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Abstract—Patient monitoring in hospitals, nursing
centers, and home care can be largely automated using
cameras and machine-learning-based video analytics,
thus considerably increasing the efficiency of patient
care. In particular, Facial-expression-based Pain As-
sessment Systems (FePAS) can automatically detect
pain and notify medical personnel. However, current
FePAS solutions using cloud-based video analytics offer
very limited security and privacy protection. This is
problematic, as video feeds of patients constitute highly
sensitive information.

To address this problem, we introduce SecFePAS,
the first FePAS solution with strong security and
privacy guarantees. SecFePAS uses advanced crypto-
graphic protocols to perform neural network inference
in a privacy-preserving way. To counteract the signif-
icant overhead of the used cryptographic protocols,
SecFePAS uses multiple optimizations. First, instead
of a cloud-based setup, we use edge computing with
a 5G connection to benefit from lower network la-
tency. Second, we use a combination of transfer learn-
ing and quantization to devise neural networks with
high accuracy and optimized inference time. Third,
SecFePAS quickly filters out unessential frames of the
video to focus the in-depth analysis on key frames. We
tested SecFePAS with the SqueezeNet and ResNet50
neural networks on a real pain estimation benchmark.
SecFePAS outperforms state-of-the-art FePAS systems
in accuracy and optimizes secure processing time.

I. Introduction

Facial-expression-based pain assessment (FePAS) has
versatile applications in healthcare, such as real-time mon-
itoring of patients in their homes or in nursing centers [1],
[2]. FePAS offers significant benefits for patient care. It
facilitates accurately gauging pain levels, particularly in
patients who struggle with verbal communication, such
as infants [3], the elderly [4], and ICU (Intensive Care
Units) patients [5]. Upon pain detection, nursing personnel
can be alerted to provide appropriate treatment. Recent
advances in smart cameras, edge networks, and computer
vision based on deep learning have made it possible to
perform FePAS automatically and with good accuracy [5].

However, video streams of patient faces are highly sensi-
tive data, requiring strong protection for privacy reasons.
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Only authorized healthcare providers should be able to ac-
cess patient data to prevent privacy breaches and misuse.
Thus, robust privacy-preserving techniques are essential in
FePAS. Using cloud-based video analytics services in the
context of FePAS constitutes a privacy risk, as the FePAS
video streams must remain inaccessible to cloud providers
and other cloud tenants [6].

The standard approach to guarantee privacy in video
processing is to obscure personally identifiable regions –
such as faces – in the video frames, for example by blurring
them or by covering them with an opaque overlay [7], [8].
Such approaches, however, are inappropriate for FePAS,
since they make it impossible to analyze facial expressions.

To address privacy concerns while allowing effective an-
alytics, recent research [9]–[17] introduced cryptographic
frameworks for secure neural network inference (SNNI).
These approaches address the problem where a server
possesses a valuable pre-trained neural network model F .
The server offers inference with F as a service, without
disclosing F itself. A client can use the service to per-
form predictions on her private data x while keeping x
secret from the server. The client can learn the inference
result F (x) without gaining any additional information
beyond what can be inferred from F (x), while the server
learns nothing about x or F (x). SNNI protocols solve
this problem, satisfying the needs of both parties. One
application could be privacy-preserving FePAS, where the
server evaluates pain levels from facial images without
learning the image contents. A challenge in using SNNI
protocols is their significant computation and communi-
cation overhead [18], [19]. Thus, a major goal of recent
research in SNNI has been to reduce this overhead, while
upholding high accuracy [20].

Benefiting from this trend, this paper presents
SecFePAS1, the first SNNI-based FePAS solution. Building
on SNNI for analyzing selected frames of the video feed has
the major advantage of offering strong privacy guarantees,
which is essential in FePAS. Specifically, we use Chee-
tah [17], a state-of-the-art SNNI approach that works well
with Convolutional Neural Networks (CNNs), the type of
neural network often used for image classification tasks.

