
1

Secure Neural Network Inference for Edge Intelligence:

Implications of Bandwidth and Energy Constraints1

Jorit Prins, Zoltán Ádám Mann

University of Amsterdam,

Amsterdam, The Netherlands

Abstract. Recently, there has been growing interest in Machine

Learning as a Service (MLaaS). In MLaaS, an operator provides pre-

trained neural networks, with which inference on clients’ inputs can be

performed. MLaaS is attractive in providing edge intelligence in an

Internet of Things (IoT) setup for multiple reasons, for example because

it relieves clients with limited capacity from the computationally heavy

training process. However, MLaaS may lead to privacy threats for both

the client and the provider. In particular, the input of the client may be

sensitive information that the provider is not allowed to learn. The

provider, on the other hand, may not want to reveal the parameters of the

neural network to the client, because these parameters are the provider’s

intellectual property. Besides, the output of the neural network might

also reveal sensitive properties about the input. Lastly, traditional

security solutions might fail in an IoT setup. In recent years, several

cryptographic protocols have been devised for secure neural network

inference (SNNI). Secure neural network inference entails the problem

of computing the output of a neural network on the client’s input without

revealing the input to the provider, nor the parameters of the neural

network to the client. So far, SNNI approaches were optimized for

efficiency and accuracy, mainly in cloud settings. The goal of this

chapter is to investigate the applicability of SNNI approaches in an edge

computing setup. In particular, with power-constrained edge and IoT

devices in mind, we investigate power consumption and energy

consumption characteristics of SNNI approaches. Taking into account

the typical bandwidth of access networks relevant to edge and IoT, we

also investigate the effect of bandwidth limitations on the duration and

energy consumption of the SNNI process. Our results indicate that the

power consumption of SNNI depends significantly on both the used

1 This paper was published in: S. Pal, C. Savaglio, R. Minerva, F. C. Delicato (editors): IoT Edge

Intelligence, Springer, pp. 265-288, 2024

2

SNNI protocol and the available bandwidth.

Keywords: Privacy-preserving machine learning, Neural network, Edge

intelligence, Energy consumption, Power consumption, Network

bandwidth, Edge computing, Internet of Things

1 Introduction

With the rise in the availability of large amounts of data and computing resources,

machine learning (ML) has gained huge importance. ML techniques like Neural

Networks (NN) are promising ways to analyze data, to make decisions, and to predict

future developments. ML has a wide variety of applications domains such as water

quality evaluation [ZWY+2022], mental health prediction [CT2022], fake news

detection [CA2023] and more [LYZ+2022] [GDL+2016].The use of ML typically

consists of two phases: training and inference. In the training phase, a NN is trained by

feeding an extensive dataset to find the best parameter values for the NN. In the

inference phase, the NN is applied to new inputs. The training phase is often a tedious

and time-consuming process. Because not everyone has the time, resources, data, and

know-how to train a NN, Machine Learning as a Service (MLaaS) became popular

[HLL+2021]. In MLaaS, a company or other party offers a pre-trained NN to its clients.

This way, clients can benefit from inference with the NN, without needing to worry

about the training phase. This is an incredibly useful application in the Internet of

Things (IoT) [TKC+2020], for example patient monitoring by medical sensors

[SRR+2021], or using IoT sensors to analyze real-time performance in automotive

manufacturing [SAF+2018].

A typical MLaaS situation (Fig. 1) consists of two parties: the client holding an input

𝑥 and a service provider holding a pre-trained neural network realizing a function 𝑓.

This research focuses on the inference part: the client wants to know the output of the

NN, available on a server owned by the service provider, applied to input 𝑥 held by the

client. This could be easily achieved: the client sends 𝑥 to the server, the server

calculates 𝑓(𝑥) and sends back the result to the client.

However, such a naïve implementation of MLaaS would lead to significant threats

to security and privacy [TM2021]. The client’s input may be confidential and the client

may therefore be reluctant to send 𝑥 to the server. Furthermore, the output 𝑓(𝑥) of the

NN on the given input could also be confidential, resulting in the need to retain this

information from unauthorized parties. Besides, traditional security and privacy

approaches may fail on IoT devices [SKA+2023], for example because these devices

heavily rely on other nodes in the network [LXZ2015].

An alternative implementation could consist in downloading the NN to the client and

performing the inference there. However, this would also be problematic. For the

service provider to train the model as accurately as possible, access to a large amount

of precise data is needed, which may consist of sensitive information. This data, or

properties of this data, could be stolen in the inference phase by the client. In addition,

the service provider could be worried that the client or another adversary could steal

the parameters of the NN, thus interfering with the business model of the service

provider [QIU+2020]. Lastly, this may not work for IoT devices, since they often are

power and resource constrained [LXZ2015].

Therefore, the aim is that the client receives 𝑓(𝑥), without learning anything about

3

the parameters of the NN (beyond what 𝑓(𝑥) might reveal about them), and the server

does not learn anything about 𝑥 or 𝑓(𝑥). This is the Secure Neural Network Inference

(SNNI) problem. In recent years, many different approaches have been proposed to

solve the SNNI problem [MWC+2023].

The SNNI approaches proposed so far were mainly optimized for and evaluated in a

setup where both the client and server computers are powerful machines, often in the

cloud, connected by a network with high bandwidth. In addition, evaluation mostly

focused on latency (i.e., the duration of the SNNI process).

However, there is an increasing tendency to employ ML inference in an edge

computing setup and/or in connection with the Internet of Things (IoT), often involving

sensitive data, like medical data [LMD2021, SRR+2021]. In such a setup, security and

privacy requirements have to be considered in conjunction with requirements stemming

from the constrained resources of the involved devices and of the network [Man2022].

Fig. 1. Secure Neural Network Inference (SNNI) process in a Machine Learning as a Service

(MLaaS) context. The neural network (NN) is already trained to realize a function 𝑓. The client

provides an input 𝑥 to the NN and wants to know the output 𝑓(𝑥) of the NN for this input.

