMSAP andALAP, but atthe
sametime it hasto make surethatthe precedencespeci-
fied by the EOG aresatisfied.

Now whatis understoody anoptimal scheduleAc-
tually, optimality shouldbe measuredn termsof hard-
ware costs,i.e. the numberof processorsieeded.How-
ever, it is by no meandtrivial to calculatethe numberof
processorfor agivenschedulethis is exactly the taskof
allocation.

Allocation mapsthe EOsto physical processors. It
hasto make surethat concurrentoperationswill not be
mappedo thesameprocessarThiscanberepresentety
anothemgraph,the so-calledconcurreng graph:its nodes
are againthe EQOs, but this time the (undirected)edges
betweenwo nodesmeanthatthe correspondingwo op-
erationsare concurrent.Obviously, allocationis equiva-
lent to the coloring of this graph. Allocating in a min-
imal numberof processorsneansfinding the chromatic
numberof the concurreng graph,which is an NP-hard
problem.

Although thereare relatively fastheuristicallocation
algorithms, they are not fast enoughto be called as a
subroutineperhapshousand®f times by the scheduler
Therefore,anotherquantity was chosenas the objective
functionin the schedulera quantitythatis easietto com-
putebut the optimality of which probablyimpliesthe op-
timality of the numberof processorgaswell: the number
of compatible(i.e. not concurrent)pairs. If the number
of compatiblepairsis high, this meanghatthereareonly
few edgesn theconcurrencgraphandthereforets chro-
matic numberis probablysmall, sothe numberof neces-

saryprocessorss low.

Sinceallocationis NP-hard,this impliesthatthe joint
problem of schedulingand allocationis also NP-hard.
Oneof the authors’theoreticresultsis the proof that the
schedulingproblem (as definedabove) is also NP-hard
(see[1]). It is questionablenvhetherit is useful to di-
vide an NP-hard probleminto two NP-hard problems.
The reasonfor this decompositioris that there are sig-
nificant differencesbetweenNP-hard problemsas well,
especiallyconcerningapproximatesolutions. Note that
in mary casest is notvital to find the absoluteoptimum
but only agoodenoughsolution.

In the caseof the allocationproblemthereareindeed
quite efficient heuristicalgorithms. Unfortunatelythis is
not the casewith scheduling.In PIPEfor instance since
the actualoptimizationis donein the schedulerit is the
mostcritical systemcomponentoncerningoothrunning
time andthe quality of the found solution. For big input
graphsthe runningtime of PIPEis essentiallythe same
asthatof the scheduler(PIPEcontainsa so-calledforce-
directedscheduleff{10].) This motivatesthe searchfor
betterandbetterschedulingalgorithms.

In the next two sectiongwo schedulingalgorithmsare
presentedhatcanreplacethe schedulein PIPE.A more
detaileddescriptionand a thoroughevaluationof the al-
gorithmsis givenin [1].

3 Geneticalgorithm

The authorsfirst applieda generalheuristic— a genetic
algorithm(GA [7]) —to theschedulingoroblem. The ap-
plicationinvolvesspecifyingwhatindividuals,the popu-
lation, geneticoperationsandthefitnessfunctionare.

Actually, theschedulingoroblemis fortunatefrom the
point of view of a geneticalgorithm. The applicability
of geneticalgorithmsrequiresthat the solutionsof the
optimizationproblemcanbe representedy meansof a
vectorwith meaningfulcomponentsThereis anobvious
vectorrepresentatiom the caseof the schedulingprob-
lem: genesarethe startingtimes of the EOs. The order
of thegenesds notindifferenteither: for the efficiency of
recombinationit is vital thatgenesnext to eachotherdo
representorrelative piecesof information.

Choosingthe populationis not that straight-forward.
The questionto answeris whethernon-valid schedul-
ings(i.e. schedulingwiolating someprecedencedefined
by the EOG) should also be allowed. Since non-valid
schedulinghave norealphysicalmeaningjt seemgo be
logical atfirst glanceto work with valid scheduling®nly.
Unfortunately therearetwo major drawbacksto this ap-
proach. First, this may constrainefficiency severely
Namely it may be possibleto get from a valid individ-



ual to a muchbettervalid individual througha coupleof
non-\alid individuals,whereast may not be possible(or
perhapsonly in hundredsof steps)to getto it through
valid ones. In sucha case,if non-valid individuals are
not permitted,onewould hardly arrive to the good solu-
tion. Theotherproblemis thatit is hardto guaranteg¢hat
geneticoperationgdo not generatenon-valid individuals
even from valid ones. This holdsfor both mutationand
recombination.

