
1

Optimization Problems in Fog and Edge
Computing1

Zoltán Ádám Mann

1 Introduction
Fog / edge computing arises through the increasing convergence and integration of

several – traditionally distinct – disciplines: cloud computing on one hand, mobile

computing and the Internet of Things (IoT) on the other hand, and advanced network-

ing technologies as a glue between them. The main idea is to combine the strengths

of these technologies to provide the necessary compute power to end-user applica-

tions in a cost-effective and secure way, with low latencies. Thus, fog / edge compu-

ting brings significant benefits to all of the underlying fields.

The notions of fog computing and edge computing are somewhat vaguely de-

fined in the literature and have largely overlapping meaning [1]. In this chapter, we

use the terms “fog computing” and “edge computing” interchangeably to refer to an

architecture combining cloud computing with resources on the network edge and end-

user devices.

In cloud computing, there has been an evolution for several years from cen-

tralized architectures (one or few large data centers) towards increasing decentraliza-

tion (several smaller data centers), which is still continuing, and fog / edge computing

is a natural next step on this evolution trajectory [2]. Geographically distributed data

centers lead to decreased latency for applications involving distributed data sources

and sinks (e.g., users or sensors / actuators), since each data source / sink can be

1 This article is Chapter 5 in the book “Fog and Edge Computing: Principles and Para-
digms”, edited by Rajkumar Buyya and Satish Narayana Srirama, published by John
Wiley & Sons, 2019. ISBN: 9781119524984

2

served by a nearby data center. Other benefits include improved fault tolerance as

well as access to green energy sources of limited capacity [3].

From the point of view of mobile computing and IoT, the devices’ limited

computational capacity and limited battery life span are major challenges [4]. By of-

floading resource-intensive compute tasks to more powerful nodes – such as servers

in a data center or compute resources at the network edge – the range of possible ap-

plications can be widened significantly [5].

Optimization plays a crucial role in fog computing. For example, minimizing

latency and energy consumption are just as important as maximizing security and reli-

ability. Because of the high complexity of typical fog deployments (many different

types of devices, with many different types of interactions) and their dynamic nature

(mobile devices coming and going, devices or network connections failing perma-

nently or temporarily etc.), it has become virtually impossible to ensure the best solu-

tion by design. Rather, the best solution should be determined using appropriate opti-

mization techniques.

For this purpose, it is vital to define the relevant optimization problem(s) care-

fully and precisely. Indeed, the used problem formulation can have dramatic conse-

quences on the practical applicability of the approach (e.g., omitting an important

constraint may lead to solutions that cannot be applied in practice), as well as on its

computational complexity.

Research on fog computing is still in its infancy. Some specific optimization

problems have been defined, but in an ad hoc manner, independently from each other.

As a result, it is difficult to compare or combine different approaches, because they

usually address different variants or facets of the same problem and such subtle differ-

ences are often not apparent. (Earlier, we have witnessed a similar situation in cloud

3

computing research as well [6].) Also, the quality and level of detail of existing prob-

lem formulations is quite heterogeneous.

Therefore, the aim of this chapter is to propose a generic conceptual frame-

work for optimization problems in fog computing, based on consistent, well-defined,

and formalized notation for constraints and optimization objectives. Using a taxon-

omy of problem formulations, their relationships will become clear, also highlighting

the gaps that necessitate further research. With this standard reference, we hope to

contribute significantly to the maturation of this field of research.

2 Background / Related Work
The concept of fog computing was introduced by Cisco in 2012 as a means to extend

cloud computing capabilities to the network edge, thus enabling more advanced appli-

cations [7]. Since then, an increasing number of research papers have been published

on fog computing. This is exemplified by Figure 1, which shows the development of

the number of papers and number of citations in fog computing, available in the Sco-

pus database2 on 7th December 2017. The used search query was “TITLE-ABS-KEY

("fog computing")”, meaning that the phrase “fog computing” must occur in the title,

the abstract, or the keywords of the paper.

2 https://www.scopus.com

4

(a) (b)

Figure 1: Number of (a) papers and (b) citations in fog computing

Several of those papers describe technologies, architectures, and applications

in a fog computing setting. However, the number of papers that deal with optimiza-

tion in fog computing is also quickly rising. This is demonstrated by Figure 2, which

shows the number of papers and number of citations obtained from the Scopus data-

base on 7th December 2017, with the search query “TITLE-ABS-KEY ("fog compu-

ting") AND TITLE-ABS-KEY (optim*)”, meaning that both the phrase “fog com-

puting” and a word starting with “optim” (like optimal, optimized, or optimization)

must occur in the title, the abstract, or the keywords of the paper.

(a) (b)

Figure 2: Number of (a) papers and (b) citations about optimization in fog computing

5

Later in Section 9, when the essential characteristics of optimization problems

in fog computing have already been defined, we will show how existing literature on

optimization in fog computing can be classified.

