Finding optimal hardware/software partitions

Zoltan Adam Mann, Andras Orban, Péter Aratd
Budapest University of Technology and Economics
Department of Control Engineering and Information Tecbgyl
H-1117 Budapest, Magyar tudésok korutja 2, Hungary
{zoltan.mann, andras.orban}@cs.bme.hu, arato@iit.ome.hu

Abstract

Most previous approaches to hardware/software partitgpebnsidered heuristic solutions.
In contrast, this paper presents an exact algorithm for thblem based on branch-and-bound.
Several techniques are investigated to speed up the ddgyrimcluding bounds based on linear
programming, a custom inference engine to make the mostfdheanferred information, ad-
vanced necessary conditions for partial solutions, arféreiit heuristics to obtain high-quality
initial solutions. It is demonstrated with empirical measuents that the resulting algorithm can
solve highly complex partitioning problems in reasonabieet Moreover, it is about ten times
faster than a previous exact algorithm based on integearipegramming. The presented meth-
ods can also be useful in other related optimization problem

1 Introduction

The requirements towards today’s computer systems arééoudban ever. Parallel to the growth in
complexity of the systems to be designed, the time-to-nmgvkessure is also increasing. In most
applications, it is not enough for the product to be funaibncorrect, but it has to be cheap, fast,
and reliable as well. With the wide spread of mobile systesimg, heat dissipation, and energy
consumption are also becoming crucial aspects for a widgerahcomputer systems [21], especially
embedded systems.

These computer systems typically consist of both hardwadesaftware. In this context, hardware
means application-specific hardware units, hardware designed and implemented specifically for
the given system, whereas software means a program runniiggeneral-purpose hardware unit,
such as a microprocessor.

For much of the functionality of embedded systems, both avhare and a software imple-
mentation is possible. Both possibilities have advantages disadvantages: software is typically
cheaper, but slower; moreover, general-purpose processoisume more power than application-
specific hardware solutions. Hardware on the other hangisafad energy-efficient, but significantly
more expensive.

Consequently, it is beneficial to implement performandgeat or power-critical functionality in
hardware, and the rest in software. This way, an optimaktaftican be found between performance,
power, and costs [4]. This is the task of hardware/softwargitmning: deciding which parts of the
functionality should be implemented in hardware and whislsoin software. Unfortunately, finding

*This paper has been publishedqmrmal Methods in System Design, volume 31, issue 3, page2&3l Springer, 20Q7

such an optimal trade-off is by no means easy, especiallgusecof the large number and different
characteristics of the components that have to be considbtereover, the communication overhead
between hardware and software has to be taken into accoudlid83].

Traditionally, partitioning was carried out manually. Hewer, as the systems to design have be-
come more and more complex, this method has become infeasibtl many research efforts have
been undertaken to automate partitioning as much as pessitast presented algorithms are heuris-
tics, but some are exadtd. non-heuristic, optimal) algorithms. Section 2 presentsiraey of the
related work.

Although heuristic partitioning algorithms are typicallgry fast and produce near-optimal or even
optimal results for small systems, their effectivenesst€ims of the quality of the found solution)
degrades drastically as the size of the problem increagesI[8s is due to the fact that—in order
to be fast—such heuristics evaluate only a small fractiothefsearch space. As the size of the
problem increases, the search space grows exponentiadye(are2™ different ways to partitiom
components), which means that the ratio of evaluated pofrikee search space must decrease rapidly,
leading to worse results. Consequently, if the system thattd be partitioned is big and constraints
on its cost, performance etc. are tight (and they usually, #nien chances are high that a heuristic
partitioner will find no valid partition. What is even worgbe designer will not know if this is due to
the weak performance of the partitioning algorithm or baeatlnere is no valid partition at all. This
shows that in partitioning, it makes sense to strive for atmugd solution, because it makes a major
difference whether or not all constraints on a design camlided.

The above problems can be overcome using exact algorithimgevr, since most formulations
of the hardware/software partitioning problem a/éP-hard, such algorithms have exponential run-
times which makes them inappropriate for large problemamsts. Consequently, previous exact
algorithms were used either for very small problem instanmely [9, 32, 37], or have been used
inside heuristics, thus sacrificing their optimality [3%).3

Most previous algorithms were tested on systems with somerdoof components. The aim of
this paper is to present an exact partitioning algorithnt ¢ha optimally partition systems with hun-
dreds of components in reasonable time. We believe thatauethgorithm can be used in practical,
industrial projects. Notice though that developing suclalgorithm is by no means straight-forward
because partitioning a system of, say, 300 components albfinneans scanning a search space of
size 2390, which is enormous. In this paper, several techniques asepted with which this task
becomes feasible.

Specifically, we start with the integer linear program (lf&mulation of hardware/software par-
titioning that we presented in an earlier work [3]. This ILRgram can be solved using any ILP
solver; however, our tests have shown that this requiresntoch time [3]. Hence, the search strat-
egy of the ILP solver has to be tuned. Note that general-pa&pbP solvers use general solution
algorithms. Using problem-specific knowledge, an improgehis often possible.

Most ILP solvers use branch-and-bound for exploring thatgmt space [43]. They use the bound
received by solving the LP-relaxation of the problem fortiogt off unpromising branches of the
search tree. This suggests that the solution process caccbiei@ted if, in a specialized branch-
and-bound algorithm we can exploit extra knowledge on thiétjpeing problem, in addition to LP-
relaxation which is applicable to all ILP programs.

Specifically in Section 5, we present a problem-specificragrfee engine that applies every in-
formation extractable during the branch-and-bound proetb infer additional knowledge. Several
constraints and implications on variable values are stiorad appropriate graph structure that can be
used in later steps of the branch-and-bound search praz¢aluveason about unsubstituted variables.

Besides the inference mechanism, we identify several sapgsonditions in Section 6 that must

2

hold in the optimal solution. These conditions help cut affje subtrees of the search tree speeding
up the whole branch-and-bound procedure.

Furthermore, the effectiveness of branch-and-bound cagigbéficantly improved using a high-
quality initial solution. Thus, further acceleration isgstble by making use of efficient heuristics to
produce such an initial solution. We utilize three diffdrbruristics described in Section 7: the first
one is a genetic algorithm, the second is a minimum cut-baggatithm, while the third one uses
hierarchical clustering.

As a result of all these techniques, the algorithm is sigaifily faster than a simple ILP solver.
Our experience with industrial benchmark problems showedaeleration of about a factor of 10
for the biggest problem instances (see Section 8).

2 Previouswork

In a number of related papers, the target architecture ipaagul to consist of a single software
and a single hardware unit [13, 17, 18, 20, 31, 32, 34, 37, 4048, 49], whereas others do not
impose this limitation [10, 12, 25, 36]. Some limit paraleh inside hardware or software [44, 49]
or between hardware and software [20, 32]. The system toiiéiqaed is usually given in the form
of a task graph, or a set of task graphs, usually assumed todmed! acyclic graphs describing the
dependencies between the components of the system.

Concerning the scope of hardware/software partitioninghér distinctions can be made. In par-
ticular, many researchers consider scheduling as partrofipaing [10, 12, 24, 31, 34, 36], whereas
others do not [13, 17, 32, 37, 49, 47]. Some even include tbklgm of assigning communication
events to links between hardware and/or software units34p,

The proposed methods also vary significantly concerningeing@nularity,i.e. the semantics of
a node. There have been works on low granularity, where a rejgtesents a single instruction or
a short sequence of instructions [6, 8, 40, 21], middle deaity, where a node represents a basic
block [22, 27, 38], and high granularity, where a node regméssa function or procedure [18, 36, 48,
2], as well as flexible granularity, where a hode can reptemey of the above [20, 47].