1The source code of SecFePAS is publicly available at https://
github.com/KanwalBat00l/SecFePAS.

https://github.com/KanwalBat00l/SecFePAS
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Beside the used SNNI approach, also the neural network
used in the analytics has large impact on performance, in
terms of both speed and accuracy. In this research, we
experiment with different CNN architectures, resulting in
different trade-offs between inference speed and accuracy.
For efficiently training the neural network, SecFePAS uses
a transfer learning approach: the neural network is first
pre-trained on a general image dataset, followed by fine-
tuning on a dataset specific to FePAS. SecFePAS also uses
quantization to reduce the bitlength of model parameters.
This leads to a reduction in model size and to a speed
improvement during the SNNI process, both of which are
very advantageous, especially in a resource-constrained
edge setup. Through careful combination of transfer learn-
ing and quantization, SecFePAS achieves a significant
speedup while only incurring a negligible accuracy drop.

SecFePAS is based on an edge computing architecture,
carefully partitioning functionality between an end device
(e.g., a smart camera) and an edge server (e.g., a nearby
server of the nursing center). The selection of representa-
tive frames from the video feed and their preprocessing
(cropping, scaling) are performed by the end device. The
edge server stores the CNN model. End device and edge
server perform secure inference using an SNNI protocol.
Thus, sensitive patient data never leaves the end device
in the patient’s room. Since the edge server is just one
network hop away from the end device, network latency is
much lower than for existing cloud-based video analytics
solutions. Using a 5G network connection between end
device and edge server results in a high bandwidth, which
helps further decrease communication time.

The main contribution of this paper is the design and
prototypical implementation of SecFePAS. SecFePAS is
the first approach to provide FePAS with strong privacy
guarantees and high accuracy, by combining carefully
trained and quantized CNNs, advanced cryptographic pro-
tocols for SNNI, and edge computing with 5G networks.
SecFePAS stands out from existing edge-based video ana-
lytics by implementing privacy-preserving neural network
inference for pain assessment. It addresses unique chal-
lenges in model security and data protection throughout
the inference process. We evaluated the SecFePAS proto-
type on the UNBC-McMaster Shoulder Pain Expression
archive [21] using the SqueezeNet [22] and ResNet50 [23]
CNNs. The results show that SecFePAS outperforms the
state-of-the-art in terms of accuracy and speed.

II. Related Work
Secure image or video classification utilizes advanced

cryptographic techniques such as Homomorphic Encryp-
tion (HE) [24], Secure Multi-Party Computation (MPC),
and Trusted Execution Environments (TEE) to protect
privacy. Solutions such as Visor [25] leverage cloud infras-
tructure and TEEs to protect sensitive information during
video analytics. Visor executes video pipelines within a
hybrid TEE that extends across both the CPU and GPU

on the trusted client and server. PPVC [26] employs the
ConvNet model to incorporate MPC protocols for secure
single-frame video classification in the cloud. The model
was first trained on the FER 2013 dataset, consisting
of 30,000 images of 48x48 pixels. Then, the model was
fine-tuned on the RAVDESS dataset, consisting of video
clips of duration 3 to 5 s at 30 frames per second (fps),
sampling every 15th frame, leading to 2 fps video. Only
spatial information was taken into account. Innovations
like Crypto3D [27] and CryptoMask [28] enhance pri-
vacy through 3D feature extraction and face recognition,
respectively. However, these methods face challenges re-
lated to scalability, computational overhead, and accuracy.
These issues are particularly critical in sensitive appli-
cations, such as facial-expression-based pain assessment,
which demands efficient processing, high accuracy, and
strict data confidentiality.

To our knowledge, SecFePAS is the first approach to
achieve secure automated facial-expression-based pain as-
sessment. We built on existing research in cryptographic
methods for secure image classification and enhanced it
with new optimisation techniques tailored to secure video
frame analysis at the edge.

III. Proposed Solution: SecFePAS

SecFePAS integrates the functionalities of FePAS and
SNNI to provide a secure system for pain assessment using
facial expressions in video streams. It leverages CNNs
for facial analysis in video frames, edge computing for
efficient processing close to the camera source, and 5G
networks for fast and reliable data transmission. SecFePAS
incorporates an SNNI solution as a black box, which uses
advanced cryptographic techniques, such as Homomorphic
Encryption (HE) and Secure Multi-Party Computation
(MPC) to keep all input data encrypted and inaccessible
throughout the entire process. As output, it generates
encrypted pain scores that can only be decrypted by
authorized devices. This configuration supports seamless
integration into healthcare systems and makes it ideal for
real-world FePAS applications.