3 Preliminaries
Before delving into optimization problems and optimization approaches in fog com-

puting, we describe some essential properties and notions of optimization in general.

An optimization problem is generally defined by the following [8]:

• a list of variables �̅�𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

• the domain – i.e., the set of valid values – of each variable; the domain

of variable 𝑥𝑥𝑖𝑖 is denoted by 𝐷𝐷𝑖𝑖

• a list of constraints (𝐶𝐶1, … ,𝐶𝐶𝑚𝑚); constraint 𝐶𝐶𝑗𝑗 relates to some variables

𝑥𝑥𝑗𝑗1 , … , 𝑥𝑥𝑗𝑗𝑘𝑘 and defines the valid tuples for those variables in the form

of a set 𝑅𝑅𝑗𝑗 ⊆ 𝐷𝐷𝑗𝑗1 × ⋯× 𝐷𝐷𝑗𝑗𝑘𝑘

• an objective function 𝑓𝑓:𝐷𝐷1 × ⋯× 𝐷𝐷𝑛𝑛 → ℝ

The problem then consists of finding appropriate values 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 for the variables,

such that all of the following holds:

(1) 𝑣𝑣𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖 for each 𝑖𝑖 = 1, … ,𝑛𝑛

(2) for any constraint 𝐶𝐶𝑗𝑗 relating to variables 𝑥𝑥𝑗𝑗1 , … , 𝑥𝑥𝑗𝑗𝑘𝑘, it holds that

(𝑣𝑣𝑗𝑗1 , … , 𝑣𝑣𝑗𝑗𝑘𝑘) ∈ 𝑅𝑅𝑗𝑗

(3) 𝑓𝑓(𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) is maximum among all (𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) tuples that satisfy (1)

and (2)

A tuple (𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) that satisfies (1) and (2) is called a solution of the problem. Thus,

the goal is to find the solution with highest 𝑓𝑓 value. At least, this is the case for maxi-

mization problems (as defined above). For a minimization problem, the goal is to find

6

the solution with lowest 𝑓𝑓 value, which is equivalent to finding the solution that max-

imizes the objective function 𝑓𝑓′ = −𝑓𝑓. In case of minimization problems, the objec-

tive function is often called cost function because it represents some – real or fictive –

cost that needs to be minimized.

It is important to differentiate between a practical problem in engineering –

e.g., minimization of power consumption in fog computing – and a formally defined

optimization problem as outlined above. Deriving a formalized optimization problem

from a practical problem is a non-trivial process, in which the variables, their do-

mains, the constraints, and the objective function have to be defined. In particular,

there are usually many different ways to formalize a practical problem, leading to dif-

ferent formal optimization problems. Formalizing the problem is also a process of ab-

straction, in which some non-essential details are suppressed or some simplifying as-

sumptions are made. Different formalizations of the same practical problem may ex-

hibit different characteristics for example in terms of computational complexity.

Therefore, the decisions made during problem formalization have high impact. Prob-

lem formalization implies finding the most appropriate trade-off between the general-

ity and applicability of the formalized problem on one hand and its simplicity, clarity,

and computational tractability on the other hand. This requires expertise and an itera-

tive approach in which different ways of formalizing the problem are evaluated.

It should be mentioned that some papers jump from an informal problem de-

scription directly to devising some algorithm, without formally defining the problem

first. This, however, has the disadvantage of prohibiting precise reasoning about the

problem itself, e.g., about its computational complexity or its similarity with known

other problems that could lead to the adoption of existing algorithms.

7

In the above definition of a general optimization problem, it was assumed that

there is a single real-valued objective function. However, in several practical prob-

lems, there are multiple objectives and the difficulty of the problem often lies in bal-

ancing between conflicting objectives. Let the objective functions be 𝑓𝑓1, … , 𝑓𝑓𝑞𝑞, where

the aim is to maximize all of them. Since there is generally no solution that maximizes

all of the objective functions simultaneously, some modification is necessary to obtain

a well-defined optimization problem. The most common approaches for that are the

following [9]:

• Adding lower bounds to all but one of the objective functions and max-

imizing the last one. That means adding constraints of the form

𝑓𝑓𝑠𝑠(𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) ≥ 𝑙𝑙𝑠𝑠, where 𝑙𝑙𝑠𝑠 is an appropriate constant, for all 𝑠𝑠 =

1, … , 𝑞𝑞 − 1, and maximizing 𝑓𝑓𝑞𝑞(𝑣𝑣1, … , 𝑣𝑣𝑛𝑛).

• Scalarizing all objective functions into a single combined objective

function 𝑓𝑓𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑖𝑖𝑛𝑛𝑐𝑐𝑐𝑐(𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) = 𝐹𝐹�𝑓𝑓1(𝑣𝑣1, … , 𝑣𝑣𝑛𝑛), … ,𝑓𝑓𝑞𝑞(𝑣𝑣1, … , 𝑣𝑣𝑛𝑛)�.

Common choices for the function 𝐹𝐹 are product and weighted sum.