For thesereasongheauthorsdecidedo permitary in-
dividualin the population,notonly valid ones.Of course
the schedulemustproducea valid schedulingattheend.
In orderto guaranteehis, theremustbe valid individu-
alsin theinitial populationandthe fithessfunction must
be chosenn suchaway thatvalid individualsdo not be-
comeextinct. Theauthors’furtherresultis a theoremfor
generatingeveralvalid individuals[1].

As geneticoperations,mutation, recombinationand
selectionwere used. Mutation is donein the new pop-
ulation; eachindividual is chosenwith the sameproba-
bility. Recombinations realizedascross-wer, from two
individualsof the old populationtwo new individualsare
generated.The roulettemethod[7] is usedfor choosing
the individualsto recombinate. Selectionis realizedas
filling somepartof thenew populationwith the bestindi-
vidualsof theold population.

Thefitnesshastwo componentsthefirst oneis theac-
tual objective function,namelythe numberof compatible
pairs. If only valid individualswere allowed, the fithess
would be equalto the objective function. But non-valid
individuals are also allowed; however, they shouldhave
lower fitnessvalues. This is why a secondcomponenbf
the fithessis needed. Sincetheseindividuals shouldbe
motivatedto be lessandlessinvalid, the secondcompo-
nentof the fitnessis a measureof the invalidity, namely
the numberof collisions, i.e. the numberof precedence
rules(edgesof the EOG)thatareviolated. Sothefitness
is monotonouslyincreasingn the numberof compatible
pairsandmonotonouslydecreasingn the numberof col-
lisions.

Although optimizationcanbe mademoreefficient by
meansf alarge population the schedulemustgive only
one solutionat the end. However, theremay be dozens
of valid individualswith a high objective valuein thelast
population. So the bestvalid individualsare chosenand
the allocationprocesss run for all of them. Afterwards
the bestoneis chosen(in termsof usedprocessorand
not compatiblepairsanymore)asoutput.

4 CLP-basedsolution

As an alternatie solution, the authorsimplementedan-
otheralgorithmfor the schedulingoroblemin HLS. It is
basedn Constraint.ogic ProgrammindCLP[6]). More
specifically it usesthe CLP(FD) library of SICStusPro-
log, alibrary capableof handlingfinite domainvariables
andconstraintdefinedon them. Contraryto the genetic
algorithmpresente@bove, this solutionis fully determin-
istic. It makesuseof a heuristicbasedon engineering
experience,aswell asthe power of CLP to reachgood
solutionsby traversingonly afractionof thesearctspace.

The algorithm, called CCLS (Compatibility Con-
trolled List Scheduling)s a variantof list schedulingal-
gorithms[2]. The mainideaof all list schedulingalgo-
rithmsis thatthe nodesaretraversedonceandtheir start-
ing timeis fixedto thepositionthatseemdo bebestin the
givensituation. The orderof the nodesis determinecac-
cordingto agivenheuristicderivedfrom practicalexperi-
ence.Theadwantageof this methodis its speedwhile the
major disadantages thatit examinesonly a minor part
of the whole statespace thus often yielding suboptimal
solutions.

CCLStriesto eliminatethis disadwantagebut simulta-
neouslykeepthe advantagedy a goodcompromise.ln-
steadof taking every nodeoneby oneandfixing it to its
currentlyoptimalplace ,smallgroupsareformedfrom the
nodesandthegroupsarefixedto theiroptimalplacecon-
sideringthe aspecbf thewhole group. With this change
morepossibilitiesin the searchspaceareadwerted there-
fore a betterresultcanbe achiesed,but the nodesaretra-
versedstill only once,so the algorithm remainsreason-
ablyfast.