In edge computing and IoT settings, energy consumption also plays a crucially

important role [AAM+2021]. Client devices are often battery-powered, where the

usefulness is heavily influenced by the battery life. Besides, client devices are often

very constrained in terms of computing power. Companies, on the other hand, also want

to keep energy consumption as low as possible because of energy costs and budget

limitations, and should therefore try to avoid big energy overhead. Moreover, a server

is often connected with many clients in a deeply connected IoT network. Metrics like

energy and power consumption are therefore also of importance, and should be

investigated. Another reason to limit energy consumption is the desire to reduce carbon

emission in the fight against climate change. For example, an estimation made in the

SMARTer 2030 report is that all ICT systems worldwide will make up for 2% of the

global carbon emission in 2030 [Glo2015]. The growing number of IoT devices also

contribute to the increase in global power consumption. Researchers also state that ICT

programmers will have the potential to avoid 20% of the global greenhouse gas

emissions with smart programming. However, the energy consumption of SNNI

approaches has not been investigated yet.

The aim of this paper is to provide insight into the applicability of proposed SNNI

approaches for edge intelligence in both edge computing and IoT setups. Our goal is to

achieve a better understanding of the factors that could potentially limit the deployment

of SNNI for edge intelligence in edge computing and IoT setups. We focus on two

4

properties of such setups: (1) the importance of power and energy consumption, and (2)

limited network bandwidth. We perform a set of experiments to investigate the power

and energy consumption of two state-of-the-art SNNI approaches. In particular, we

make the following contributions:

• We empirically compare the two SNNI approaches on two different NNs in

terms of energy and power consumption on both the client and the server

side.

• We investigate how power consumption changes over time during the

SNNI process.

• We investigate the impact of the network bandwidth between client and

server on SNNI latency and on power and energy consumption on both the

client and the server side.

The results that we report in this paper offer many important insights into the

applicability of existing SNNI approaches in edge or IoT setups, the factors for

selecting one or the other SNNI approach, as well as pointers for future research, thus

making progress towards secure edge intelligence.

The rest of the paper is organized as follows. Section 2 introduces the necessary

background knowledge. NNs, SNNI and the two approaches are discussed here. The

logical design and technical setup, as well as the evaluation metrics of the experiments

are discussed in Section 3. In Section 4, the initial measurements of both NNs is

described and compared. In the second part, the relation between the bandwidth and the

power consumption is explained. Section 5 presents the lessons learned, while Section

6 discusses related work, and Section 7 concludes the paper.

2 Preliminaries

This section summarizes the necessary background in neural networks, secure neural

network inference, the CrypTFlow2 and Cheetah SNNI approaches, and the benchmark

NNs that will be used later in this paper.

2.1 Neural Networks

A feed-forward neural network (NN) computes a function, mapping an input vector to

an output vector. The NN consists of a sequence of layers, numbered from 1 to 𝐿. The

input of the first layer is the input of the NN, and the output of the last layer is the output

of the NN. For 1 ≤ 𝑖 ≤ 𝐿 − 1, the output of layer 𝑖 serves as input of layer 𝑖 + 1. Each

layer computes a function, and the function computed by the NN is the composition of

the functions computed by the individual layers.

Layers are often categorized as linear and non-linear. Typical linear layers are:

• Fully-connected (FC): computes the output vector by multiplying the input

vector with a given weight matrix.

• Convolution (CONV): follows a more sophisticated definition, but can also be

cast as multiplication of the input vector with a given matrix.

• Batch normalization (BN): scales each element of the input vector by

multiplying it with a given number and adding another given number to the

result.

Typical non-linear layers:

• Activation functions: the same real function is applied to each element of the

input vector. An often-used example is the ReLU function, which maps 𝑥 to

5

max(𝑥, 0).

• Pooling functions: each element of the output vector is computed by applying

a given function to a subset of the input numbers. An often-used example is

max-pooling, in which the output number is the maximum of the considered

input numbers.

A NN typically contains many parameters, such as the matrices in FC and CONV

layers. The aim of the training phase is to find appropriate values for these parameters,

so that the NN computes the desired function, or at least an approximation of it. For

this purpose, the NN is evaluated on inputs with a known desired output. Comparing

the actual output of the NN with the desired output, the parameters can be tuned such

that the actual output of the NN becomes closer to the desired output.

During the inference phase, the NN is applied to new inputs for which no desired

output is known.

In many cases, the NN is used for classification, i.e., to determine which of a given

set of classes the input belongs to. In such cases, the quality of the trained NN can be

quantified using its accuracy: the ratio of inputs in a validation dataset for which the

NN outputs the correct class.

2.2 Secure Neural Network Inference

In Machine Learning as a Service (MLaaS), a service provider has trained a NN and

offers inference with this NN as a service. A client can use the service to obtain the

output of the NN on a given input provided by the client.

Such a scenario may involve some secrecy constraints. The input and the output may

constitute sensitive information that the client wants to keep secret. The parameters of

the NN constitute the intellectual property of the service provider which the service

provider may not be willing to disclose. Thus, the secure neural network inference

(SNNI) problem is to compute the output of the NN in such a way that the client only

learns the output, but nothing about the parameters of the NN (beyond what the output

might reveal), while the service provider learns nothing about the input nor the output.

In recent years, several SNNI approaches have been proposed [MWC+2023]. They

use sophisticated cryptographic protocols to solve the SNNI problem.

In particular, SNNI can be cast as a secure 2-party computation (2PC) problem. 2PC

means that two parties, typically denoted as Alice and Bob, compute 𝑓(𝑥, 𝑦), where 𝑓

is a publicly known function, 𝑥 is Alice’s secret input and 𝑦 is Bob’s secret input. A

2PC protocol guarantees that neither party learns anything about the other party’s input,

beyond what the output reveals. In the case of SNNI, Alice is the client, Bob is the

service provider, 𝑥 is the input to the NN, 𝑦 is the set of NN parameters (such as the

elements of the weight matrices), and 𝑓 is the evaluation of the NN with parameters 𝑦

on input 𝑥.2

Several 2PC techniques exist that can be leveraged for SNNI. One such technique is

additive secret-sharing. A number 𝑥 is secret-shared between two parties by generating

two numbers 𝑥1 (given to one party) and 𝑥2 (given to the other party) in such a way that

2 In this formulation of the SNNI problem, the structure of the NN is publicly known.

A possible other formulation would entail that the structure of the NN is part of Bob’s

secret input. However, we will stick to the formulation given above because it allows

more efficient implementations and is in line with the assumptions underlying most of

the state-of-the-art SNNI approaches.