• Looking for Pareto-optimal solutions. A solution (𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) domi-

nates another solution (𝑣𝑣′1, … , 𝑣𝑣′𝑛𝑛), if 𝑓𝑓𝑠𝑠(𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) ≥ 𝑓𝑓𝑠𝑠(𝑣𝑣′1, … , 𝑣𝑣′𝑛𝑛)

holds for all 𝑠𝑠 = 1, … , 𝑞𝑞, and 𝑓𝑓𝑠𝑠(𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) > 𝑓𝑓𝑠𝑠(𝑣𝑣′1, … , 𝑣𝑣′𝑛𝑛) holds for

at least one value of 𝑠𝑠, i.e., (𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) is at least as good as

(𝑣𝑣′1, … , 𝑣𝑣′𝑛𝑛) regarding each objective and it is strictly better regarding

at least one objective. A solution is called Pareto-optimal, if it is not

dominated by any other solution. In other words, a Pareto-optimal so-

lution can only be improved with regard to an objective if it is wors-

8

ened regarding some other objective. Different Pareto-optimal solu-

tions of a problem represent different trade-offs between the objec-

tives, but all of them are optimal in the above sense.

4 The Case for Optimization in Fog Computing
The fundamental motivation for the developments leading to fog computing are

strongly related to some important quality attributes that should be improved. As ex-

plained earlier, fog computing can be seen as an extension of cloud computing to-

wards the network edge, with the aim of providing lower latencies for latency-critical

applications within end devices. In other words, the optimization objective of mini-

mizing latency is a major driving force behind fog computing [10].

On the other hand, from the point of view of end devices, fog computing

promises significantly increased compute capabilities, enabling the execution of com-

pute-intensive tasks quickly and without major impact on energy consumption of the

device. Therefore, optimization relating to execution time and energy consumption

are also fundamental aspects of fog computing.

As we will see shorty in Section 6, several other optimization objectives are

relevant to fog computing as well. Moreover, there are non-trivial interactions, some-

times also conflicts, among the different objectives. Hence it is important to systemat-

ically study the different aspects of optimization in fog computing.

5 Formal Modelling Framework for Fog Computing
Before discussing individual optimization objectives, it is useful to define a generic

framework for modeling – different variants of – the problem.

9

Figure 3: Three-layer model of fog computing

As shown in Figure 3, fog computing can be represented by a hierarchical

three-layer model [11]. Higher layers represent higher computational capacity, but at

the same time also higher distance – and thus higher latency – from the end devices.

On the highest layer is the cloud with its virtually unlimited, high-performance, and

cost- and energy-efficient resources. The middle layer consists of a set of edge re-

sources: machines offering compute services near the network edge, e.g. in base sta-

tions, routers, or small, geographically distributed data centers of telecommunication

providers. The edge resources are all connected to the cloud. Finally, the lowest layer

contains the end devices like mobile phones or IoT devices. Each end device is con-

nected to one of the edge resources.

More formally, let 𝑐𝑐 denote the cloud, 𝐸𝐸 the set of edge resources, 𝐷𝐷𝑐𝑐 the set

of end devices connected to edge resource 𝑒𝑒 ∈ 𝐸𝐸, and 𝐷𝐷 = ⋃ 𝐷𝐷𝑐𝑐𝑐𝑐∈𝐸𝐸 the set of all end

devices. The set of all resources is 𝑅𝑅 = {𝑐𝑐} ∪ 𝐸𝐸 ∪ 𝐷𝐷. Each resource 𝑟𝑟 ∈ 𝑅𝑅 is associ-

ated with a compute capacity 𝑎𝑎(𝑟𝑟) ∈ ℝ+ and a compute speed 𝑠𝑠(𝑟𝑟) ∈ ℝ+. Moreover,

each resource has some power consumption, which depends on its computational

load. Specifically, the power consumption of resource 𝑟𝑟 increases by 𝑤𝑤(𝑟𝑟) ∈ ℝ+ for

every instruction to be carried out by 𝑟𝑟.

The set of links between resources is 𝐿𝐿 = {𝑐𝑐𝑒𝑒: 𝑒𝑒 ∈ 𝐸𝐸} ∪ {𝑒𝑒𝑒𝑒: 𝑒𝑒 ∈ 𝐸𝐸,𝑒𝑒 ∈ 𝐷𝐷𝑐𝑐}.

Each link 𝑙𝑙 ∈ 𝐿𝐿 is associated with a latency 𝑡𝑡(𝑙𝑙) ∈ ℝ+ and a bandwidth 𝑏𝑏(𝑙𝑙) ∈ ℝ+.

10

Moreover, transmitting one more byte of data over link 𝑙𝑙 increases power consump-

tion by 𝑤𝑤(𝑙𝑙) ∈ ℝ+. Table 1 gives an overview of the used notation.