Fig. 1 gives an overview of the SecFePAS workflow. This
workflow consists of two main phases: a preparatory offline
phase (the upper two thirds of the figure) and an online
phase (the lower third of the figure). In the following, we
first describe the overall setup assumed by SecFePAS, then
the online phase, and finally the preparatory offline phase.

A. Setup
Stakeholders. SecFePAS involves three key stakehold-

ers, and an optional fourth one:
• Patient: natural person, about whom a video feed is

captured.
• Healthcare service provider (e.g., nursing station):

organization providing healthcare services to patients,
which include monitoring patients’ condition.
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Fig. 1: Workflow of a SecFePAS system

• Machine learning model provider : company specializ-
ing in training neural networks, furnishing the health-
care service provider with a trained model for facial-
expression-based pain detection.

• Optionally, the edge server may be provided by a ded-
icated edge infrastructure provider (e.g., a telecom-
munication operator). Alternatively, this role may
be filled by the healthcare service provider or the
machine learning model provider.

Confidentiality requirements. The healthcare ser-
vice provider needs to have access to the patient’s sensitive
medical data to be able to provide the healthcare service.
However, for the machine learning model provider and – if
it is a separate entity – for the edge infrastructure provider,
there is no need to have access to sensitive patient data,
and thus, such access should be prohibited.

The neural network model specially tuned for facial-
expression-based pain detection is the intellectual property
of the machine learning model provider. The machine
learning model provider offers inference with this neural
network as a service, but wants to keep the weights and
other parameters of the model secret from other parties.

Infrastructure. The neural network model for facial-
expression-based pain detection is trained on the backend
infrastructure of the machine learning model provider.
After training, the model is deployed to an edge server. A
smart camera, owned by the healthcare service provider,
is stationed in the patient’s room and captures a video

stream of the patient. The smart camera has compu-
tational resources, allowing it to perform some limited
processing locally. Processing that requires more resources
can be performed on the edge server [29].

B. Online phase
The smart camera captures a real-time video stream

of the patient. To be able to apply the neural network
model for facial-expression-based pain assessment, some
pre-processing activities are needed first.

Pre-processing. All pre-processing takes place in the
smart camera. First, the video is decoded into individual
frames. In our proof-of-concept implementation, we use
OpenCV [30] (Open Computer Vision Library) for this.

In principle, pain detection could be performed on every
frame. However, this is not feasible, given the large amount
of computation and communication necessary for privacy-
preserving analytics on images of realistic size. Also, this is
not necessary, since subsequent frames typically only differ
marginally from each other. Therefore, the most important
pre-processing step is frame selection, i.e., selecting the
frames for in-depth analysis. Our aim is to select the
minimum number of frames necessary for ensuring that
no pain signals are missed.

To achieve this, we perform frame selection in two
steps. Facial expressions associated with significant pain
sensations typically last between 5 to 15 seconds [31].
To ensure that no pain expression is missed, frames are
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TABLE I: Specifications of the used CNN models vs Baseline (∗ marks the baseline model). Layer types: Conv =
convolutional, BN = batch normalization, FC = fully connected, ReLU = rectified linear unit, Trunc = truncation

Benchmark Specifications Layers

Input size Parameter memory Feature (Activation) memory FLOPS Conv BN FC ReLU Trunc

*ConvNet 48 x 48 5.92 MB 879.31 MB 5.38 GFLOPS 5 0 3 7 0
SqueezeNet 224 x 224 5 MB 30 MB 837 MFLOPS 26 0 0 26 26
ResNet50 224 x 224 98 MB 103 MB 4 GFLOPS 53 49 1 49 98

selected periodically every 5 seconds in the first step. In
many cases, there is no significant change even between
frames that are 5 seconds apart. Thus, in the second step,
we apply Temporal Redundancy Reduction [32] to discard
redundant frames from the ones selected in the first step.
This way, we select only frames in which there is a change,
justifying the computational cost of in-depth analysis.