The majority of the previously proposed partitioning altjons is heuristic. This is due to the fact
that partitioning is a hard problem, and therefore, exagbrihms tend to be quite slow for bigger
inputs. More specifically, most formulations of the paotiing problem aréVP-hard [23, 5], and the
exact algorithms for them have exponential runtimes.

Many researchers have applied general-purpose heuristitardware/software partitioning. In
particular, genetic algorithms have been extensively (8ed2, 34, 41, 44], as well as simulated
annealing [13, 14, 15, 20, 28]. Other, less popular heasisti this group are tabu search [13, 14]
and greedy algorithms [10, 17]. Some researchers usedecimuoristics to solve hardware/software
partitioning. This includes the GCLP algorithm [24, 25] &hd expert system of Lopez-Vallejo and
Lopez [29, 31], as well as the heuristics of Gupta and de Mi¢h®8] and Wolf [50]. There are also
some families of well-known heuristics that are usually leggpto partitioning problems. The first
such family of heuristics is hierarchical clustering [130, 47, 48]. The other group of partitioning-
related heuristics is the Kernighan-Lin heuristic [26],iethwas substantially improved by Fiduccia
and Mattheyses [16], and later by many others [11, 42]. Tiesgistics have been found to be
appropriate for hardware/software partitioning as well, [86, 49].

A couple of exact partitioning algorithms have also beerppsed. Branch-and-bound has been
presented for partitioning in the design of ASIPs (ApplicaiSpecific Instruction set Processors) [9].
Although the design of ASIPs is arelated problem, itis veffcent in its details from the partitioning

problem that we address, thus that algorithm is also vefgréifit from ours.

Algorithms based on the dynamic programming paradigm weesl by Madsen et al [32] and
by O’Nils et al [37]. However, both algorithms were appli@ddnly very small problem instances
(with some dozens of components only), and so it is quite dollwhether they are scalable enough
for larger problems as well. Conversely, we focus our effart making our algorithm scalable for
systems with several hundreds of components.

The usage of integer linear programming (ILP) was first satggkin the early work of Prakash
and Parker [39]. Their approach handled the whole co-dgsighlem—including scheduling and
optimization of the communication topology—in the form afiagle integer program. This resulted
in an algorithm that was very slow even for small problemdnses and practically unusable for
bigger ones. In contrast, our aim is to develop a fast exgoriéhm for a more limited problem.

Integer linear programming was later also used by Niemaah[85, 36]. However, that algorithm
is only a heuristic, although it makes use of an exact ILPesoWe assume that the pure ILP algorithm
would not have been scalable enough, and therefore therawtbmbined it with a heuristic to make
it faster. However, this way the optimality of the algorithsrsacrificed.

For a more detailed survey on hardware/software co-desem[51].

3 Problem formalization

We use the model that was presented in [5]. Here, we reviemotst important characteristics.

The system to be partitioned is modeled bgammunication graphthe nodes of which are the
components of the system that have to be mapped to eithewaaar software, and the edges rep-
resent communication between the components. Unlike irt presious works, it is not assumed
that this graph is acyclic in the directed sense. The edgeraireven directed, because they do not
represent data flow or dependency. Rather, their role isoll@ving: if two communicating compo-
nents are mapped to different contesxte.(ne to hardware and the other to software, or vice versa),
then their communication incurs a communication pendtig,vialue of which is given for each edge
as an edge cost. This is assumed to be independent of théatire€ the communication (whether
from hardware to software or vice versa). If the communaratioes not cross the hardware/software
boundary, it is neglected.

Similarly to the edge costs mentioned above, each vertessig@ed two cost values called hard-
ware cost and software cost. If a given vertex is decided tm bardware, then its hardware cost is
considered, otherwise its software cost. We do not impogeegplicit restrictions on the semantics
of hardware costs and software costs; they can represebanhynetrics, like execution time, size, or
power consumption. Likewise, no explicit restriction isgosed on the semantics of communication
costs. Nor do we impose explicit restrictions on the graniylaf partitioning (.e. whether nodes
represent instructions, basic blocks, procedures or mebiocks).

However, we assume that the total hardware cost with redpegtpartition can be calculated
as the sum of the hardware costs of the nodes that are in hadarad similarly, the software cost
with respect to a partition can be calculated as the sum ofdfterare costs of the nodes that are in
software, just as the communication cost with respect tatitipa, which is the sum of the edge costs
of those edges that cross the boundary between hardwarefwdre.

While the assumption of additivity of costs is not alwaysrappiate, many important cost factors
do satisfy it. For example, power consumption is usuallyuas to be additive, implementation
effort is additive, execution time is additive for a singl®gessing unit (and a multi-processor system
can also be approximated by an appropriately faster simgleessor system), and even hardware size

is additive under suitable conditions [32].

Furthermore, although itis a challenging problem how thst alues can be obtained, it is beyond
the scope of this paper. Rather, we focus only on algorithssiges of partitioning.

We now formalize the problem as follows. An undirected grépk- (V, E), V = {v1,...,v,},
s,h 0V — RT ande : E — R™T are given. s(v;) (or simply s;) and h(v;) (or h;) denote the
software and hardware cost of nodg respectively, whilec(v;,v;) (or ¢; ;) denotes the commu-
nication cost between; andv; if they are in different contexts.P is called a hardware-software
partition if it is a bipartition ofV: P = (Vy,Vs), whereVy U Vs = V andVy N Vs = 0.
(Vg = 0 or Vg = () is also possible.) The set of crossing edges of partiftas defined asEp =
{(vi,v) 1 vi € Vs,vj € Vg orv; € Vg, v; € Vg}. The hardware costaPis: Hp = . hi; the
software cost o> is: Sp = 3, <y, si; the communication costdPis: Cp = 3, , yep, c(vi; v;)-
Thus, a partition is characterized by three metrics: itsllvare cost, its software cost, and its com-
munication cost.

Hardware | Software

A f B

D

Figure 1: Example communication graph

An example for a communication graph and a possible hardsaiteare partition can be seen in
Figure 1. The crossing edges are bold. Suppose that for estgxyhardware and software costs are
both 1, and the communication cost of each edge is 1. Thenatttsviare cost of the given partition
is 2, its software cost is 3, and its communication cost is als

Now we consider a version of the hardware/software paniitip problem, in which two of the
three metrics are added. For instance, if software costicegpexecution time, and communication
cost captures the extra delay generated by communicatien it makes sense to add them. (Another
example would be the following: i denotes hardware implementation effort, antnotes the effort
of implementing communication modules, then it makes séms&ld them.) That is, we define the
running time of the system with respect to partitiBras Rp = Sp + Cp.

A very important and frequently studied problem is the failog: design the cheapest system re-
specting a given real-time constraint, that is the oveyaliesn execution time is limited by a constant
Ry. Since the dominant cost factor of the system is the costeoh#ttdware units, so the aim of the
designer is to minimize the hardware cégt* while satisfying the real-time constraiRte < Rj.

One might note that the hardware execution time is negldotéiiis model and it does not con-
tribute to the overall system execution time. The followingnsformation shows that in case of
additive costs this can be assumed without loss of gener#ditfirst assume that to each nodéoth
a software execution timg(v) and a hardware execution timg(v) are assigned and the system ex-
ecution time is the sum of the software times plus the harewiares and the communication times.

'Note that in this problem formulatiofir andC'r are time-dimensional, but’ » is not.

We now show an equivalent system with zero hardware timessi@er a system with hardware time
everywhere zero and with a modified software execution tinte) — ¢, (v) for a nodev (here we
further assume that(v) — ¢, (v) > 0 which generally holds). This system behaves exactly theesam
way, but for each partition the system running time is desgday1}, := > .y t4(v) whichis a con-
stant. So by prescribing a limit d¥y — 7},, the modified problem becomes equivalent to the original
one and has zero hardware times.