Table 1: Notation overview

Notation Explanation

𝑐𝑐 cloud

𝐸𝐸 set of edge resources

𝐷𝐷𝑐𝑐 set of end devices connected to edge resource 𝑒𝑒 ∈ 𝐸𝐸

𝑅𝑅 set of all resources

𝑎𝑎(𝑟𝑟) compute capacity of resource 𝑟𝑟 ∈ 𝑅𝑅

𝑠𝑠(𝑟𝑟) compute speed of resource 𝑟𝑟 ∈ 𝑅𝑅

𝑤𝑤(𝑟𝑟) marginal energy consumption of resource 𝑟𝑟 ∈ 𝑅𝑅

𝐿𝐿 set of all links between resources

𝑡𝑡(𝑙𝑙) latency of link 𝑙𝑙 ∈ 𝐿𝐿

𝑏𝑏(𝑙𝑙) bandwidth of link 𝑙𝑙 ∈ 𝐿𝐿

𝑤𝑤(𝑙𝑙) marginal energy consumption of link 𝑙𝑙 ∈ 𝐿𝐿

6 Metrics
As already mentioned, there are several metrics that need to be optimized in a fog

computing system. Depending on the specific optimization problem variant, these

metrics may indeed be optimization objectives, but they can also be used as con-

straints. For example, one problem variant may look at a real-time application, in

which overall execution time needs to be constrained by an upper bound, while en-

11

ergy consumption should be minimized. In another application, the finite battery ca-

pacity of a mobile device may be the bottleneck, so that energy consumption should

be constrained by an upper bound, while execution time should be minimized.

Independently from the specific application – and hence, problem variant –

there are some metrics that play an important role in fog computing. These metrics are

reviewed next.

6.1 Performance

There are several performance-related metrics, like execution time, latency, and

throughput. Generally, performance is related to the amount of time needed to accom-

plish a certain task. In a fog computing setting it is important to note that accomplish-

ing a task usually involves multiple resources, often on different levels of the refer-

ence model of Figure 3. Hence, the completion time of the task may depend on the

computation time of multiple resources, plus the time for data transfer between the re-

sources. Some of these steps might be made in parallel (e.g., multiple devices can per-

form computations in parallel), whereas others must be made one after the other (e.g.,

the results of a computation can only be transferred once they have been computed).

The total execution time depends on the critical path of compute and transfer steps.

For instance, if a computation is partly done in an end device and partly offloaded

from the end device to an edge resource, this may lead to a situation such as the one

depicted in Figure 4, in which the total execution time is determined by the sum of

multiple computation and data transfer steps.

12

Figure 4: Total execution time of an example computation offloading scenario

6.2 Resource usage

Especially in the lower layers of the reference model of Figure 3, the economical use

of the scarce resources is vital. This particularly applies to end devices which typi-

cally have very limited CPU and memory capacity. Edge resources typically offer

higher capacities, but also those capacities can be limited, given that edge resources

also may include machines like routers that do not offer exhaustive computational ca-

pabilities. To some extent, CPU usage can be traded off with execution time, i.e.,

overbooking the CPU may lead to a situation where the application is still running,

but more slowly. This may be acceptable for some applications, but not for time-criti-

cal ones. Moreover, memory poses a harder constraint on resource consumption, since

overbooking the memory may lead to more serious problems like application failure.

Beyond CPU and memory, also network bandwidth can be a scarce resource, both be-

tween end devices and edge resources and between edge resources and the cloud.

Hence, also the use of network bandwidth may have to be either minimized or con-

strained by an upper bound. It is important to note that, in contrast to performance,

13

which is a global metric spanning multiple resources, resource consumption needs to

be considered at each network node and link separately.

6.3 Energy consumption

Energy can also be seen as a scarce resource, but it is quite different from the other re-

source types considered above. Energy is consumed by all resources as well as the

network. Even idle resources and unused network elements consume energy, but their

energy consumption increases with usage. Generally, assuming that the power con-

sumption of a resource depends linearly on its CPU load is a good approximation

[12]. It is important though to highlight the difference between power consumption

and energy consumption, since energy consumption also depends on the amount of

time during which power is consumed. Thus, it is for instance beneficial in terms of

overall energy consumption to move a compute task from one resource to a signifi-

cantly faster one, even if the faster machine has slightly higher power consumption.

Energy consumption is important on each layer of the fog, but in different

ways. For end devices, battery power is often a bottleneck and thus preserving it as

much as possible is a primary concern. Edge resources are typically not battery-pow-

ered; hence, their energy consumption is less important. For the cloud, energy con-

sumption is again very important, but because of its financial implications: electric

power is a major cost driver in cloud data centers. Finally, also the overall energy

consumption of the whole fog system is important because of its environmental im-

pact.

14

6.4 Financial costs

As already mentioned, energy consumption has implications on financial costs. But

also other aspects influence costs. For example, the use of the cloud or edge infra-

structure may incur costs. These costs can be fixed or usage-based, or some combina-

tion thereof. Similarly, also the use of the network for transferring data may incur

costs.