From the selected frames, SecFePAS extracts the part
that contains the patient’s face. For this purpose, MTCNN
(Multi-Task Cascaded Convolutional Neural Network [33])
is applied, which can quickly and accurately detect faces.
Each processed frame is adjusted, cropped to the facial
part, resized to a standard size (224 x 224 in our imple-
mentation), reshaped to a 4D-array, and normalized by
dividing each pixel value by 255.

All pre-processing steps are performed locally in the
smart camera. No advanced domain-specific analytics is
needed for these steps. No sensitive data is sent, and thus,
no SNNI is needed at this stage. The pre-processing steps
are thus much cheaper than the subsequent SNNI stage.

SNNI. The pre-processed video frame is used as input
to the specialized neural network model, located on the
edge server, for facial-expression-based pain assessment.
To protect the confidentiality of video frames from the
machine learning model provider and potentially from
the edge infrastructure provider, as well as to protect
the confidentiality of the neural network model from the
healthcare service provider, the inference is done using
SNNI. That is, the smart camera and the edge server
engage in an SNNI protocol to do the inference securely.

As a result, the SecFePAS application running on the
smart camera learns the inference output, which indicates
the pain level. A high pain level triggers an alarm for the
experts of the healthcare service provider, so that they can
provide timely medical assistance to the patient.

According to the SNNI security guarantees, the health-
care service provider learns nothing about the weights and
other parameters of the neural network (beyond what the
output reveals). Sensitive patient data remains secret from
the process running on the edge server. Neither the ma-
chine learning model provider nor the edge infrastructure
provider learns anything about the patient data.

C. Preparatory offline phase
The aim of this phase is to prepare a neural network

model for facial-expression-based pain assessment in im-
ages, such that secure inference with the model is possible

with high accuracy and optimized execution time. The
activities of this phase are carried out by the machine
learning model provider, prior to the online phase.

Dataset preparation. Researchers from the University
of Northern British Columbia and McMaster University
collected a dataset of 200 video sequences, comprising
48,398 color frames with a resolution of 320 × 240 pixels, of
25 adults. The majority class, “no pain,” comprises 82.71%
of the dataset (40,029 frames). Images showing different
pain levels account for only 17.29% (8,369 frames). Thus,
the dataset is highly imbalanced. To address the potential
classification bias, we created a subset by randomly se-
lecting frames and categorizing them into different pain
levels using the Prkachin and Solomon Pain Intensity
(PSPI) scale [31], as shown in Table II. Fig. 2 shows facial
expressions of a patient experiencing different levels of
pain. Images are cropped, reshaped, and scaled in the same
way as above in the online phase. For training, 80% of the
set is used; the remaining 20% is reserved for validation.

Creating the model. The neural network architecture
has to be chosen carefully, so that it allows accurate and
fast inference. For our proof-of-concept implementation,
we experimented with two CNNs widely used in image
classification: ResNet50 and SqueezeNet. In addition, we
used the ConvNet model as a baseline, as it has been used
for secure video analytics previously [26]. Table I details
the architecture of the used models.

TABLE II: Balanced dataset, created from the UNBC-
McMaster Shoulder Pain expression archive [21]

Class Label PSPI Code Frame Samples

1 No Pain 0 3092
2 Little Pain 1 2909
3 Moderate Pain 2 2351
4 Extreme Pain 3+ 3109

No Pain Little Pain Moderate Pain Extreme Pain

Fig. 2: Sample images from the UNBC-McMaster Shoulder
Pain Expression archive [21], ©Jeffrey Cohn.
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TABLE III: Comparison of SecFePAS variants with the baseline (marked with ∗). The best result per column is in
boldface. End-to-end time is the time of the online phase, encompassing client-side preprocessing and SNNI.