To sum up, the partitioning problem we are dealing with cafob@ulated as follows:

19%

Given the graphG with the cost functiong:, s, ande, and Ry > 0, find a hardware/softwar
partition P with Rp < R, that minimizesH » among all such partitions.

In an earlier work [3], we proved that this problemAsP-hard. Moreover, the following ILP
formulation was suggested.
h,s € (RY)", ¢ € (R")¢ are the vectors representing the cost functionss(the number of
nodesg¢ is the number of edgesf € {—1,0,1}°*" is the transposed incidence matrix:
—1 if edgei starts in nodg
E;; = 1 if edge: ends in nodg
0 if edgei is not incident to nodg
The definition of £ suggests a directed graph, although so far we spoke aboinecied graphs only.
The undirected incidence matrix 6f would result in a slightly more complex ILP program, so an

arbitrary direction of the edges should be chosen and tleetdl incidence matrix should be used.
Letz € {0,1}" be a binary vector indicating the partition:

| 1 ifnodei is realized in hardware
i 0 if nodei is realized in software
Finally, lety € {0,1}¢ be a binary vector indicating which edges are crossed bydHéipn:

| 1 ifedge:i crosses the hardware/software boundary
Y=o if edge: does not cross the hardware/software boundary

Using these notations, the integer program is as follows:

min hz (1a)
s(l—x)+cy < Rp (1b)
EFx < y (1c)

~Ex < y (1d)

z € {0,1}" (1e)

It can be easily proven that the optimal solution of thisgeteprogram is also the optimum of the
hardware/software partitioning problem [3]. An interagtiproperty of this integer program is that
there is no integrality constraint @i just onz. However, it can also be proven thawill be integral
in the optimal solution of the ILP problem [3].

Although the cost values;, s;, c; ; can be arbitrary positive numbers, it will be assumed for the
sake of simplicity in the rest of this paper that they aregets. This assumption is not very strict and
can be exploited in finding good necessary conditions todspeeour algorithm. See Section 6 for
details.

This ILP program can be solved using any ILP solver, yieldingalgorithm for solving the parti-
tioning problem. However, our experience has shown thatishjjuite slow [3].

6

4 Branch-and-bound framework

An ILP solver typically uses branch-and-bound to inteltithg search the space of possible solutions.
Note that there ar@™ possible partitions, which makes it intractable to chedlpaititions even for
graphs of moderate size.

Figure 2: Example search tree

The branch-and-bound algorithm traversesarch tree Each leaf of the search tree corresponds
to a possible solutiori,e. an assignment of values to the variableBhe internal nodes of the search
tree correspond to partial solutiong. assignment of values to some of the variables. In each &itern
node, a new, unfixed variable is chosen, and branching isneed according to the value of this
variable. In our case, each variable has two possible véluasd 1), hence each internal node of the
search tree has two children. If the original communicagoaph has: vertices, the search tree has
2" leaves an@™ — 1 internal nodes.

An example with three variables is shown in Figure 2. The saiféhe search tree are numbered
according to the order in which the branch-and-bound algorivisits them. Note that, when consid-
ering a new variable, the algorithm can either first assignvéiue O to it, and only later the value 1, or
vice versa. Furthermore, the algorithm does not have toviolhe same variable order in each branch
of the search tree. These decisions can be made based oit astat, randomly, or according to
some heuristic run-time decisions.

Branch-and-bound works well if large portions of the sedrele can be cut off. For instance,
using the example of Figure 2, suppose that we are curramntipde 9,.e. =, is fixed to 1, but the
other variables are not fixed. We have already evaluateddifferent partitions (nodes 4, 5, 7, and 8).
Suppose that the best valid partition that has been enaedge far had a hardware costidf. This
means that we are looking for partitions wity < Ry and Hp < H,. Suppose furthermore that
some mechanism tells us that these two constraints canrfoffiied with 2o = 1. Then the branch
starting at node 9 can be cut off, thus saving us a lot of time.

In the case of ILP, this mechanism is typicalli?-relaxation The LP-relaxation of an ILP pro-
gram is defined as the same integer program without intégrainstraints. This yields an LP problem
instance, which can be quickly solved using a standard L¥®sdbecause LP is much simpler than
ILP. Clearly, if not even the LP-relaxation can be solved miveen node of the search treiee(after

2By variables, the:; variables are meant in this section. This is because theiistegrality constraint og, and thus
branching is only performed with respect to thes.

some variables were fixed), then the ILP is not solvable giwethat the current branch can be cut
off.

As we will see later, other mechanisms can also be used gpdins beside LP-relaxation, and
this way the algorithm can be further accelerated.

Algorithm 1 Skeleton of the branch-and-bound algorithm
procedure backtrack

{

while both possible values of the lastly fixed variable have beegcldd

{

undo last fixation;
if there are no more fixed variables

{

}
}

change the lastly fixed variable to its other possible value;

STOP; [//finished searching the tree

}

procedure branch-and-bound
{
repeat // the stopping condition is in the backtrack procedure
{
if all variables are fixed //found a leaf of the search tree
{
evaluate found partition;
backtrack;
skip to next iteration;
}
check feasibility;
if not feasible //cut off current branch
{
backtrack;
skip to next iteration;
}
/lwe are not in a leaf, nor can we cut the branch off
/lthis means we have to go deeper in the search tree
choose a variable that is not yet fixed;
fix it to one of its possible values;

The skeleton of our branch-and-bound algorithm is shownlgoAthm 1. This algorithm is used
as a framework for incorporating further algorithms, ascdesd in the next sections.

The algorithm may need some explanation. The idea ob#uktrackroutine can be illustrated
easily on the example of Figure 2. Suppose for instance teaans currently in node 5, and we

perform a backtrack. We have to go back on the tree (and urdiixéitions), as long as both possible
values of the lastly fixed variable are checked. This holdafale 3 because both of its children have
already been visited. But it does not hold for node 2, becankeone of its children has been visited.
So we stop the cycle of the backtrack procedure at this paimtt,change the current variable, which
is 1 in the case of node 2, to its other value, which is 1. This is h@nget to the next node, which
is node 6.

As already mentioned, the feasibility check involves sajvan LP problem instance. This LP
is obtained from the original ILP by abandoning the inteigyatonstraints and taking into account
the variable fixations and any other inferred informationorbver, the following inequality can be
added to the LPhz < Hy — 1 (WhereHj is the best objective value found so far), because all costs
are assumed to be integers, and we are only interested indisdlutions that are better than the best
one found so far. Actually, it would be sufficient to test igtresulting LP can be solved at all (instead
of minimizing hx) in order to decide whether to go deeper in the search treetmdkirack. However,
we did not choose this alternative for the following reasons

e Itis in general not easier to test the solvability of a senefguations than to optimize a linear
function subject to those constraints [43].

e Optimizing ha has the advantage that if accidentally all variables argial in the optimum
of the LP®, then the optimum of the ILP in that branch is found as well.

e Even if not all variables are integral in the optimum of the thir value carries important
information. Namely, the strategy of fixing a variable in text round that is not integral in
the optimum of the current LP, is known to yield faster teration than the strategy of fixing a
random variable.

Note that there are two possibilities for creating the LPopem instance. It can be either built
from scratch, or by modifying the last one. If backtrackirasibeen performed since the last LP, then
the new LP should be built from scratch. However, if the défece since the last LP is only additional
information that can be captured with linear equalitiesneiqualities then it is quicker to supplement
the last LP with these new pieces of information. Converselye keep on adding new rows to the
LP, this adds to its complexity. In our algorithm, we use aléraff: after a predefined number of
modified LPs, the next LP is built from scratch.