Obviously, the effectivenesof the algorithmdepends
significantly on the size of the groups(grp). grp=1
correspondso the classicallist schedulingjf grp equals
the numberof the nodes,then the whole statespaceis
searched.By changingthe value of grp, the effective-
ness/requiretime ratio canbe adjustecasnecessary

The objective function is the numberof compatible
pairs.In orderto determinghis numberin agivenstateof
thealgorithm,every nodehasto befixed,i.e. thestarting
time of eachnodemustbe exactly specified.As a conse-
quence the algorithmhasto startfrom a valid schedule
andchangein eachstepthe startingtime of somenodes
to getabetter but still valid scheduleThecurrentimple-
mentationstartswith the ALAP schedulewhich is guar
anteedo bevalid. In a generalstepof the algorithm,all
thepossiblepositioningsof thenodesn the currentgroup
areconsideredthe bestoneis chosenandin later steps
thesenodesremainunchangedThis resultsin the advan-
tagethatif thereis not enoughtime to wait until the end



of the algorithm, it canbe interruptedat ary time andit
will still produceafairly good,andvalid schedule.

Thebiggestproblemin theimplementatiorof the out-
lined algorithmis that the fixation of a node can affect
the mobility domainof other nodes,and thesechanges
have to be updatedcontinuouslyin every stepof the al-
gorithm. It is possiblethat by timing a nodeto another
time slot, one of the precedencedefinedby the EOG is
hurt. In orderto correctthis, oneof its neighborshasto be
movedaswell, sothe changemay needto be propagated
throughthe whole EOG. This is quite a difficult taskin
a traditional programminglanguagdike C. Thatis why
CLP waschosenbecausédt makessurethatthe defined
constraintarenotviolated.

To every nodea constraintvariablewas orderedthat
denoteghe startingtime of thatnode. Theinitial domain
of thesevariablesis the [ASAP, ALAP] interval. To de-
fine the constraintthat adjacentnodesin the elementary
operationgraphshouldberun sequentiallylet usassume
that an edgegoesfrom nodev; to vj. LetV; andV; be
the correspondingariablesandlet d; be the durationof
nodev;. The following constraintexpresseghatv; can
only be startedafter finishingvi: V; +d; <Vj. Thiskind
of constraintmustbe definedfor every edgein the EOG.

Thetaskof definingthe numberof compatiblepairsis
rathercomplicatedbecaus¢hecompatibilityrelationof a
pairof nodesdepend®n severalfactors. The CONCHECK
algorithmdescribedn [2] hadto be implementedo de-
terminethe compatibility of a pair of nodesandto ordera
Booleanvariabletoit (1 if compatible if not). Thesum
of theseBooleanvaluesis thenumberof compatiblepairs
which CCLStriesto maximize.

5 The designverification problem

The precedingsectiondescribedsereralmethoddor au-

tomatedsystemsynthesigrovided that a high-level for-

mal specificationof the model exists. This sectiondis-

cussegpossibletechniquego formally specify software
or hardware systemsand afterwardsverify themagainst
severalcriteria.

Hardwareandsoftwaresystemawill inevitably grow in
scaleandfunctionality. Becauseof thisincreasen com-
plexity, thelikelihoodof subtleerrorsis becomingmuch
greater Moreover, someof theseerrorsmay causecatas-
trophiclossof money, time, or evenhumanlife. A major
goal of software and hardware engineerings to enable
developersto constructsystemshat operatereliably de-
spitethiscomplexity. Oneway of achiesing thisgoalis by
using formal methods,which are mathematically-based
languagestechniquesandtools for specifyingandveri-
fying suchsystems.The useof formal methodsdoesnot

a priori guaranteeorrectnesstHowever, they cangreatly
increaseour understandingf a systemby revealingin-
consistenciesmbiguitiesandincompletenesthatmight
otherwisego undetected.

Verification systemsconsist of the following three
parts:

1. Framevork to specify the model: in most casesa
formal descriptionanguages availablefor thatpur-
pose.

2. Specificationlanguagefor the property to verify:
somekind of temporalogic is expected.

3. Verification method to decidewhetheror not the
givenpropertyis truein the model.

5.1 Hardware verification

The mostcommontechniquein hardware verificationis
theso-callednodelcheding. It is—accordingo theclas-
sification of verificationsystems- an automatic,model-
based propertyverificationmethod,which is mostly ap-
plied to parallel, reactize systemsafter systemdevelop-
ment.

Thefirst papersaboutmodelcheckingappearedtthe
beginning of the eighties;at thattime it was possibleto
handlesystemswith a coupleof thousand®f statesonly.
In thefirst partof theninetiesanew techniquecalledsym-
bolic modelcheking was developedby Burch, Clarke,
McMillan andDill [4] and Berthet, Coudertand Madre
[5], whichin extremecasesnakesit possibleto dealwith
10190 statesdue to an effective representatiorof states
called binary decisiondiagrams (BDDs). Recently an
alternatve approachhasbeenproposed:the verification
problemis transformedo an equivalentsatisfiability in-
stanceand solved by meansof highly efficient proposi-
tional provers.Representatesof thatareboundednodel
cheding [3] and the usageof Booleanexpressiondia-
grams(BEDs)insteadof BDDs.