Benchmark Memory Use Evaluation Accuracy Framework End2End Time Communication

Client SNNI

*ConvNet [26] 885.23 MB 56% MP-SPDZ [34] - 511.64s 669.35GB
(RAVDESS) GPU Runtime

ResNet-50 96MB 84.78% SCIHE 1.09s 297.5s 30.94GB
(PAIN) Cheetah 1.09s 78.6s 2.25GB

ResNet-50-FP16 44.8MB 84.74% Loss=0.04% SCIHE 1.09s 238s 24.75GB
(PAIN) Cheetah 1.09s 63.6s 1.8GB

SqueezeNet 5MB 55.6% SCIHE 1.09s 55.3s 9.01GB
(PAIN) Cheetah 1.09s 22.12s 0.67GB

SqueezeNet-FP16 3.3MB 55.55% Loss=0.05% SCIHE 1.09s 40.5s 6.6GB
(PAIN) Cheetah 1.09s 19.21s 0.58GB

These models were first pre-trained on a general im-
age dateset, namely the ImageNet-1k dataset, comprising
images with a resolution of 224x224. We then fine-tuned
the models using the FePAS-specific dataset described
above. The process of pre-training the model using a
general dataset and then fine-tuning it using a task-specific
dataset, also known as transfer learning, has multiple
advantages. Not only does it reduce the time needed for
the task-specific training, but it also alleviates the need for
a large amount of task-specific training data. With transfer
learning, we can achieve high accuracy more quickly and
using only a relatively small task-specific dataset.

The next step in SecFePAS is model quantization. By
reducing the bitlength of the weights in the model, we
reduce the memory requirements as well as the execution
time of the SNNI process; both of these are important
goals, especially in an edge computing setup. Specifically,
we convert the weights from 32-bit floating-point (FP32)
to FP16. This conversion can decrease the model size by up
to 50%, since each weight takes up half the space compared
to float32. As we will see later, the accuracy loss stemming
from this quantization step is negligible.

Preparing for SNNI. SecFePAS uses Cheetah, a state-
of-the-art SNNI approach [17] for performing secure infer-
ence. Like several other SNNI solutions [15], [35], Cheetah
follows a compilation-based approach. That is, the Tensor-
Flow code defining the neural network model is compiled,
using the Athos2 compiler [36], into a distributed C++
program that incorporates the cryptographic protocols for
performing SNNI with the given model. The “stripped
model” created by Athos specifies the model architecture,
but not the weights. This stripped model is shared with
the client (the smart camera). The weights of the model
are kept secret on the server side.

IV. Experiments
This section presents the results of preliminary experi-

ments with the SecFePAS prototype.

2https://github.com/mpc-msri/EzPC/tree/master/Athos

Experimental setup. We experimented with two
SNNI frameworks: Cheetah [17] and SCIHE [15], which in
turn use the SEAL [37] library, enhanced with HEXL [38]
acceleration, and the EMP [39] toolkit. We optimized
the implementation by converting to FP16 and fine-tuned
parameter settings to support FP16 conversion. We used
a precision of f = 12 for fixed-point values. SecFePAS is
implemented in C++ and compiled with gcc version 11.4
on Ubuntu 22.04.4 LTS. The programs used 4 threads.

All experiments were conducted on a WebGPU-Space
equipped with an Intel Xeon Silver 4314 CPU @ 2.40GHz
(32 cores) and 250GB of RAM. To evaluate SecFePAS in
a resource-constrained environment, the server side of the
SNNI process was run on a virtual machine with restricted
memory. The client side was run on the host machine,
which also had limited memory. Memory limitations for
both setups were imposed using the setrlimit tool3.

Results. We evaluated the models using frames with
dimensions of 224x224x3, which are significantly larger
than the 48x48x3 frames used in previous studies with the
baseline model. Table III shows the empirical results. It
compares the baseline approach (using the ConvNet model
trained on the RAVDESS dataset)4 with four variants
of SecFePAS, trained on the PAIN dataset. These four
variants differ in the used neural network model (ResNet50
vs. SqueezeNet) and in whether the model was applied un-
changed or it was quantized to FP16. Each model is tested
with both the SCIHE and Cheetah SNNI frameworks.