5 Improvement by inference

Eachround of the branch-and-bound starts by fixing a variable to either 1. In a general-purpose

ILP solver, this would be followed by the solution of the blity changed LP that takes into account
the new information. However, problem-specific knowledga be incorporated into the algorithm
at this point in order to infer additional information. Thaléwing rules can be used for this (in the
following, © andv denote two vertices of the communication graph connectestoge; x,,, x,, and

Y. are the corresponding variables):

Rule 1: If z, andx, are both fixed to the same value, thgn= 0.

Rule 2. If x,, andz, are fixed to different values, then = 1.

3For reasons that are beyond the scope of the paper, thisimppeh more often than one might expect, especially in
the lower levels of the search tree when the majority of théaltes are already fixed to integer values.

Rule3: If z, is fixed to O, butz, is not yet fixed, theny, = z,,.

Rule4: If z, is fixed to 1, but, is not yet fixed, thew, = 1 — z,,.

All of the above rules are obvious based on problem-specifmvedge ((e. based on the un-
derstanding of the hardware/software partitioning pnat)leOn the other hand, these rules are very
useful because they all reduce the number of variables arsdttie complexity of the problem. It
would be possible to use a full-fledged, general-purposrénice engine (such as the Sicstus Prolog
CLP library) to make use of these rules. However, these ales/ery special, so that they can be
handled more efficiently in a proprietary way. This is goindpe described next.

5.1 Knowledge representation

As can be seen from the above rules, our knowledge on a varalbl be one of the following: (i) no
knowledge; (ii) the variable is fixed to a value; (iii) the isole has the same value as another variable;
(iv) the variable has the other value than another variable.

The first two kinds of knowledge can be easily representechandled. For the last two kinds of
knowledge, we will present a novel, very compact data atrectcalled thestar representationBut
first, some notations are defined.

Let Var denote the set of all variablese. Var = {z; : i =1,2,...,n}U{y; : j =1,2,... e}
Two relationsR, and R, are defined oV ar: for any z1, 20 € Var, Ri(z1,22) < we know that
z1 = z9. Similarly, Ra(z1, z2) < we know thatz; = 1 — 2. Clearly, R; and R, have to be disjoint.
It is easy to see that botR; and R, are symmetric relations, and therefore they define two entéd
graphs onVar: Hy = (Var, Ry) andH, = (Var, Ry). FurthermoreR; and R, have the following
additional properties:

Rule5: Ry(z1,22) A Ri(22, 23) = R1(21, 23) (i.e. Ry is transitive)
Rule6: Ry(z1,22) A Ra(z2,23) = R1(21, 23)
Rule7: Ry(z1,22) A Ra(z2,23) = Ra(21, 23)
Rule8: Ry(z1,22) A Ri(z2,23) = Ra(21, 23)

Let Ri2 = Ry U Ry andH; 2 = (Var, Ry 2) be the corresponding undirected graph. In this
graph, each edge is marked either with the |abebr with the labelRs, according to which relation
it belongs to. Rules 5-8 imply the following for this graph:

Proposition 1. (i) Letzy, 22,..., 2z (k > 1) be a path inH; ». Then(zy, 2) € Ry 2. Furthermore,
the label of(z1, z;) can be deduced from the labels of the edges of the path.

(if) Each connected component Hf » is a complete graph.

(i) A(n arbitrary) spanning forest off; » with the associated labels represents it in the sense that
all other information present i, » can be deduced from the spanning forest.

Proof. We prove (i) by induction. Fok = 2 the statement is trivial. For the induction step assume
that it holds fork — 1. That means thatz;, z,—1) € Ry and(zx_1,2,) € R12. Furthermore, the
labels of (21, z;—1) and (z;_1, z,) are known. Rules 5-8 together imply that, z;) € R; 2 and
define its label.

10

(i) is an easy consequence of (i). L&tbe a connected component &f ; andu,v € C two
arbitrary vertices in it. Sinc€’ is connected, there is a paih= z1, 29, . .., zx = v betweenu andv.
Applying (i) to this path yields thatu, v) is an edge irC, henceC' is complete.

(iif) From (i) it follows that each connected componentif » can be represented with a spanning
tree, thusf; » can be represented with a spanning forest. O

Let us consider an example with seven variablgs: . . , z;. Assume that the following informa-
tion has been inferred®; (21, z2), Ra(29, 23), R1(24, 25), R2(25, 27), Ra(26, 27). This information is
shown in Figure 3.

22 24 z5
o— 9
I
Al |
. :
\ I
\ I
\ I
|
I
[®- - - --------- o
21 Z3 26 z7

Figure 3: Example: directly inferred information. Solidds indicate the relatioR;, dashed lines
indicate the relatiori,

The corresponding/; » graph contains this information, but also those piecesfofmation that
can be inferred from this knowledge. For instance, it cannberied using Rule 7 thaRs (21, 23)
holds. The corresponding » graph is shown in Figure 4. This graph possesses indeeddpeny
of Proposition 1/(ii).

Z4 zZ5

<6 <7

Figure 4: TheH, 5 graph corresponding to the example of Figure 3

As can be seen from the above, the gré&pfy contains all the information that has been inferred
or can be inferred indirectly. Proposition 1/(iii) suggestat spanning trees of the connected compo-
nents of the graph can be used for the compact representdiddirthis knowledge. Itis also clear that
at least a spanning tree has to be stored from each composesmide otherwise some information
would be lost. Therefore, storing a spanning tree for eaafpoment is optimal concerning the size of
the data structure. It only remains to decide which spanmées to use. A complete graph has several
spanning trees, which have of course the same number of ,@dgése size of the data structure does
not depend on the choice of the spanning tree. However,ritieerieeded to retrieve the information
from the data structure does depend on the choice of the isygatiae. Specifically, determining the
relation between two variables involves examining the pativeen them in the spanning tree, and so
the time needed to retrieve the information correlatesedehgth of the paths in the spanning tree. It

11

follows that the spanning tree has to be chosen in such a weawlirpaths in it are short. This is ac-
complished by a star, in which each path consists of at masetges. This way, the relation between
two variables can be retrieved é(1) time*. We refer to this representation as star representa-
tion. Note that there are several possible star representati@eause each component has several
star-shaped spanning trees. However, all representatieluisthe same, optimal performance, so we
can choose one arbitrarily. Figure 5 shows a possible gtaesentation of the previous example.

) “4 <5
e . []
N I
N |
> |
~ I
N |
I
|
NI
@------------ °
26 Z7

Figure 5: A possible star representation correspondinge@xample of Figure 4

The following rules describe how the data structure is wgaiathenever new information is avail-
able:

Rule9: If z; = 25 is inferred, and:; andz;, are in different components @f; 5, then unify the two
stars to a single one.

Rule10: If z; =1 — 2z isinferred, andt; andz; are in different components @, », then unify the
two stars to a single one.

Rule11: If the value ofz gets fixed, then fix all variables in the component @ppropriately.

Note that the newly inferred knowledge cannot lead to a ealnttion in theH; » graph—such as
R1(z1,22) and Ry(21, 22) holding at the same time—because all inferred informatmmesponds to
a consistent labeling of the variables.

Unifying two stars involves detaching all nodes in the seradtar from its root and attaching them
using the appropriate relation to the root of the bigger, las attaching the root of the smaller star to
the root of the bigger star. Therefore, this operation tdikes proportional to the size of the smaller
star.

Continuing our example, Figure 6 shows the unification of stees of Figure 5 after having
inferred thatzs = 1 — 2.

To sum up: the star representation is a data structure witmapsize,O(1) information retrieval
time, and linear update time.