6.5 Quality attributes

All aspects covered so far are easily quantifiable. However, they are not sufficient to

guarantee a high quality of experience for users. For this, also quality attributes like

reliability [13], security [11], and privacy [14] need to be taken into account, which

are harder to quantify.

Traditionally, such quality attributes are not captured by optimization prob-

lems, but rather addressed with appropriate architectural or technical solutions. For in-

stance, reliability may be achieved by creating redundancy in the architecture, secu-

rity may be achieved by using appropriate cryptographic techniques for encryption,

while privacy may be achieved by applying anonymization of personal data. Never-

theless, there are several ways to address also quality attributes during optimization of

a fog system, as shown by the following representative examples:

• To increase reliability, it is beneficial to let multiple resources perform

the same critical computations in parallel, so that the result is available

even if some of the resources stop working or become unreachable,

and also to compare the results with each other to filter out flawed re-

sults. The higher the number of resources used in parallel, the higher

level of reliability can be achieved this way. Therefore, the number of

15

resources used in parallel is an important optimization objective that

should be maximized.

• Both security and privacy concerns may be mitigated by preferring

trusted resources. Using existing techniques to quantify trust, for in-

stance based on reputation scores [14], the usage of trusted resources

becomes an optimization objective, in which trust levels of the used re-

sources should be maximized.

• Co-location of computational tasks belonging to different users / ten-

ants may increase the likelihood of tenant-on-tenant attacks. Therefore,

minimizing the number of tenants whose tasks are co-located is an op-

timization objective that helps to keep security and privacy risks at an

acceptably low level.

• Co-location of tasks belonging to the same user decreases the need for

exchanging data over the network, which in turn decreases the likeli-

hood of eavesdropping, man-in-the-middle, and other network-based

attacks. Hence, minimizing the number of resources used by a user

also helps in decreasing risks related to information security.

It is important to note that the above optimization objectives relating to quality

attributes typically conflict with other optimization objectives relating to costs, perfor-

mance, etc. For example, increasing redundancy may be beneficial for improving reli-

ability but at the same time it can lead to higher costs. Similarly, preferring service

providers with high reputation is advantageous from the point of view of security, but

may also lead to higher costs. Constraining co-location options may improve privacy,

but may lead to worse performance or higher energy consumption, and so on. This is

16

one of the main reasons why it is beneficial to include also quality attributes in opti-

mization problems, because this enables explicit reasoning about the optimal trade-off

between the conflicting objectives.

7 Optimization opportunities along the fog architec-
ture

Optimization problems in fog computing can be classified according to which layer(s)

of the three-layer fog model (cf. Figure 3) is/are involved.

In principle, it is possible that only one layer is involved. This, however, is

typically not regarded as fog computing. For example, if only the cloud layer is in-

volved, then we have a pure cloud optimization problem. Likewise, if only end de-

vices are involved, then the problem would not be in the realm of fog computing, but

rather – depending on the kinds of devices and their interconnections – in mobile

computing, IoT, wireless sensor networks etc.

Therefore, real fog computing problems involve at least two layers. This con-

sideration leads to the following classification of optimization problems in fog com-

puting:

• Problems involving the cloud and the edge resources. This is a mean-

ingful setting, which allows for example to optimize overall energy

consumption of cloud and edge resources, subject to capacity and la-

tency constraints [15]. This setup shows some similarity to distributed

cloud computing; a potential difference is that the number of edge re-

sources can be several orders of magnitude higher than the number of

data centers in a distributed cloud.

17

• Problems involving edge resources and end devices. The collaboration

of end devices with edge resources (e.g., offloading computations) is a

typical fog computing problem, and because of the limited resources of

end devices, optimization plays a vital role in such cases. An often

studied special case of this problem setup is when a single edge re-

source is considered together with the end devices that it serves [16].

However, the more general case in which multiple edge resources – to-

gether with the end devices that they serve – are considered has also

received attention [17]. The latter leads to more complex optimization

problems, but has the advantage to balance computational load among

multiple edge resources.

• In principle, all three layers can be optimized together. This, however,

is seldom studied, probably because of the difficulties of such optimi-

zation. The difficulties relate on one hand to the computational com-

plexity of large-scale optimization problems involving decision varia-

bles for all fog resources. On the other hand, many different technical

issues would have to be integrated into a single optimization problem

to capture the different optimization concerns of the cloud, the edge re-

sources, and the end devices, which is challenging in itself. In addition,

changes to the cloud, the edge resources, and the end devices are typi-

cally made by different stakeholders on different time scales, which is

also a rationale for independent optimization of the different fog lay-

ers.

In each of the fog layers, optimization may target the distribution of data,

code, tasks, or a combination of these. In data-related optimization, decisions have to

18

be made about which pieces of data are stored and processed where in the fog archi-

tecture. In code-related optimization, program code can be deployed on multiple re-

sources and the goal is to find the optimal placement of the program code. Finally, in

task-related optimization, the aim is to find the optimal split of tasks among multiple

resources.