As can be seen from the table, SqueezeNet achieves
similar accuracy as the baseline model, while ResNet50
achieves much better accuracy. In terms of all resource
consumption metrics (memory use, end-to-end time, com-
munication), we can observe the same pattern: ResNet50
leads to a significant reduction compared to the base-
line, while SqueezeNet leads to even further reduction.

3https://linux.die.net/man/2/setrlimit
4To our knowledge, no prior research addressed privacy-preserving

facial pain assessment. Therefore, we used secure facial emotion
detection [26] from videos employing MPC as our baseline model
for comparison purposes, using the numbers reported in that paper.
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Fig. 3: Impact of different network technologies on SNNI execution time. Left: ResNet50, right: SqueezeNet

In addition, Cheetah is much more efficient than SCIHE.
Quantization to FP16 results in significant savings in
resource consumption in all cases and for all relevant
metrics, while its impact on accuracy is negligible.

Thus, we can conclude that SecFePAS significantly out-
performs the baseline. Using the SqueezeNet model and
the Cheetah SNNI framework, SecFePAS achieves roughly
the same accuracy as the baseline, but about two orders of
magnitude more efficiently. Using the ResNet50 model and
the Cheetah SNNI framework, SecFePAS achives much
better accuracy than the baseline, about one order of
magnitude more efficiently.

In a second experiment, we investigated the impact of
the network connection between client and server. The
network connection does not influence accuracy or memory
use, but it does influence SNNI time. Fig. 3 compares
different network technologies: Loopback (7 GBps band-
width, 0.048 ms round-trip time (RTT)), LAN (1 GBps
bandwidth, 1 ms RTT), 5G (1 Gbps bandwidth, 5 ms
RTT), and WAN (400 MBps bandwidth, 40 ms RTT). As
the figure shows, using 5G networks offers a significant per-
formance boost over WAN in all cases. This demonstrates
the viability of an edge-based approach using 5G compared
to a cloud-based approach using a WAN connection.

Overall, SecFePAS achieves high accuracy and is much
faster than the state-of-the-art. However, further reducing
the run time should be a key focus for future work, to bet-
ter satisfy the performance needs of FePAS applications.

V. Discussion
The empirical results of the previous section demon-

strate the potential of SecFePAS in achieving accurate,
efficient, and secure facial-expression-based pain assess-
ment. The results of SecFePAS are promising and already
significantly outperform the state of the art.

However, two main challenges remain. First, while the
accuracy of almost 85% achieved with ResNet50 is quite
high, it might not be high enough for a real deployment.
Also, factors like individual differences in pain expression,
head poses, illumination conditions and occlusions etc.
complicate accurate effective pain assessment [40], [41],

thus potentially lowering accuracy in real scenarios. We
expect that better sensor technology (e.g., higher reso-
lution and luminous sensitivity), more advanced image
preprocessing (e.g., fusion from multiple cameras) and
more capable machine learning models (e.g., vision trans-
formers) will help improve accuracy in the future. Future
research should also investigate how various methods of
selecting the validation subset affect model accuracy.

The second challenge is speed. Unlike traditional FePAS
systems, SecFePAS guarantees the protection of input and
output data, and of the model. However, the cryptographic
techniques that are needed for this introduce significant
computational overhead and require extensive commu-
nication. As we have seen, combining a powerful SNNI
framework, quantization, and 5G technology increases
speed significantly, but again, this may not be enough
in practical applications. Our future work will mainly
concentrate on further improving speed. For this purpose,
we will investigate the use of more advanced cryptographic
protocols (e.g., function secret sharing [42]) as well as the
use of model compression techniques beyond quantization
(e.g., neural architecture search, knowledge distillation
[43]). Also parallelization, GPU usage, and hardware ac-
celeration are potential topics for future research.

VI. Conclusion
This research introduced SecFePAS, the first solution

for secure facial-expression-based pain assessment. We
integrated an optimized SNNI framework with advanced
cryptographic techniques to ensure the protection of sensi-
tive video data. Our evaluation confirmed that SecFePAS
operates efficiently as an edge-only solution while pro-
viding high accuracy. However, the used cryptographic
methods can be computationally demanding and require
significant communication. Further work is needed, aiming
at improving accuracy together with run time reduction
for SecFePAS.
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