5.2 Inferencealgorithm

Each time the branch-and-bound algorithm fixes a variab&new information is propagated to the
other variables using the above rules, until no more infdionacan be inferred.

“This is possible, if we store to each node the set of its neighin the star plus a flag whether this node is the root
of the star. Note that for the non-root nodes, the set of theighbors in the star consists of just one element, namely th
root. Given two nodes, we can determine their relation bgstey to the roots of the respective stars (if one of the nodes
is a root on its own, then no step is needed in that case). tinbeoots are different, then there is no relation between th
two nodes. Otherwise we have found the two-edge path betthegwo nodes, which enables the deduction of the relation
according to Proposition 1/(i).

12

5

Figure 6: Unification of the stars of Figure 5

The inferred information is stored in a stack-like data atite, theinference stackso that the
inference steps can be easily undone when backtrackingedver, for easier access, the currently
known information is also stored separately for each végiab

Finally, a technique calledonstructive disjunctio{CD [52]) is applied. This means a controlled
branching of given depth (typically 1). For instance,ddte a variable whose value is not yet known.
CD works by first trying to substitute = 0, checking if this leads to a contradiction with the cost
constraints, and then also checking the= 1 setting for contradiction. If both options lead to a
contradiction, then the current branch can be cut off. Ifcyeone of the two options leads to a
contradiction, therr can be set to the other value. In this case, CD was succedthwne of the
two options leads to a contradiction, then nothing has befarred, z remains unset, CD was not
successful.

CD is motivated by the following facts:

e According to Rule 11, fixing a variable can lead to substangsv knowledge.

e Even the fixation of a single variable can incred$g or Rp significantly. This can happen
either because the corresponding node or edge of the drgginanunication graph has a high
cost, or because we fix a node of the communication graph in ausay that many edges
become crossed by the partition.

In our algorithm, CD is applied to all variables that are soiot the star representation (isolated
vertices also count as roots). Whenever a variable is fixed@/€D, this information is propagated
to the other variables using the previously described rulde inference stack can be used to store
the information inferred during CD as well, because it eestdasy undoing. If CD is successful for
at least one variable, then it makes sense to restart itlfeaaables, otherwise it does not.

Although CD involves a non-negligible time penalty, it cavery useful in pruning large regions
of the search space, so that it is generally accepted in tifieial intelligence community as a very
effective technique.

Finally, we note that general solvers for constraint logimgpamming (CLP) typically use branch-
and-bound and inference. This means that inference iselfquite powerful technique that can be
used even without LP-relaxation. Our method can be regaadedcombination of an ILP-solver and
a CLP-solver. As another consequence, it is not necessaglte a linear program in each step.
Since solving an LP is more time-consuming than the oth@ssté our algorithm, it makes sense to
perform LP optimization less frequently.

13

6 Necessary conditions (lower bounds on costs)

As already discussed, branch-and-bound works well if lgpgetions of the search tree can be cut
off. For this, the algorithm must be able to recognize thatvergpartial solution will surely not
yield a valid solution that is better than the best one foumdas. In other words, necessary condi-
tions are needed that a promising partial solution has fol fuf the current partial solution does not
fulfill a necessary condition then the current branch canut®ff. Of course, such necessary condi-
tions should be easily checkable. Until now, only one sudessgary condition has been mentioned,
namely the one based on LP-relaxation. In this section, smdéional, problem-specific necessary
conditions are described.

Vaw Vsw

VA (Viw U Vsw)

Figure 7: A partial solution

Suppose we have a current partial solution such as the omenshd-igure 7.V denotes the
set of nodes of the communication graph that are fixed to hemglvand similarlyVsy, denotes the
set of nodes that are fixed to software. &t = ZuievHW h; be the hardware cost of the nodes
fixed to hardware, anfl.,,.- = Zw Ve Si be the software cost of the nodes fixed to software. These
costs will surely be incurred. Similarly, the edges betw&gm, and Vs will surely be cut by the
partition, which incurs a communication costGf,,, = > (ci; : vi € Vagw,v; € Vgw orv; €
Vsw,vj € Vaw). The nodes i’" = V' \ (Vgw U Vgw) are not yet fixed, therefore it is not known
whether their hardware cost or their software cost will beumed. Similarly, it is not yet known
whether the edges incident to these nodes will be cut by thiga or not. Our aim is to find as high
as possible lower bounds on the costs.

To find advanced, non-trivial necessary conditions, thbertegies that we introduced in another
paper [5] can be used. In that paper, we addressed a sligfidyedt partitioning problem as well, in
which there is no bound oRp, but rather the objective is to minimizé» = aHp + 5Sp + vCp,
whereq, 3, and~y are given non-negative weight factors. That problem is meadier and we have
presented a fast, polynomial-time exact algorithm for ijok relies on finding the minimum cut in
an auxiliary graph. Moreover, the algorithm could also bepdy generalized to the case in which
some components of the system are fixed to hardware or seftwar

Let us now turn back to the problem at hand. Suppose that thénmin of T is calculated
(taking into account the already fixed noded/imy andVgyy) for different«, 3, andy values. This
minimum will be denoted byl'(«, 3,7). Using the above-mentioned polynomial-time algorithm,
suchT values can be calculated quickly. Then, the following areessary conditions (recall th&k
denotes the bound aRip, and H is the hardware cost of the best valid partition found sa far)

14

Condition 1. 7'(0,1,1) < Ry
Condition 2: 7'(1,1,1) < Hy+ Ry — 1

Condition 1 holds becaugg&(0, 1, 1) is the minimum achievabl®& p value, given the already fixed
nodes. Testing Condition 1 decides optim2ilyhether the current partition can somehow be extended
to a valid partition {.e. satisfyingRy). Similarly, Condition 2 holds becau§&1, 1, 1) is the minimum
achievableHp + Rp value, given the already fixed nodes (and because of ther@titggof the cost
values). Note that these conditions imply other, easieditioms, as follows:

Condition 3. (implication of Condition 1)S.» + Ceurr < Ro
Condition 4. (implication of Condition 2chrr+8curr+zvigv/ min(h;, $;)+Ceyrr < Ho+Ro—1

Another trivial necessary condition that does not follownfr any of the previous conditions is
also used:

Condition 5: Hyrr < Hyp—1

To sum up, Conditions 1, 2 and 5 should be used.

7 Improvement by heuristics

The speed of the branch-and-bound algorithm can be fumthy@roved using any heuristic algorithm
for the partitioning problem, as shown in this section.

The main idea is the following. The speed of the algorithmeahels heavily on how early branches
can be cut off. If the algorithm notices a contradiction garé. near the root of the search tree, then
a large part of the search tree can be pruned. Clearly, ifs low, then chances are good for finding
a contradiction. NormallyH| is initialized with the valuex, and each time a new, better solution
is found, H; is decreased accordingly. Because of the above obsersatanaim is to makéi, as
small as possible, as soon as possible.

Suppose that before running the branch-and-bound algarighheuristic algorithm is run. The
heuristic algorithm produces a valid partition with hardev@ost Hy,...., which is not necessarily
optimal. Nevertheless, the branch-and-bound algorithm ke started with/ initialized to this
value afterwards. This way, the property that the optimutatem is provided is not lost. However,
if the heuristic algorithm is fast, and yields high-qualigsults (which is exactly what makes a good
heuristic algorithm), then we can accelerate the branchbaind algorithm significantly by entailing
only a small time penalty for running the heuristic algamitbeforehand.