6

𝑥1 + 𝑥2 = 𝑥 but otherwise 𝑥1 and 𝑥2 are random. It is possible to perform simple

operations, such as addition and multiplication, on secret-shared numbers using

appropriate protocols. Such protocols can be composed to compute more complicated

functions on secret-shared numbers.

Another useful 2PC primitive is Oblivious Transfer (OT). In OT, Alice has two

messages 𝑚0 and 𝑚1, while Bob has a selection bit 𝑏 ∈ {0,1}. The aim is that Bob gets

the message 𝑚𝑏, without learning anything about the other message, while Alice learns

nothing. OT and its various extensions (e.g., for more than two messages) can be used

as building blocks in many 2PC protocols. For example, the most efficient known

protocols for computing some non-polynomial functions, such as ReLU, on secret-

shared numbers, use OT.

Homomorphic encryption (HE) can also be used in the context of 2PC. An

encryption scheme is called partially homomorphic if at least one operation on

plaintexts (e.g., addition or multiplication) can be evaluated homomorphically, i.e., by

appropriate manipulation of the corresponding ciphertexts. Fully homomorphic

encryption (FHE) schemes support the homomorphic evaluation of both addition and

multiplication. In a 2PC setting, FHE allows Alice to encrypt her input and send it to

Bob, who can evaluate any polynomial function on Alice’s encrypted input, without

learning Alice’s secret input. After sending the encrypted result to Alice, she can

decrypt it to obtain the result in plaintext.

Different 2PC protocols have different advantages and disadvantages. For example,

homomorphic encryption is appropriate for evaluating linear layers of a NN, while for

non-linear layers, OT-based protocols are more appropriate [HLH+2022]. Hence, many

SNNI approaches combine different 2PC protocols on a per-layer basis. They use

additive secret-sharing as an overarching scheme: as an invariant, the inputs to each

layer are secret-shared between the parties, and the protocol for the layer yields its

output again secret-shared between the parties. This way, different protocols can be

composed, paving the way for a variety of SNNI approaches. Under appropriate

conditions, it can be proven that such protocols satisfy the secrecy requirements

[HLH+2022].

2.3 CrypTFlow2 / SCIHE / SCIOT

CrypTFlow2 [RRK+2020] is a typical representative of SNNI approaches combining

different types of protocols for different types of NN layers, using additive secret-

sharing as the overarching method. The major contribution of CrypTFlow2 is a set of

sophisticated and highly optimized protocols for non-linear layers (ReLU, MaxPool,

ArgMax) and division, using OT. (Division is used to maintain a fixed bitlength and in

MeanPool layers.)

For linear layers, CrypTFlow2 implements two different protocols, one based on HE

and another based on OT.

CrypTFlow2 ensures that its output is bitwise equal to the output of cleartext

inference, i.e., the used security protocols do not distort the output in any way. For this

reason, the SNNI approach of CrypTFlow2 is also called SCI, an abbreviation for

Secure and Correct Inference. More precisely, CrypTFlow2 provides two SNNI

approaches, denoted as SCIHE and SCIOT. SCIHE and SCIOT only differ in whether they

handle linear layers with HE or with OT.

In this work, we use SCIHE because it incurs less communication and is thus more

efficient in the case of limited bandwidth than SCIOT [RRK+2020].

7

2.4 Cheetah

Cheetah [HLH+2022] is one of the most recent SNNI approaches. It provides a highly

optimized solution for SNNI. Cheetah was shown to be significantly faster than

previous approaches, such as CrypTFlow2 [RRK+2020], and able to perform secure

inference with large neural networks such as ResNet50 in less than 2.5 minutes in WAN

settings [HLH+2022].

In line with most other recent SNNI approaches, Cheetah (1) uses additive secret-

sharing as the overall 2PC scheme; (2) uses signed fixed-point arithmetic; (3) assumes

that the NN architecture is known to both parties.

The main novelties of Cheetah are:

• For linear layers (fully-connected, convolution, batch normalization),

Cheetah provides a new technique using homomorphic encryption. The

used homomorphic encryption scheme is based on polynomials encoded as

vectors. By arranging parameters carefully into the list of coefficients,

homomorphic operations can be efficiently implemented as polynomial

multiplication. Additionally, in contrast to previous approaches, the used

arithmetic is not in the ring 𝑍𝑝 (for a prime 𝑝), but in the ring 𝑍2𝑘 (for a

positive integer 𝑘), which makes implementation more efficient and also

makes conversions between different rings unnecessary when switching

between layers.

• For non-linear layers, Cheetah uses improved versions of CrypTFlow2’s

protocols. For truncation (i.e., division by a power of 2), Cheetah allows a

small error, enabling a significant speedup of the protocol. A new OT

extension protocol (silent OT) is used in the protocols of both truncation

and comparison, with the latter being the basis for multiple further

protocols, such as for ReLU. The truncation protocol can be further

accelerated if the most significant bit of the input is known, which is the

case for example after a ReLU.

• Some further, smaller optimizations are introduced, for the special case of

a convolution layer followed by a batch normalization layer, and for

decreasing the amount of data transfer in the protocols based on

homomorphic encryption.