The authorscomparedsymbolic model checkingand
verificationwith propositionaproversin a casestudy[9].
To demonstratehe power of thesemethodsandthe wide
rangeof their applicability, the selectecdbenchmarlprob-
lem wasnot from the field of hardwaredesign: different
versionsof an NP-hardgame,called peg-solitaire, were
used.

Pay-solitaireis aboardgamein which the objectveis
toreachadesiredinal situationfrom astartingpositionof
thefiguresby asequencef correctsteps.A stepis either
a horizontalor a vertical jump with an arbitrary figure
over a neighboringone that must be taken off the table
afterthejump.



Specification

(UML+OCL,
Z,EOG,..) ) mov AX,3
Informal Formal Synthesis N 757\/\7/7 ;ﬁghfégp”
Specification Specification | 4 s+mscs=sts) | HWE&
Verification

(Model Checking,
Theroem proving)

Figurel: Vision of systemengineering

Several versionsof the game— varying in size and
shapeof the boardand dealingwith differentinitial and
final situations— have beendescribecasSMV (Symbolic
Model Verifier [8]) models,andthe propertyit is nottrue
thatthegameis solvablehasbeenspecifiedn CTL (com-
putationtreelogic). The SMV systemverifiesthe prop-
erty andin the caseof a negative answelit alsogenerates
acounterexamplei.e. it solvesthegame.

In the otherapproachthe prover SATO (Satisfiability
TestingOptimized[11]) hasbeenusedto testthe satisfi-
ability of a propositionalformula equivalentto the solu-
tion of thegame.To transformtheverificationproblemto
a satisfiability problemtwo kinds of variableshave been
introducedthe numberof fieldsontheboardis n andsis
the numberof steps):

e X j: true,iff the j-th field is occupiedn thei-th step,
0<i<s0<j<n

e hijk: true,iff the figure on the j-th field jumpsin
thei-th stepin directionk, 1 <i <s 0<j<n ke
{north,eag,souh,wes}.

The rules of the gamecan be specifiedwith thesevari-
ables for exampleto expresghe consequenceasf ajump
with thefigureonthe j-th field in thei-th stepin direction
east

hijeas = (X,j A Xij+1 A =X j+2 A
“Xit1j A Xk j+1 A Xikd,j+2)

should be declared. With formulas similar to this, the
whole behaior of the gamecanbe described;after that
it shouldbetransformedo CNF andbegivenasinputto
SATO.

Both methodswere able to solve non-trivial game-
instancesut the limit of their applicability wasalso ex-
ploredwith biggerexamples.Thecalculationwith BDDs
makes symbolicmodel checkingvery memory-intensie
in contrastto the satisfiability approach,which can be
rathertime-consuming. On the other hand, the results

were also comparedio a naive searchalgorithmimple-
mentedn C, basednrecursve exhaustie searchwhich
demonstratethe power of formal verificationmethods.
Despitetheirimperfectionthesemethodgrovedto be
useful,andin the nearfuture they could be integratedin
theautomatedystem-deelopmentprocess.

5.2 Software verification

In the presentsoftware-deelopmentpracticeit is still
ratherrare to use formal specificationand verification
methodsalthoughthesizeandcomplexity of currentsoft-
waresystemavould requireformal proof of softwarecor-
rectness.The informal requirement®f the systemgiven
by the procurershouldfirst be formally specifiedandthe
specificatiorshouldbe verified.

Formal methodssupportpreciseand rigorousspecifi-
cationof thoseaspectf a computersystemthat canbe
expressedn thelanguage Sincedefiningwhata system
shoulddo andunderstandingheimplicationsof thesede-
cisions, are the mosttroublesomeproblemsin software
engineeringthe useof formal methodshasmajor bene-
fits. In fact, practitionersof formal methodsfrequently
usethemsolely for recordingprecisespecificationsnot
for formal verification.

Formal methodscan deal with mary areasof con-
cernto softwareengineersbut have not beenmuchused
otherthanin researclorganizations.Areasin which re-
searchersireexploring formal methodsnclude software
safetyandsecurity fault tolerance responsdime, space
efficiengy, reliability, humanfactors,and software struc-
turedependencies.