In the following, we describe the usage of three heurisgoihms for this purpose: a genetic
algorithm, a minimum-cut-based algorithm, and a clustebased algorithm. Of course, the idea of
pre-optimization with a heuristic can be generally appledLP problems. In fact, ILP solvers do
use general-purpose heuristics for this purpose. In tligose however, the usage of application-
specific heuristics is discussed, which can yield bettault®s The effect of these heuristics on the
overall performance of the algorithm is evaluated in Sec8o Another consequence is that two of
the presented heuristics (the genetic algorithm and thetering-based algorithm) can be combined
in a more sophisticated way with the exact algorithm, natijushe form of pre-optimization.

5That is, Condition 1 is the strongest possible conditiortffis.

15

7.1 Genetic algorithm

In an earlier work [3], we presented a genetic algorithm (@#*)the hardware/software partitioning
problem. It maintains a population of (not necessarilydjaliardware/software partitions, and im-
proves them using the standard genetic operators recotignineutation, and selection. This heuris-
tic algorithm can be used without any modifications as a té¥ozation step before the branch-and-
bound algorithm.

It is also possible to establish a stronger coupling betwenwo algorithms. Suppose that the
two algorithms run in parallel, and maintain a common besfas solution. Whenever the genetic
algorithm finds a better solutior{, can be decreased, which will—as discussed above—help the
branch-and-bound algorithm prune parts of the search &ndiere Conversely, when the branch-and-
abound algorithm finds a better solution, this new, highliupartition is injected into the population
of the genetic algorithm, thus hopefully improving its efigeness.

Unfortunately, our empirical tests have shown that thetatbmbination of the two algorithms is
not very effective. Although the branch-and-bound aldpnitbenefits at first from the results found
by the GA, the GA is simply not able to further improve the atg partitions, because they are of
much better quality than the other individuals in the popalaof the GA. Therefore, we kept to the
original idea of running the GA first, followed by the branahe-bound algorithm.

7.2 Heuristic based on minimum cut

In another work [5], we have described a heuristic algorifomthe hardware/software partitioning
problem, that is based on finding the minimum cut in a graphotéNhat this algorithm is not the
same as the cut-based algorithm mentioned in Section 6 isutased on that algorithm).

This algorithm, too, can be used as a pre-optimization s&fpré the branch-and-bound algo-
rithm.

7.3 Heuristic based on hierarchical clustering

A further possibility is hierarchical clusteringe. unifying vertices of the graph based on local close-
ness metrics until the size of the resulting graph is sufiitjesmall. Because of the local decisions

typically employed in hierarchical clustering, this methie very fast, but of course sub-optimal. Ob-

viously, it is an important question when the clusteringgess should stop. If many vertices are
unified, then the resulting graph is small, so that it can kmlye@artitioned, but many degrees of

freedom are lost. Conversely, if only few vertices are udifignen the resulting graph is quite big,

so that its partitioning is still non-trivial, but the loss degrees of freedom (and hence in potential
solution quality) is not so significant.

Whenever two nodes; andv; of the communication graph are unified, the software coshef t
resulting new node will bg;+s;, and its hardware cost will big +/;. If parallel edges occur, they can
be substituted with a single edge, the communication costhath is the sum of the communication
costs of the parallel edges. If a loope(a cycle of length 1) occurs, it can be simply abandoned
because it does not participate in any cut of the graph. llnvid that a partition” in the clustered
graph can be expanded to a partitiBhin the original graph with the same hardware, software, and
communication costs.

Hierarchical clustering and the branch-and-bound algritan be combined as follows. First,
the input graph is clustered until its size reaches a rangenttakes it possible to quickly find its
optimal solution using branch-and-bound. This works, bseathe branch-and-bound algorithm is
rather fast on small graphs. So in the second step, the dppantition of the clustered graph is

16

obtained using the branch-and-bound algorithm. As diszlisbove, this defines a valid partition of
the original graph with the same hardware cost, so that we bhtained a non-triviaH, value for
the original graph. In the third step, the original partifitg problem is solved using the branch-and-
bound algorithm, starting with thi&/, value. Clearly, this strategy also yields an optimal soluti
for the original problem, and if the clustering algorithmgsod enough, then the whole process is
significantly accelerated.

This idea can be generalized to a recursive, multi-levedrétlym. LetGy = G be the original
graph, which hasiy = n vertices. Furthermore, lgt € (0,1) be a constant. The graplis (: =
1,2,..., k; the number of vertices ifr; is denoted byh;) are defined recursively as follows:; is
obtained fromG;_; using hierarchical clustering, so that = |un,;—1]. k is chosen in such a way
that G, is the first graph in the series that is in the range of quicklyable problem sizes. Now, the
algorithm works as follows. First, the optimal partitionG#, is calculated. According to the choice
of k, this can be quickly done. In a general step, after the opiaition in G; has been calculated,
this value is used to initializé{,, and to solve the partitioning problem @;_, optimally using this
aid. That is, partitioning problems of increasing compigxre solved, while better and better aids
(i.e. Hy values) are available. At the en@y is partitioned, which is exactly the original problem. An
example for this process withy = 16, 4 = 0.5, andk = 2 is shown in Figure 8. (Edges and costs
are not shown for the sake of simplicity.)

GQ Gl GU
clustering

@ clustering B
partitionGy "\ 0pt(G2) — Hy__/“partitionG; ™\ opt(G1) — Hy __partitionG
optimally optimally optimally

Figure 8: Hierarchical clustering and branch-and-boundlmoed in a multi-level algorithm

[GEONO]
-
(GO}

8 Empirical results

We implemented the presented algorithm in a C program angbamed it to an implementation based
on a commercial ILP solver [3]. Note that, since both aldionis are exact, only their speed had to be
compared, and not the quality of the solutions they find. Trheigcal experiments were conducted
on a Pentium Il 1200MHz PC running SUSE Linux.

Table 1 lists the benchmarks that were used for testing. €hices in the graphs correspond to
high-level language instructions. Software and commuiticecosts are time-dimensional, whereas
hardware costs represent the occupied area. More detdhe @ost functions used in the benchmarks
can be found in [5].

Note that the first three benchmarks — which are taken fromevidd [19] — have approximately
the same size as the graphs that most previous algorithmestested oh The segment and fuzzy
benchmarks are our own designs, and they are significamgjgrlaWe also added some very complex

8In order to justify the usage of only small benchmarks, somtaas argue that a typical program spends most of its
execution time in some loops that are relatively small. \Wthis may be true in general, there also exist programs intwhi

17

Name n e Description

crc32 25 34 32-bit cyclic redundancy check. From the Telenamications
category of MiBench.

patricia 21 50 Routine toinsert values into Patricia trisich are used to store
routing tables. From the Network category of MiBench.

dijkstra 26 71 Computes shortest paths in a graph. From tihedle category
of MiBench.

randoml 200 200 Random communication graph.

random2 200 250 Random communication graph.

segment 150 333 Image segmentation algorithm in a medipéicapon.

random3 300 300 Random communication graph.

random4 300 375 Random communication graph.

fuzzy 261 422 Clustering algorithm based on fuzzy logic.

rcé 329 448 RCG6 cryptographic algorithm.

random5 400 400 Random communication graph.

random6é 400 500 Random communication graph.

random7 500 500 Random communication graph.

mars 417 600 MARS cipher.

random8 500 625 Random communication graph.

random9 600 600 Random communication graph.

ray 495 908 Ray-tracing algorithm for volume visualization

random10 600 750 Random communication graph.

Table 1: Summary of the used benchmarks.

benchmarks from the domains of cryptography and volumealisation as well as large random
graphs to test the limits of the applicability of the alglonits.