Cheetah was experimentally evaluated using cloud servers with 2.70 GHz CPU and

16 GB RAM [HLH+2022]. Two network setups were used in the evaluation: LAN with

384 MBps bandwidth and 0.3 ms latency, and WAN with 44 MBps bandwidth and 40

ms latency. Using multiple NNs (including SqueezeNet, ResNet32, ResNet50, and

DenseNet121), Cheetah was compared to and found superior to CrypTFlow2. (For a

fair comparison, the code in SCIHE was modified to adopt the latest versions of the used

libraries.) In addition, Cheetah was also compared to SecureQ8, a recent 3-party

protocol. Cheetah proved faster than SecureQ8 in the WAN setting; however, in the

LAN setting, SecureQ8 was faster than Cheetah.

2.5 Benchmark neural networks

In our experiments, we use two benchmark neural networks that were used in the past

to evaluate CrypTFlow2 and Cheetah. Both of them are convolutional neural networks

for image classification, but they significantly differ in terms of their size and their types

of layers. The two networks are:

8

• SqueezeNet [IHM+2016]: a network of moderate size that was specifically

created to achieve relatively high accuracy with a strictly limited size (less

than 500 thousand trainable parameters). It consists of

o 26 convolutional layers

o 26 ReLU layers

o 3 MaxPool layers

o 1 AvgPool layer

• ResNet50 [HZR+2016]: with over 23 million trainable parameters,

ResNet50 is significantly larger than SqueezeNet. Moreover, ResNet50

features a richer set of layer types:

o 53 convolutional layers

o 49 batch normalization layers

o 98 truncation layers

o 49 ReLU layers

o 1 fully-connected layer

o 1 MaxPool layer

o 1 AvgPool layer

o 1 ArgMax layer

The protocols implementing secure inference with these two neural networks are

readily available in both CrypTFlow2 and Cheetah.

3 Design of experiments

In this section, we describe what we want to experimentally investigate and how we are

going to do that. We first describe our experiments on the logical level and define the

evaluation metrics, followed by the description of the technical setup used in the

experiments.

3.1 Logical design of the experiments

Existing SNNI approaches like CrypTFlow2 and Cheetah were evaluated in a cloud

environment, using powerful computers on both server and client side, and assuming a

wired connection (either LAN or WAN) between the two computers. As evaluation

metrics, accuracy, latency (i.e., the time needed to perform an inference), and the

amount of transferred data were used.

In contrast, we are interested in the applicability of SNNI approaches in an edge

computing or IoT environment. Applying SNNI in such an environment entails several

challenges, from which we focus on two in this paper:

• In edge computing, energy consumption and power consumption are very

important. Many edge devices are battery powered, which may limit both

the momentarily power draw of the device and the available energy budget

for the inference process.

• In edge computing, client and server machines may communicate over

legacy wireless connections (e.g., 3G/4G), offering significantly lower

bandwidth than what is available in typical wired LAN or WAN

environments.

To investigate these aspects, we perform two sets of experiments. In the first set of

experiments, we compare two SNNI approaches (CrypTFlow2 and Cheetah), using two

NNs (SqueezeNet and ResNet50), in terms of energy consumption and power

consumption. We measure energy consumption and power consumption separately for

9

the client computer and the server computer, because in many edge computing

scenarios, energy and power constraints are more stringent for the client than for the

server. We also look at how power consumption changes over time during the inference

process, and how it varies between different executions of the inference process.

The second set of experiments focuses on the effect of the bandwidth available

between client and server. For this purpose, we vary the available bandwidth, and

compare again the two SNNI approaches with the two NNs. We measure the duration

of the inference process as well as total energy consumption and average power

consumption on the client and on the server computer.

According to the experimental results of [HLH+2022], Cheetah was clearly superior

to CrypTFlow2, in every tested situation and according to all considered metrics. An

interesting question is whether this holds true in the extended set of situations

considered in our experiments and considering our extended set of metrics. The results

might change the preference for choosing a specific SNNI approach in a given situation.

3.2 Evaluation metrics

During our experiments, we collect the following metrics:

• Latency: the duration of the secure inference process for one input. This is

measured as the difference in wall-clock time between the time when the

client starts and when the client finishes its part in the inference process.

Note that the server can start earlier than the client but we disregard the time

when the server is just waiting for the client, since the actual protocol

execution starts only when the client joined. At the end of the protocol

server and client finish at about the same time. Unit: second (s).

• Average power consumption on the server side: the additional power

consumption of the server computer caused by the SNNI program, averaged

over the whole duration of the secure inference process. Note that only the

duration of the protocol execution is taken into account, i.e., the setup time

of the server before the client joins is disregarded. Unit: Watt (W).

• Average power consumption on the client side: analogously to the server-

side power consumption, but measured on the client computer.

• Total energy consumption of the server side: the integral of the

instantaneous power consumption over the whole duration of the secure

inference process. In line with the above, only the duration of the protocol

execution is taken into account, i.e., the setup time of the server before the

client joins is disregarded. Unit: Joule (J).

• Total energy consumption on the client side: analogously to the server-side

energy consumption, but measured on the client computer.

3.3 Technical setup

For performing the experiments, we use two identical computers, one as server and one

as client. Both computers have the following specification:

• CPU: Intel Xeon E-2378 @ 2.60 GHz, 8 cores

• RAM: 64 GB

• Network controller: Intel I350

• Operating system: Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-71-generic

x86_64)

10

During the execution of our experiments, the two computers are used for no other

purpose; thus, no other workload is running on them.

For measuring power and energy consumption, we use the Linux Hardware

Monitoring (hwmon) interface3. Through this interface, we can obtain a new reading

every second, giving the average power consumption of the system in the last second

with a resolution of 1.0 W. By periodically measuring this value, we can calculate an

approximation of the total energy consumption and the average power consumption of

the system for a longer period of time.

The two computers are connected by a direct cable connection. For simulating

different network bandwidths, we use the Linux tc (traffic control) utility to throttle the

data rate of the client computer. For measuring bandwidth, we use the iperf tool (version

2.1.5)4.

We use the latest version of Cheetah, which is commit 0b63d6f from 02 March

20235. This codebase also includes a version of CrypTFlow2, which is also used in our

experiments. We do not change any parameters of Cheetah or CrypTFlow2.