Finally, it should be noted that the distributed nature of fog computing systems

may make it necessary to perform optimization also in a distributed fashion. Ideally,

the locally optimal decisions of the participating autonomous resources should lead to

a globally optimal behavior [18].

8 Optimization opportunities along the service lifecy-
cle

Just like cloud computing, fog computing is also characterized by the provision and

consumption of services. By looking at the different optimization opportunities at the

different stages of the service lifecycle, one can differentiate between the following

options:

• Design-time optimization. When a fog service is designed, exact in-

formation about the end devices to be served is typically not available.

Hence, optimization will be constrained mostly to the cloud and edge

layers of the architecture, where more information may be available al-

ready at design time. Concerning the end devices, optimization is con-

strained to questions dealing with types of devices (as opposed to de-

vice instances which will be known only during run time).

19

• Deployment-time optimization. When the deployment of the service

on specific resources is planned, the available information of the re-

sources can be used to make further optimization decisions. For exam-

ple, the exact capacity of the edge resources to be used may become

available at this time, so that the split of tasks between the cloud and

the edge resources can be (re-)optimized.

• Run-time optimization. Although some aspects of a fog system may

be optimized in advance (i.e., during design time or deployment time),

many important aspects become clear only when the system is running

and used. Examples include the specific end devices with their parame-

ters (e.g., compute capacity) and the compute tasks that the end devices

want to offload to the edge resources. These aspects are vital for mak-

ing sound optimization decisions. Moreover, these aspects keep chang-

ing during the operation of the system. As a consequence, much of the

system operation needs to be optimized during run time. This requires

continuous monitoring of important system parameters, analysis of

whether the system still operates with acceptable effectiveness and ef-

ficiency, and re-optimization whenever necessary [18].

As can be seen, run-time optimization plays a very important role in the optimization

of fog computing systems. This has some important consequences. First, the time

available for executing an optimization algorithm during run time is seriously limited,

thus the adopted optimization algorithms have to be fast. Second, run-time optimiza-

tion is usually not about laying out a system from scratch, but rather about adapting an

existing setup. This implies in particular that the costs associated with changes to the

system have to be taken into account.

20

9 Towards a taxonomy of optimization problems in
fog computing

The different aspects of optimization covered so far can form the basis to devise a tax-

onomy of optimization problems in fog computing. In the following, we illustrate this

by means of classifying some representative publications taken from the literature

along the presented dimensions.

Table 2: Classification of the work of Do et al. [19] according to the presented dimensions

Paper: Do et al.: A proximal algorithm for joint resource alloca-

tion and minimizing carbon footprint in geo-distributed

fog computing [19]

Context / domain: Video streaming service with a central cloud serving

distributed edge resources which in turn serve end de-

vices

Considered metrics: • “Utility” (weighted data rate of the edge re-

sources)

• Compute capacity of the cloud data center

• Energy consumption of the cloud data center

Considered layer / re-

sources:

• Cloud

• Edge resources

Phase in lifecycle: Design / deployment time

Optimization algorithm: Distributed iterative improvement

As a first example, Table 2 shows the classification of the work of Do et al. [19]. This

paper considers a video streaming service, consisting of a central cloud data center

21

and a huge number of geographically distributed edge resources (called fog compu-

ting nodes or FCNs in the paper) which are to provide end devices with streaming

video. The aim is to determine the data rate of video streaming for each edge re-

source, taking into account the different utility provided by different data rates at dif-

ferent edge resources, data center energy consumption, and the workload capacity of

the data center. The paper proposes a distributed iterative improvement algorithm in-

spired by the ADMM (Alternating Direction Method of Multipliers) method.

Table 3: Classification of the work of Sardellitti et al. [20] according to the presented dimensions

Paper: Sardellitti et al.: Joint optimization of radio and compu-

tational resources for multicell mobile-edge computing

[20]

Context / domain: Computation offloading from mobile end devices to an

edge resource

Considered metrics: • Energy consumption of the end devices

• Total time to transfer and execute offloaded

tasks

• Amount of compute power of edge resource oc-

cupied by offloaded tasks of the devices

Considered layer / re-

sources:

• Edge resource

• End devices

Phase in lifecycle: Run time

Optimization algorithm: Iterative heuristic using successive convex approxima-

tion

22

As another example, Table 3 shows the classification of the work of Sardellitti

et al. [20] according to the presented dimensions. That paper considers the computa-

tion offloading problem in a mobile edge computing setting, where some mobile end

devices offload some compute tasks to a nearby edge resource. For each compute task

of each end device, it can be decided whether or not it should be offloaded, and in

case of offloading which radio channel should be used for the communication. The

optimization problem is formed in terms of energy consumption and latency. The pa-

per first formulates the problem for a single end device, which can be solved explic-

itly in closed form. However, for several end devices with potentially interfering com-

munication, the problem becomes much tougher (in particular, non-convex), which

the authors solved by means of an appropriate heuristic.