Our algorithm adds three techniques to a pure ILP-solveetbaalgorithm: inference, lower
bounds, and pre-optimization. In order to see the improveiog each of these techniques, we tested
four versions of the algorithm:

ILP: Standard ILP solvéri.e. branch-and-bound algorithm without the suggested
improvements
inference: Branch-and-bound algorithm with inference but without éovbounds and

pre-optimization

inference+L B: Branch-and-bound algorithm with inference and lower baubdt without
pre-optimization

there is a large number of such time-consuming loops, oether also relatively big time-consuming loops. Furtheemor

in very complex systems even the relatively small parts @huge. Our larger benchmarks are examples of such systems.
"As ILP solver, we used version 3.2 of the package sol ve, which is available fronftp://ftp.es.ele.tue.nl/pub/Ip_

solve It uses branch-and-bound, the search tree is traversedipth-first-search fashion, and branching is performet eac

time according to a randomly chosen non-integer variabte.chtting off parts of the search tree, it uses the bound from

LP-relaxation.

18

CUT+inference+tLB: Branch-and-bound algorithm with inference, lower bouiasl pre-optimization
based on minimum-cit

0,20

0,18

/

0,16

;

0,14

0,12 ~

0,10

Time [s]

0,08 A
0,06 -
0,04 +

0,02 4

0,00
crc32 patricia dijkstra

‘ ——ILP —l—inference —aA—inference + LB —&—CUT +inference + LB ‘

Figure 9: Algorithm runtimes on the easiest benchmarks

Figures 9-11 show the running time of the algorithms (theatesof five measurements) on bench-
marks of low, medium, and high complexity. As can be seen filoeresults, the ILP algorithm is
very fast on the three smallest benchmarks, but its runimimg ¢xplodes quickly. On the other hand,
all versions of the branch-and-bound algorithm are shghklbwer on the smallest benchmarks (but
still fast — under 0.2 second), but much more efficient on tlagdr examples. On benchmarks of
medium complexity, the best version of the branch-and-dalgorithm is about 10 times faster than
the ILP-based algorithm. On the largest benchmarks, omyb#st version of the branch-and-bound
algorithm finished in acceptable time (within 1-2 hours)J amtwo cases also the algorithm without
pre-optimization, the other versions did not finish withihHours. Of course, even the running time
of the best version of the branch-and-bound algorithm faism to combinatorial explosion, but it
can be seen that it can indeed solve very complex probleneasonable time.

Figure 10 shows clearly that for non-trivial problem instes, each one of the proposed techniques
significantly improves the performance of the algorithm.

Finally, we would like to revisit the issue of heuristic vessexact algorithms, which was men-
tioned in the Introduction. Table 2 shows the deviation efiasult of the genetic algorithm from the
optimum, in percentage. We chose the genetic algorithmhisrgurpose because it is typical of the
kinds of algorithms that are widely used for hardware/safevpartitioning (see Section 2). In this set
of experiments, we tried differer®, values for all benchmarks, because the performance of the GA

80f course, we also tested the other two pre-optimizationisies, but they yielded somewhat worse results than the
minimum-cut-based heuristic, therefore we omit thoseltefiere.

19

Time [s]

600,00

500,00 -

400,00 -

300,00 -

200,00 -

100,00 +

0,00

random1

random2 segment random3 fuzzy rcé random5 mars

‘ ——ILP —#—inference —&—inference + LB —8—CUT +inference + LB ‘

Figure 10: Algorithm runtimes on benchmarks of medium caxity

Time [s]

14000,00

12000,00 -

10000,00

8000,00 +

6000,00 ~

4000,00 -

2000,00 -

0,00

random4 random6 random?7 random8 random9 ray random10

‘ ——ILP ——inference —aA—inference + LB —8—CUT +inference + LB ‘

Figure 11: Algorithm runtimes on the hardest benchmarks

20

Benchmark Minimum deviation Average deviation Maximumidé&on

crc32 0 0 0
patricia 0 0 0
dijkstra 0 0.6% 3.2%
segment 1.4% 4.7% 16.1%
fuzzy 3.9% 14.9% 57.0%
rcé 22.5% 50.9% 126.1%
mars 19.1% 42.2% 93.0%
ray 58.3% 89.4% 171.6%

Table 2: The deviation of the result of GA from the optimum

depends significantly on this parameter [3]. The three cobkiof the table refer to the best, average,
and worst of the results for the differeRfy values. As can be seen from the results, the GA finds al-
most always the optimal solution in the case of the threeldmeachmarks. However, as we move on
to the bigger benchmarks, the relative performance of thalSésignificantly worsens. In particular,
the worst-case result for the ray benchmark is 171.6%, wisicinacceptable in most applications.
Hence, the exact algorithms offer significant rewards feirttonger running times. And in the case
of the small benchmarks, where the GA finds virtually alwdyes dptimum, the exact algorithms are
also very fast.

9 Conclusions

This paper described a first attempt towards a practicaltedgorithm for the hardware/software
partitioning problem. We have shown that a branch-and-8@aheme can be used as a framework,
into which further algorithms can be integrated. Specifjcale have integrated the following tech-
niques into the algorithm: (i) lower bounds based on LPxaian; (ii) a custom inference engine;
(i) non-trivial necessary conditions based on a minimeu-algorithm; (iv) different heuristics as a
pre-optimization step. The presented methods can alsodfel us other related optimization prob-
lems.

The empirical results have shown that the resulting aligarits indeed capable of solving large
problem instances in reasonable time. In particular, ilearty more practical than a standard ILP
solver.

The presented algorithm can be simply generalized to iechadre than one constraint (for in-
stance, real-time constraints for different use casesso$yistem). Another generalization enables the
system designer to prescribe that some nodes have to bedwdra; and some in software.

Several future research directions can be identified as Wallumber of other algorithmic ideas
can be incorporated, for instance, the Kernighan/Lin fstiarimore advanced heuristics for choosing
the next variable to fix, using a custom LP solver etc. Funtioee, it should also be investigated in
more depth what characteristics of a problem instance makiicult or easy to solve optimally.

21

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

T. F. Abdelzaher and K. G. Shin. Period-based load paniihg and assignment for large real-
time applicationslEEE Transactions on Computer$9(1):81-87, 2000.

J. K. Adams and D. E. Thomas. Multiple-process behavViesmthesis for mixed hard-
ware/software systems. FProceedings of the IEEE/ACM 8th International Symposiunsyst
tem Synthesjs1995.

P. Arat6, S. Juhasz, Z. A. Mann, A. Orban, and D. Papp. ward/software partitioning in
embedded system design. Pmoceedings of the IEEE International Symposium on Ilfefit
Signal Processing2003.

P. Arat6, Z. A. Mann, and A. Orban. Hardware-softwaredasign for Kohonen'’s self-organizing
map. InProceedings of the IEEE 7th International Conference oelligient Engineering Sys-
tems 2003.

P. Aratd, Z. A. Mann, and A. Orban. Algorithmic aspectshafrdware/software partitioning.
ACM Transactions on Design Automation of Electronic Systé(1):136—-156, 2005.

P. Athanas and H. F. Silverman. Processor reconfigurdktiough instruction-set metamorpho-
sis. IEEE Computerpages 11-18, March 1993.

E. Barros, W. Rosenstiel, and X. Xiong. Hardware/sofevpartitioning with UNITY. In2nd
International Workshop on Hardware-Software Codesitpo3.

E. Barros, W. Rosenstiel, and X. Xiong. A method for pgéotiing UNITY language in hardware
and software. IrProceedings of the IEEE/ACM European Conference on Desigamation
1994.

N. N. Binh, M. Imai, A. Shiomi, and N. Hikichi. A hardwarsdftware partitioning algorithm for
designing pipelined ASIPs with least gate counts?iloceedings of the 33rd Design Automation
Conferencel1996.