4 Experimental Results

In this section, we describe the results of our experiments. We start with some initial

measurements to characterize the experimental environment in terms of bandwidth and

idle power consumption. Then we conduct experiments on the power and energy

consumption of Cheetah and CrypTFlow2 and report our findings in terms of both

aggregated numbers (over the course of an inference) and the development of power

consumption over time during inference. Finally, we analyze the impact of throttling

the network bandwidth on power and energy consumption.

4.1 Initial measurements

We start our experiments by first measuring some basic properties of our experimental

environment.

Without using any bandwidth throttling, the network connection between the client

and server computers is characterized by the following parameters:

• Bandwidth between client and server: 941 Mbps

• Round-trip time between client and server: 0.6 ms

In addition, we measure the idle power consumption of both computers. For this

purpose, we measure power consumption with a frequency of 1 sec, for a period of 10

minutes. From these 600 measurements, we compute the mean and standard deviation.

The results are shown in Table 1.

3 https://www.kernel.org/doc/Documentation/hwmon/sysfs-interface
4 https://sourceforge.net/projects/iperf2/
5 https://github.com/Alibaba-Gemini-

Lab/OpenCheetah/commit/0b63d6f2cfe979a446a7999ee78d705b6ef5ab81

11

Table 1. Idle power consumption of the test machines

 Mean Standard deviation

Server 29.62 W 0.54 W

Client 29.73 W 0.68 W

From the low standard deviation, we conclude that the idle power consumption of both

server and client is fairly stable. Therefore, we can measure the power consumption of

running a program by measuring the power consumption of the system while the

program is running and subtracting from this value the mean idle power consumption

of the system. We report this difference as power consumption, and also compute

energy consumption on the basis of this difference in the experiments described next.

4.2 Power and energy comparison

In our first experiment, we use the experimental setup as described above, without any

modification of the bandwidth. We measure the average power consumption and the

total energy consumption of performing one secure inference with different SNNI

solutions and different neural networks.

Table 2 presents an overview of the results. Each reported number is the result of

averaging the metrics from 10 runs. The numbers under “Average power” are the result

of additionally also averaging over the duration of the inference process.

12

Table 2. Comparison of performing one secure neural inference with Cheetah and SCIHE on

two neural networks in terms of power and energy consumption. The shown numbers are the

average of 10 measurements

Neural

network

SNNI

approach

Participant Latency Average

power

Total

energy

SqueezeNet

Cheetah
Client

25.5 s
29.7 W 772.1 J

Server 27.91 W 725.7 J

SCIHE
Client

79.9 s
9.96 W 796.9 J

Server 25.33 W 2,026.57 J

ResNet50

Cheetah
Client

107.9 s
25.53 W 2,757.61 J

Server 42.31 W 4,569.9 J

SCIHE
Client

371 s
8.83 W 3,276.33 J

Server 45.12 W 16,741.35 J

In line with the results reported in [HLH+2022], we can see that Cheetah is

significantly faster than SCIHE, on both neural networks. In light of this, it is also no

surprise that the overall energy consumption (i.e., server and client together) of Cheetah

is significantly less than that of SCIHE.

However, investigating the server’s and the client’s energy consumption separately,

we can see an interesting difference between Cheetah and SCIHE. In the case of Cheetah,

the distribution of energy consumption between client and server is balanced, whereas

in SCIHE, the energy consumption of the server is much larger than that of the client.

Investigating the average power consumption leads to even more interesting

findings. In terms of server-side power consumption, Cheetah and SCIHE have roughly

equal results. However, as a consequence of the large power imbalance of SCIHE

between client and server, the client-side power consumption of SCIHE is significantly

lower than that of Cheetah.

This leads to an interesting trade-off between client-side power consumption on the

one hand and latency and overall energy consumption on the other hand. In a setup

where client-side power consumption is not a major concern, Cheetah is more

appropriate because of its lower latency and lower overall energy consumption.

However, if client-side power consumption is a major limiting factor (especially for

battery-powered client devices), then CrypTFlow2 is more appropriate. This is a new

insight that was not visible in the experimental evaluation in existing work.

4.3 Timeseries analysis

To obtain a more detailed understanding of the power consumption characteristics of

SNNI, we now look at how power consumption evolves over time during the secure

inference process.

The aim is to present the distribution of the power consumption at given points in

time obtained from 𝑘 = 10 measurements. A difficulty lies in the fact that the latency

of the entire inference process is not constant across different runs. Therefore, we use

the following methodology for determining the average power consumption at given

points in time (see also Fig. 2):

1. We perform 𝑘 runs, storing the power readings for every second in every

run, leading to 𝑘 time series. Let 𝑡𝑖 denote the duration of the 𝑖th run.

13

2. We determine the average latency 𝑡∗ =
1

𝑘
∑ 𝑡𝑖
𝑘
𝑖=1 .

3. We modify the time scale of each time series in such a way that their

duration equals the average latency. That is, the time stamp of every power

reading in time series 𝑖 is multiplied by 𝑡∗/𝑡𝑖.

4. We split the interval [0, ⌈𝑡∗⌉] into ⌈𝑡∗⌉ time slots with a size of 1 second.

5. For each of these time slots, we determine the average and the standard

deviation of the measured power consumption values whose time stamp

(after the modification of step 3) falls into the given time slot. This is the

resulting time series that we visualize.

Fig. 2. Methodology for aggregating 𝑘 time series with different duration

The results are shown in Fig. 3 for SqueezeNet and in Fig. 4 for ResNet50. A striking

property of these plots is the large variance of the power consumption values over time.