Table 4: Classification of the work of Mushunuri et al. [21] according to the presented dimen-
sions

Paper: Mushunuri et al.: Resource optimization in fog enabled

IoT deployments [21]

Context / domain: Cooperating mobile robots sharing compute tasks

Considered metrics: • Communication cost between end devices and

edge resource

• Battery power of end devices

• CPU capacity of end devices and edge resource

Considered layer / re-

sources:

• Edge resource

• End devices

Phase in lifecycle: Run time

23

Optimization algorithm: Non-linear optimization with the COBYLA (Con-

strained Optimization By Linear Approximations) algo-

rithm within the NLOpt library

Finally, Table 4 describes the work of Mushunuri et al. [21], which addresses

the problem of finding the optimal work distribution among cooperating robots. The

robots (end devices) offload their compute tasks to a server (edge resource), which

distributes it among the end devices and itself. It is assumed that compute tasks can be

split arbitrarily. The optimization, carried out at run time by the edge resource, takes

into account the communication costs, battery status, and compute capacities of the

devices, and uses an off-the-shelf non-linear optimization package.

As can be seen from these three examples that cover different optimization

problems within fog computing, the presented aspects can be applied successfully to

classify the approaches from the literature and capture their characteristics which are

relevant for optimization.

10 Optimization Techniques
Already the three examples presented in Section 9 show that the optimization tech-

niques adopted in fog computing optimization problems are quite heterogeneous. The

following characteristics seem to be quite common though:

• Adoption of non-linear, sometimes even non-convex optimization

techniques.

• Usage of heuristics (as opposed to exact algorithms) to derive – poten-

tially suboptimal – results to hard problems with limited computational

effort.

24

• Usage of distributed algorithms, accounting for the distributed re-

sources and the distributed knowledge in fog computing.

In the future, with the maturation of the field, a consolidation of the used

methods may take place. However, since the considered problem variants are also

manifold, we expect the field to continue to require several different types of algorith-

mic techniques.

11 Future Research Directions
Fog computing is still in its early days, with optimization taking an ever more im-

portant role in it. Accordingly, there are several areas where significant future re-

search is needed:

• Co-optimization. One of the key challenges in optimizing fog compu-

ting systems is that several different technical systems and sub-systems

must be tuned to achieve an overall optimal, or at least good enough

configuration. This includes on one hand the different devices making

up a fog system and on the other hand the different technical aspects

like networking, computation, volatile memory and persistent storage,

sensors and actuators etc. Optimizing all those aspects together, or

finding good ways decompose this huge optimization problem into

sub-problems that can be solved mostly independently remains an im-

portant challenge for future research.

• Balancing multiple optimization objectives. Another important char-

acteristic of optimization in fog computing is that multiple, often con-

flicting optimization objectives must be considered simultaneously.

25

Current practices to handle multi-criteria optimization in fog compu-

ting – e.g., using the weighted sum of the different optimization objec-

tives – are simple and may lead to good results in several cases, but

may lead to implausible solutions in extreme situations, hindering the

practical adoption of such approaches. Finding more robust ways of in-

corporating multiple optimization objectives thus remains an important

future research direction.

• Algorithmic techniques. So far, optimization algorithms have been

selected largely arbitrarily, often based primarily on authors’ previous

experience with different techniques. With the maturation of the field,

the community should develop a better understanding of which algo-

rithmic approaches work well for which problem variants.

• Evaluation of optimization algorithms. Existing approaches were

evaluated in rather ad hoc ways. Before methods can be transferred

from research into practice, it is vital to evaluate the applicability of

the proposed algorithms in a sound, thorough, and repeatable manner.

This requires the definition of benchmark problems with publicly

available problem instances, consensus in the community on evalua-

tion methodologies and test environments, development of reliable and

realistic simulators, and unbiased comparison of competing approaches

under realistic – also including extreme – situations. Also theoretical

methods to prove algorithm properties in a rigorous way will be neces-

sary.

26

12 Conclusion
In this chapter, we have presented a review of optimization problems in fog compu-

ting. In particular, we have explained why optimization plays a vital role in fog com-

puting and why it is important to define optimization problems unambiguously, pref-

erably using a formal problem model. The most important aspects of optimization in

fog computing have been reviewed according to multiple dimensions: the metrics that

serve as optimization objectives or as constraints, the considered layers within the fog

architecture, and the relevant phase in the service lifecycle. These dimensions also

lend themselves to form a taxonomy, which can be used to classify existing or future

problem variants.

We have also argued that there are several important directions for future re-

search, including the improved handling of multiple optimization objectives, the co-

optimization of multiple technical aspects, better understanding of which algorithmic

techniques work best for which problem variant, and devising disciplined evaluation

methodologies.