The most commonly used specification language,
UML, is not a formal language. It is a standarddia-
grammaticmethodto capturesystembehaior, but an
UML specificationcanoften be interpretedin mary dif-
ferent ways. An extensionof UML is OCL (Object
ConstraintLanguage}hat allows the developerto define
several pre- and post-conditionsjnvariantsor guardsto
specificelementsof the UML model. Therehave been



someefforts to formally verify UML-OCL designs(see
e.g.http://i 12w i ra. uka de/ key).

Someof the most well-known formal methodscon-
sist of or include specificationlanguagesfor record-
ing a systems functionality Examplesof those are
Z, Dynamic Logic, Communicating Sequential Pro-
cesseq4CSP),Larch, Formal DevelopmentMethodology
(FDM). A semi-formalgraphicalmethodis DFD (Data
Flow Diagram),a completelyformal oneis the Petrinets.

The reasonswhy formal methodsare not yet widely
usedin software-deelopmeninclude:

e Toolsfor formal softwarespecificatiorandverifica-
tion arenotintegratednto theindustrialsoftwareen-
gineeringprocess

o Usersof verificationtoolsareexpectedo know syn-
tax andsemanticof oneor moreformal languages.
Even worse, often a knowledge of the employed
logic calculusandproof stratgjiesis necessary

e Formal methodscan prove that an implementation
satisfiesaformal specificationput they cannotprove
thata formal specificationcapturesa usersintuitive
informal understandingf asystem.

6 Conclusion

In our vision of systemengineering(seeFigure 1), the
systemis first informally specifiedin a high-level lan-
guagenearto the mentality of the user After that, with
the aid of formal specificationmethodsthe systems be-
havior shouldbe definedcompletelyand precisely and
thegeneratedpecificatiorshouldbe checled againsthe
intentionswith formal verificationtechniquesThis phase
is possiblynot only onesingle stepbut is rathera cyclic
procesof verifying the systemagainstrequirement&nd
synthesizingsystempartsfrom the requirements.Note
thatuntil this stageof developmenit is notevendecided
which partsof the systemwill berealizedin softwareand
whichin hardware.

After a formal model of the systemis producedthe
instrumentsof HLS and HSCScanbe appliedto realize
anoptimizedimplementatiorautomatically The integra-
tion of all theseechnologieseadsto theso-calledSystem
Level Synthesiswhich asindicatedin its nameis aneven
higherorderabstractionthatdoesnotdistinguishbetween
softwareandhardwaredesign.

References

[1] P Aratd, Z. A. Mann,andA. Orban. Formal methodsin
high-level synthesisTo bepublished.

[2] P Arato, T. Visegrady, andl. Janlovits. High level synthe-
sisof pipelineddatapaths JohnWiley andSons,2001.

[3] A. Biere,A. Cimatti, E. M. Clarke,andY. Zhu. Symbolic
modelcheckingwithout BDDs. In Tools and Algorithms
for Constructionand Analysisof Systemspagesl 93207,
1999.

[4] J. R. Burch, E. Clarke, K. McMillan, D. Dill, and L.
Hwang. Symbolic model checking: 10?° statesand be-
yond. In Proc. of the 5th Annual IEEE Symposiunon
Logic in ComputerSciencepagesA28-439,1990.

[5] O.C.BerthetandJ.C.Madre.New ideasonsymbolicma-
nipulationsof finite statemachinesin IEEE International
Confeenceon ComputerDesign 1990.

[6] D.Diaz.CLP(FD),User's Manual 1996.

[7]1 W. Kinnebrock. Optimierungmit genetisbenund selek-
tiven Algorithmen Oldenboug, 1994.

[8] K.L.McMillan. TheSMVlanguage, 2000.

[9] A. Orban.AnalysezweierformalerVerfikationsmethoden.
Masters thesis,Universitt Karlsruhe,2001.

[10] P.G.PaulinandJ.P. Knight. Force-directegchedulingor
thebehaioural synthesiof ASICs. IEEE Transaction®n
ComputerAidedDesign 1989.

[11] H. Zhang. SATO: An efficient propositionalprover. In
W. McCune, editor, Proceedingsof the 14th Interna-
tional Confeenceon AutomatedDeduction volume1249.
Springe#Verlag,1997.