Short periods of low and high power consumption alternate quickly. In addition, when

taking a closer look, it becomes apparent that in some periods the power consumption

of the server and that of the client are closely correlated, whereas in other periods they

are not.

time series
with different

duration

time series
scaled to their

average duration

data points
merged in each

1-second interval

averaged time
series with std.

deviation

14

(a) Cheetah client

(b) SCIHE client

(c) Cheetah server

(d) SCIHE server

Fig. 3. Power consumption over time while performing secure inference with the SqueezeNet

neural network. Each plot shows results distilled from 10 runs: the line shows the mean, while

the shaded area shows the standard deviation around the mean. The plots on the left-hand side

show results of Cheetah, while the plots on the right-hand side show results of SCIHE, in both

cases separately for the client (upper plot) and the server (lower plot). It should be noted that

the scale of the axes is different in the different plots

This seemingly strange phenomenon is actually not at all surprising. Remember that

both CrypTFlow2 and Cheetah use different protocols for the different types of layers.

The different protocols differ significantly in how much computation they require from

the client and the server. Typically, linear and non-linear layers alternate, and the

corresponding protocols are completely different in terms of being computation

intensive or communication intensive. In some protocols, the load on server and client

is similar, whereas in other protocols, the load distribution is strongly asymmetric. Also,

layers of the same type can have different size, which also can cause significant

differences in power consumption.

15

(a) Cheetah client

(b) SCIHE client

(c) Cheetah server

(d) SCIHE server

Fig. 4. Power consumption over time while performing secure inference with the ResNet50

neural network. The same remarks apply as in the case of Fig. 3

4.4 Impact of the bandwidth

By throttling the data rate of the client, we emulate computer networks with smaller

and smaller bandwidth, and measure the impact on latency, average power

consumption, and total energy consumption. Specifically, we perform measurements

with the following bandwidth values:

• 941 Mbps (no throttling)

• 95.6 Mbps (result of specifying a throttling target of 100 Mbps)

• 19.2 Mbps (result of specifying a throttling target of 20 Mbps)

• 3.89 Mbps (result of specifying a throttling target of 4 Mbps)

We performed the experiments with both Cheetah and CrypTFlow2. However, based

on the trend observed for the first three bandwidth values, we decided to not run

CrypTFlow2 for the last (most constrained) bandwidth value. We had two reasons for

this. First, the latency of CrypTFlow2 was increasing rapidly as the bandwidth was

being reduced, which not only made our experiments last very long, but also made it

clear that CrypTFlow2 was not practical in a system with this low bandwidth between

client and server computer. Second, the average power consumption of CrypTFlow2

was decreasing quickly as the bandwidth was reduced, and it approached the range of

measurement errors in our power readings (see the standard deviation in idle power

measurement in Section 4.1), which made further power measurement unreliable.

16

(a) Latency for SqueezeNet

(b) Latency for ResNet50

(c) Power consumption for SqueezeNet

(d) Power consumption for ResNet50

(e) Energy consumption for SqueezeNet

(f) Energy consumption for ResNet50

Fig. 5. Impact of the bandwidth between client and server on the latency, average power

consumption, and total energy consumption of the secure inference process. Note the

logarithmic scale of the horizontal axis in all plots; additionally, in the latency plots, also the

vertical axes have a logarithmic scale. All reported numbers are the average from 10 runs.

CrypTFlow2 was not run for the smallest considered bandwidth.

The results are shown in Fig. 5. From subfigures (a) and (b) we can establish that with

decreasing bandwidth between client and server, the latency of the secure inference

process grows quickly, for both SNNI solution approaches and for both NNs. This is

not surprising, given the large amount of data transfer between client and server during

17

the secure inference protocols. We can also observe that the latency difference between

Cheetah and CrypTFlow2 (to Cheetah’s advantage) grows with decreasing bandwidth.

This is again no surprise since Cheetah causes less data transfer between client and

server than CrypTFlow2, as shown in [HLH+2022].

The results on average power consumption (subfigures (c) and (d)) are more

interesting. We can observe consistently across all measurements that reducing the

bandwidth leads to a reduction of average power consumption. This is probably due to

the decreased bandwidth slowing down the whole secure inference protocol: as the

bandwidth decreases, both client and server spend more time waiting for I/O,

effectively reducing the rate with which they can perform computation.

For similar reasons, since CrypTFlow2 has to transfer more data between client and

server than Cheetah, CrypTFlow2 has lower average power consumption than Cheetah.

This is superposed by a higher asymmetry between client and server in terms of

computation, and thus average power consumption, for CrypTFlow2 than for Cheetah.

As a result, the advantage of CrypTFlow2 over Cheetah in terms of average power

consumption is much more significant on the client side than on the server side.

The results for total energy consumption (subfigures (e) and (f)) are less conclusive.

For CrypTFlow2, reducing the bandwidth between client and server seems to lead to

higher total energy consumption, whereas for Cheetah, reducing the bandwidth seems

to lead to no significant change or even to a slight reduction of total energy

consumption. The reasons for this may require further, more in-depth analysis of the

involved protocols. We can also observe that CrypTFlow2 is competitive with Cheetah

in terms of client energy consumption, especially for high bandwidth values; however,

in terms of server energy consumption, Cheetah has a significant advantage.

5 Discussion

In this section, we discuss the lessons learned from our experiments, the consequences

for future research, and potential threats to the validity of our findings.

5.1 Lessons learned

In the following, we distill our key findings from the experiments.

Energy and power consumption of SNNI do matter. As we have seen, secure

inference can lead to significant energy consumption and significant instantaneous

power consumption. In an edge computing or IoT setup, this can be problematic.

Different SNNI approaches have different characteristics in terms of total energy

consumption and average power consumption. Thus, depending on the specific

constraints of the edge / IoT environment, one or the other SNNI approach may be more

appropriate. While research in the field of SNNI so far focused mainly on reducing

latency, constraints on power or energy consumption may be more stringent in some

environments than constraints on latency.

Energy consumption and power consumption need to be considered separately.

Although there is a clear connection between power consumption and energy

consumption, low power consumption does not guarantee low energy consumption, and

also low energy consumption does not guarantee low power consumption. For example,

we have seen cases where CrypTFlow2 leads to lower average power consumption, but

Cheetah leads to lower total energy consumption. Therefore, it is important to consider

if, in a given target environment, average power consumption or total energy

consumption is more important, and this may necessitate different design choices in the

18

used SNNI protocols.