Acknowledgements
The work of Z. Á. Mann has been supported by the Hungarian Scientific Research

Fund (Grant Nr. OTKA 108947) and the European Union's Horizon 2020 research

and innovation program under grant 731678 (RestAssured).

References
[1] L. M. Vaquero, L. Rodero-Merino, Finding your way in the fog: Towards a com-

prehensive definition of fog computing, ACM SIGCOMM Computer Communica-

tion Review, 44(5):27-32 (October 2014).

27

[2] B. Varghese, R. Buyya, Next generation cloud computing: New trends and re-

search directions, Future Generation Computer Systems, 79(3):849-861 (February

2018).

[3] E. Ahvar, S. Ahvar, Z. Á. Mann, N. Crespi, J. Garcia-Alfaro, R. Glitho, CACEV:

A cost and carbon emission-efficient virtual machine placement method for green

distributed clouds, in IEEE International Conference on Services Computing, pp.

275-282, IEEE, 2016.

[4] A. V. Dastjerdi, R. Buyya, Fog computing: Helping the Internet of Things realize

its potential, Computer, 49(8):112-116 (2016).

[5] K. Kumar, Y.-H. Lu, Cloud computing for mobile users: Can offloading computa-

tion save energy? Computer, 43(4):51-56 (April 2010).

[6] Z. Á. Mann, Allocation of virtual machines in cloud data centers – A survey of

problem models and optimization algorithms, ACM Computing Surveys, 48(1): ar-

ticle 11 (September 2015).

[7] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the in-

ternet of things, In Proceedings of the 1st ACM Mobile Cloud Computing Work-

shop, pp. 13-15 (2012).

[8] Z. Á. Mann, Optimization in computer engineering – Theory and applications,

Scientific Research Publishing (2011).

[9] R. T. Marler, J. S. Arora, Survey of multi-objective optimization methods for en-

gineering, Structural and Multidisciplinary Optimization, 26(6):369-395 (April

2004).

[10] S. Soo, C. Chang, S. W. Loke, S. N. Srirama, Proactive mobile fog computing

using work stealing: Data processing at the edge, International Journal of Mobile

Computing and Multimedia Communications, 8(4):1-19 (2017).

28

[11] I. Stojmenovic, S. Wen, The fog computing paradigm: Scenarios and security is-

sues, In Proceedings of the 2014 Federated Conference on Computer Science and

Information Systems (FedCSIS), pp. 1-8 (2014).

[12] S. Rivoire, P. Ranganathan, C. Kozyrakis, A comparison of high-level full-sys-

tem power models, In Proceedings of the 2008 Conference on Power Aware Com-

puting and Systems (HotPower '08), article 3 (2008).

[13] H. Madsen, B. Burtschy, G. Albeanu, F. Popentiu-Vladicescu, Reliability in the

utility computing era: Towards reliable fog computing, 20th International Confer-

ence on Systems, Signals and Image Processing, pp. 43-46 (2013).

[14] S. Yi, Z. Qin, Q. Li, Security and privacy issues of fog computing: A survey, In-

ternational Conference on Wireless Algorithms, Systems, and Applications, pp.

685-695 (2015).

[15] R. Deng, R. Lu, C. Lai, T. H. Luan, Towards power consumption-delay tradeoff

by workload allocation in cloud-fog computing, IEEE International Conference

on Communications, pp. 3909-3914 (2015).

[16] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for

mobile-edge cloud computing, IEEE/ACM Transactions on Networking,

24(5):2795-2808 (2016).

[17] J. Oueis, E. C. Strinati, S. Barbarossa, The fog balancing: Load distribution for

small cell cloud computing, 81st IEEE Vehicular Technology Conference (2015).

[18] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Computer,

36(1):41-50 (2003).

[19] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, C. S. Hong, A proxi-

mal algorithm for joint resource allocation and minimizing carbon footprint in

29

geo-distributed fog computing, International Conference on Information Network-

ing, pp. 324-329, IEEE (2015).

[20] S. Sardellitti, G. Scutari, S. Barbarossa, Joint optimization of radio and computa-

tional resources for multicell mobile-edge computing, IEEE Transactions on Sig-

nal and Information Processing over Networks, 1(2):89-103 (2015).

[21] V. Mushunuri, A. Kattepur, H. K. Rath, A. Simha, Resource optimization in fog

enabled IoT deployments, 2nd International Conference on Fog and Mobile Edge

Computing, pp. 6-13 (2017).

	1 Introduction
	2 Background / Related Work
	3 Preliminaries
	4 The Case for Optimization in Fog Computing
	5 Formal Modelling Framework for Fog Computing
	6 Metrics
	6.1 Performance
	6.2 Resource usage
	6.3 Energy consumption
	6.4 Financial costs
	6.5 Quality attributes

	7 Optimization opportunities along the fog architecture
	8 Optimization opportunities along the service lifecycle
	9 Towards a taxonomy of optimization problems in fog computing
	10 Optimization Techniques
	11 Future Research Directions
	12 Conclusion
	Acknowledgements
	References