K. S. Chatha and R. Vemuri. MAGELLAN: Multiway hardwaseftware partitioning and
scheduling for latency minimization of hierarchical cattdataflow task graphs. IRroceedings
of CODES 012001.

A. Dasdan and C. Aykanat. Two novel multiway circuit figmning algorithms using relaxed
locking. IEEE Transactions on Computer-Aided Design of Integratédu@s and Systems
16(2):169-177, February 1997.

R. P. Dick and N. K. Jha. MOGAC: A multiobjective genetilgorithm for hardware-software
co-synthesis of hierarchical heterogeneous distributebeelded systemslEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systéif(10):920-935, 1998.

P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. Hardwaodtware partitioning of VHDL system
specifications. IfProceedings of EURO-DAC '96.996.

P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. Systemelehardware/software partition-
ing based on simulated annealing and tabu sedbasign Automation for Embedded Systems
2(1):5-32, January 1997.

22

[15] R. Ernst, J. Henkel, and T. Benner. Hardware/softwasycthesis for microcontrollerdEEE
Design and Test of Computerd(4):64—75, 1993.

[16] C. M. Fiduccia and R. M. Mattheyses. A linear-time hetid for improving network partitions.
In Proceedings of the 19th Design Automation Conferch©82.

[17] J. Grode, P. V. Knudsen, and J. Madsen. Hardware resa@llocation for hardware/software
partitioning in the LYCOS system. IRroceedings of Design Automation and Test in Europe
(DATE '98), 1998.

[18] R. K. Gupta and G. de Micheli. Hardware-software cokegsts for digital system$EEE Design
& Test of Computersl0(3):29-41, 1993.

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austinyltidge, and R. B. Brown. MiBench:
A free, commercially representative embedded benchmadtdk $0 Proceedings of the IEEE 4th
Annual Workshop on Workload Characterizatid®97.

[20] J. Henkel and R. Ernst. An approach to automated haefsaftware partitioning using a flex-
ible granularity that is driven by high-level estimatiorchaiques. IEEE Transaction on VLSI
Systems9(2):273-289, 2001.

[21] E. Hwang, F. Vahid, and Y. C. Hsu. FSMD functional paotiing for low power. InProceedings
of the Design Automation and Test in Europe Confereh©89.

[22] A.Jantsch, P. Ellervee, and J. Oeberg. Hardware/soéartitioning and minimizing memory
interface traffic. InProceedings of the IEEE/ACM European Conference on Desigoration
1994.

[23] A. Kalavade.System-level codesign of mixed hardware-software systmisthesis, University
of California, Berkeley, CA, 1995.

[24] A. Kalavade and E. A. Lee. The extended partitioningbpem: hardware/software map-
ping, scheduling and implementation-bin selectid@sign Automation for Embedded Systems
2(2):125-164, 1997.

[25] A. Kalavade and P. A. Subrahmanyam. Hardware/softyarétioning for multifunction sys-
tems. IEEE Transactions on Computer-Aided Design of Integratétuls and Systems
17(9):819-837, September 1998.

[26] B. W. Kernighan and S. Lin. An efficient heuristic procee for partitioning graphsThe Bell
System Technical Journa9(2):291-307, 1970.

[27] P. V. Knudsen and J. Madsen. PACE: a dynamic programmliggrithm for hardware/software
partitioning. In Proceedings of the IEEE/ACM 4th International Workshop oard-
ware/Software Codesigi996.

[28] M. Lopez-Vallejo, J. Grajal, and J. C. Lopez. Consttalriven system patrtitioning. IRroceed-
ings of DATE pages 411-416, 2000.

[29] M. Lopez-Vallejo and J. C. Lopez. A knowledge basedeysfor hardware-software partition-
ing. InProceedings of DATEL998.

23

[30] M. Lopez-Vallejo and J. C. Lopez. Multi-way clusteritechniques for system level partitioning.
In Proceedings of the 14th IEEE ASIC/SOC Conferepeges 242-247, 2001.

[31] M. Lopez-Vallejo and J. C. Lopez. On the hardware-safevpartitioning problem: system
modeling and partitioning techniqueACM Transactions on Design Automation of Electronic
Systems8(3):269-297, July 2003.

[32] J. Madsen, J. Grode, P. V. Knudsen, M. E. Petersen, amthithausen. LYCOS: The Lyngby
co-synthesis systenbesign Automation for Embedded Syste?{R):195-236, 1997.

[33] Z. A. Mann and A. Orban. Optimization problems in systiwvel synthesis. IfProceedings of
the 3rd Hungarian-Japanese Symposium on Discrete Mathesreatd Its Applications2003.

[34] B. Mei, P. Schaumont, and S. Vernalde. A hardware/smiéwpartitioning and scheduling algo-
rithm for dynamically reconfigurable embedded system®Rroteedings of ProRISQR00O0.

[35] R. Niemann. Hardware/Software Co-Design for Data Flow Dominated Endmsd Systems
Kluwer Academic Publishers, 1998.

[36] R. Niemann and P. Marwedel. An algorithm for hardwasiigare partitioning using mixed
integer linear programmingDesign Automation for Embedded Systems, special issudi- Par
tioning Methods for Embedded Syste2t465-193, March 1997.

[37] M. O'Nils, A. Jantsch, A. Hemani, and H. Tenhunen. Iatdive hardware-software partitioning
and memory allocation based on data transfer profilingntarnational Conference on Recent
Advances in Mechatronic4995.

[38] M. F. Parkinson and S. Parameswaran. Profiling in the &&fsign environment. IRAroceed-
ings of the IEEE/ACM 8th International Symposium on Systamh8sis 1995.

[39] S. Prakash and A. C. Parker. SOS: synthesis of apitapecific heterogeneous multiproces-
sor systemsJournal of Parallel and Distributed Computing6:338-351, 1992.

[40] S. Qin and J. He. An algebraic approach to hardwareidsoé partitioning. Technical Report
206, UNU/IIST, 2000.

[41] G. Quan, X. Hu, and G. Greenwood. Preference-driveraltbical hardware/software parti-
tioning. InProceedings of the IEEE/ACM International Conference om@oter Design1999.

[42] Y. G. Saab. A fast and robust network bisection algontHEEE Transactions on Computers
44(7):903-913, July 1995.

[43] A. Schrijver. Theory of linear and integer programmingViley, 1998.

[44] V. Srinivasan, S. Radhakrishnan, and R. Vemuri. Hardvgaftware partitioning with integrated
hardware design space exploration.Pimceedings of DATEL998.

[45] G. Stitt, R. Lysecky, and F. Vahid. Dynamic hardwaréisare partitioning: a first approach. In
Proceedings of DAC2003.

[46] F. Vahid. Modifying min-cut for hardware and softwarattional partitioning. IrProceedings
of the International Workshop on Hardware-Software Cogiesi997.

24

[47] F. Vahid. Partitioning sequential programs for CADngsa three-step approachCM Transac-
tions on Design Automation of Electronic Systei#(8):413—-429, July 2002.

[48] F. Vahid and D. Gajski. Clustering for improved systé&wel functional partitioning. IrPro-
ceedings of the 8th International Symposium on System &ysth095.

[49] F. Vahid and T. D. Le. Extending the Kernighan/Lin hetid for hardware and software func-
tional partitioning.Design Automation for Embedded Syste237-261, 1997.

[50] W. Wolf. An architectural co-synthesis algorithm fastlibuted embedded computing systems.
IEEE Transactions on VLSI Systerb§2):218-229, June 1997.

[51] W. Wolf. A decade of hardware/software codesitfBEE Computer36(4):38—43, 2003.

[52] J. Wirtz and T. Muller. Constructive disjunction ratesl. In20th German Annual Conference
on Artificial Intelligence 1996.

25