Client and server power consumption can differ significantly. We have seen that,

in terms of the balance between client-side and server-side power consumption,

CrypTFlow2 is much more asymmetric than Cheetah, meaning that the CrypTFlow2

client consumes less power than the server, and also less than the Cheetah client. This

can give an advantage to CrypTFlow2 in environments where the power draw on the

client side is strictly constrained. This consideration yields a more nuanced picture

about the advantages and disadvantages of different SNNI approaches, something that

was not considered in previous evaluations such as in [HLH+2022].

Power consumption varies significantly over time. The instantaneous power

consumption fluctuates widely over time. This was consistently observed for both

SNNI approaches, for both NNs, and for both client and server. The fluctuation is

logical, given the varying types and sizes of layers that make up a NN, and the different

protocols used for different layers. However, the strong fluctuations make it challenging

to schedule such processes.

Network bandwidth has major impact. We have found that the bandwidth

between client and server significantly influences all considered metrics. Reducing the

bandwidth leads to an increase in latency, a decrease in average power consumption,

and can have different influence on total energy consumption. Bandwidth may also

influence which SNNI approach performs best according to a given metric. In existing

work, typically only a LAN and a WAN setup were tested, where even the WAN setup

has relatively high bandwidth. Wireless networks used in many IoT and edge

computing environments have lower bandwidth, which was typically not considered in

the evaluation of existing works, thus potentially missing important insights into the

suitability of different SNNI approaches for low-bandwidth environments.

5.2 Consequences for future research

Our findings have shown the importance of energy and power consumption in SNNI,

as well as the large impact of the network bandwidth between client and server. These

findings have important consequences on the design, implementation, and evaluation

of SNNI approaches that should be taken into account in future work.

First of all, more research is needed to understand the exact requirements on energy

and power consumption of secure inference in typical SNNI use cases. In particular, it

is important to understand the relative importance of requirements concerning latency,

power consumption on the client respectively the server side, and energy consumption

on the client respectively the server side. Beside the relative importance of these

metrics, it is also important to understand the acceptable ranges for these metrics, e.g.,

the maximum acceptable client-side power consumption in typical SNNI use cases in

edge computing.

Second, more research is needed to devise SNNI methods optimized for low power

consumption and/or low energy consumption and for limited bandwidth. This may

include optimizing existing techniques for such environments, for example by shifting

some of the load from the client to the server to better support battery-powered clients.

On the other hand, completely new methods may be needed to achieve improvements

on all considered metrics at the same time [CSM2023].

Finally, we need experimental evaluation and comparison of proposed SNNI

approaches in realistic settings – for example, with low bandwidth between client and

server – paying attention to the metrics relevant in IoT or edge computing settings, like

19

client-side energy consumption. That is, in contrast to the current practice of latency-

focused evaluation in LAN and WAN environments, also power consumption and

energy consumption should be considered as additional metrics, and bandwidth

limitations of typical wireless networks should also be tested. More realistic evaluation

and comparison of SNNI approaches may lead to a preference for other methods than

the one that performs best in terms of latency in a LAN or WAN environment.

In addition to these direct consequences of our findings, it is also worth investigating

whether an artificial cap on the bandwidth between client and server can help reduce

power consumption if needed. Our experimental results suggest that this is possible.

Thus, if there is a strict limit on power consumption, artificially throttling the network

bandwidth could help keep the power consumption low. This way, a trade-off between

power consumption and latency could be controlled directly via the bandwidth.

5.3 Threats to validity

We tried to perform our study carefully, but some threats to the validity of our study

still remain. In the following, we review the most important threats to internal and

external validity.

Internal validity. Our measurements of power consumption and energy

consumption assumed that the used machines have a stable level of idle power

consumption, and all additional power consumption can be attributed to the secure

inference process. It is conceivable that some other programs may also create additional

power consumption at some points in time, thus influencing the power consumption

that we attribute to the secure inference process. To mitigate this threat, we observed

the level of idle power consumption over a longer period of time, without experiencing

significant deviations (see Section 4.1). In addition, all of the reported numbers are the

average of 10 measurements, thus decreasing the implication of random effects.

Similarly, the way we measure latency also assumes that no other processes take a

significant amount of time, compared to the latency of SNNI. Again, random effects

like the occasional activation of some system services could impact the results. We

mitigated this threat by averaging latency measurements over 10 runs. We did not

observe major fluctuations in latency among the 10 runs in any of our experiments.

External validity. It is not clear to what extent our findings transfer to other setups.

To improve generalization possibilities from our findings, we performed experiments

with two SNNI approaches and with two NNs. However, it is possible that repeating

our experiments with other SNNI approaches, other NNs, on other computers, and using

other computer networks, would yield significantly different results. Further

experimental research could help establish an improved coverage of relevant setups.

For example, it would be interesting to investigate the effects of a higher round-trip

time between server and client, as well as scenarios in which multiple clients connect

to the same server.

6 Related work

In recent years, the SNNI problem has received considerable research attention and

several SNNI approaches have been proposed [MWC+2023]. CryptoNets was probably

the first approach to offer end-to-end protection in the NN inference process, although

in a very limited setting and with huge overhead [GDL+2016]. Subsequent work aimed

mainly at reducing the overhead of SNNI. While the CryptoNets approach was based

on homomorphic encryption, other work like DeepSecure used secure multi-party

20

computation protocols, such as garbled circuits [RRK2018]. Gazelle combined

homomorphic encryption and secure multi-party computation, so that each layer of the

NN can be evaluated with the most efficient protocol [JVC2018]. SecureML also used

secure multi-party computation, but proposed a different setup, in which the actual

protocol is carried out by two non-colluding servers, and the client only provides the

input and collects the output [MZ2017]. Falcon used even three servers to further

improve efficiency [WTB+2021]. XONN used binary neural networks (i.e., NNs in

which each weight, bias, and activation value is either 1 or -1) to enable more efficient

secure multi-party protocols [RSC+2019]. Delphi improved the protocols of Gazelle

with several optimizations [MLS+2020]. CrypTFlow created a framework for

automatically turning TensorFlow code into a secure multi-party computation protocol

implementation [KRC+2020]. CrypTFlow2 extended the CrypTFlow framework with

an efficient SNNI approach based on a combination of homomorphic encryption and

different secure multi-party protocols [RRK+2020]. Cheetah further optimized the

protocols of CrypTFlow2 to yield one of the most efficient SNNI implementations to

date [HLH+2022].

All of the above works assumed a powerful client device with sufficient network

bandwidth to the server. The proposed approaches were typically evaluated in a setting

where both client and server were powerful cloud instances connected by a LAN or

WAN. The constraints of typical edge computing or IoT setups were not considered.

Also, power and energy consumption were not considered.

Some researchers investigated the SNNI problem in an edge computing, mobile

computing, or IoT context. Instead of using compute-intensive cryptographic protocols,

a possible approach that was suggested is to split the evaluation of the NN between

client and server in such a way that the client evaluates the first couple of layers and

sends the resulting features to the server which then completes the inference

[OSS+2020]. However, this approach comes with no security guarantee, and the

empirical experience showed that many layers have to be processed by the client in

order to sufficiently constrain the leakage of information about the input to the server.

Another proposed approach consisted of using secure multi-party computation using

two edge servers [HLF+2021]. In addition to assuming that the two edge servers do not

collude, this approach also required a trusted third party to perform certain

preprocessing tasks. A completely different approach is to perform the inference

entirely on the client machine, in a trusted execution environment [HLL+2021].

However, this requires a relatively powerful client machine, with support for the

appropriate technology on the hardware level.

To summarize, the efforts culminating in CrypTFlow2 and Cheetah have created

secure and efficient SNNI approaches, but failed to address the constraints of edge

computing and IoT setups. On the other hand, existing work on SNNI for edge and IoT

setups has serious limitations. Thus, there is a need to investigate paths for transferring

Cheetah-type SNNI approaches to edge and IoT setups. Our work is a step into this

direction.

7 Conclusion

In this paper, we focused on some important aspects of edge intelligence by deploying

SNNI in the context of edge computing or IoT applications: energy and power

consumption, and the impact of the bandwidth between client and server. We used

CrypTFlow2 and Cheetah, two state-of-the-art SNNI approaches, and performed

21

controlled experiments with them in a dedicated client-server environment.

Our experimental results revealed many interesting details. In particular:

• SNNI leads to significant energy consumption, with considerable

differences depending on the used SNNI approach and NN.

• High energy consumption of SNNI does not necessarily mean high power

consumption, and vice versa.

• Different SNNI approaches can differ significantly in terms of the balance

between server-side power consumption versus client-side power

consumption.

• Power consumption of SNNI may vary considerably over time.

• Network bandwidth has major impact on all considered metrics.

These insights can help choose the right SNNI approach in a given situation,

considering the NN, power consumption constraints, network bandwidth etc.

The gained insights also help inform future research into edge intelligence using

SNNI in edge computing and IoT environments. In particular, we need more research

to better understand the relevant requirements (in terms of power consumption, energy

consumption, bandwidth) in such environments, to devise SNNI methods specifically

optimized for such environments, and more experimental evaluation and comparison

of SNNI methods in such environments.

References

[AAM+2021] Ahvar, E., Ahvar, S., Mann, Z. Á., Crespi, N., Glitho, R., Garcia-

Alfaro, J. DECA: A dynamic energy cost and carbon emission-

efficient application placement method for edge clouds. IEEE Access,

9:70192-70213, 2021

[CA2023] Choudhury, D., Acharjee, T. A novel approach to fake news detection

in social networks using genetic algorithm applying machine learning

classifiers. Multimedia Tools and Applications, 82(6):9029-9045, 2023

[CSM2023] Chabal, D., Sapra, D., Mann, Z. Á. On Achieving Privacy-Preserving

State-of-the-Art Edge Intelligence. 4th AAAI Workshop on Privacy-

Preserving Artificial Intelligence (PPAI-23), 2023

[CT2022] Chung, J., Teo, J. Mental health prediction using machine learning:

taxonomy, applications, and challenges. Applied Computational

Intelligence and Soft Computing, Article ID 9970363, 2022

[GDL+2016] Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M.,

Wernsing, J. CryptoNets: Applying neural networks to encrypted data

with high throughput and accuracy. 33rd International Conference on

Machine Learning, PMLR 48:201-210, 2016

[Glo2015] Global e-Sustainability Initiative (GeSI). #SMARTer2030 – ICT

Solutions for 21st Century Challenges. Report,

https://smarter2030.gesi.org/downloads/Full_report.pdf, 2015

[HLF+2021] Huang, K., Liu, X., Fu, S., Guo, D., Xu, M. A lightweight privacy-

preserving CNN feature extraction framework for mobile sensing.

IEEE Transactions on Dependable and Secure Computing,

18(3):1441-1455, 2021

[HLH+2022] Huang, Z., Lu, W., Hong, C., Ding, J. Cheetah: Lean and fast secure

22

two-party deep neural network inference. 31st USENIX Security

Symposium (USENIX Security 22), pp. 809–826, 2022

[HLL+2021] Hou, J., Liu, H., Liu, Y., Wang, Y., Wan, P. J., Li, X. Y. Model

Protection: Real-time privacy-preserving inference service for model

privacy at the edge. IEEE Transactions on Dependable and Secure

Computing, 19(6):4270-4284, 2021

[HZR+2016] He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image

recognition. Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 770-778, 2016

[IHM+2016] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J.,

Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and < 0.5 MB model size. arXiv preprint,

arXiv:1602.07360, 2016

[JVC2018] Juvekar, C., Vaikuntanathan, V., Chandrakasan, A. GAZELLE: A low

latency framework for secure neural network inference. 27th USENIX

Security Symposium (USENIX Security 18), pp. 1651-1669, 2018

[KRC+2020] Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., Sharma,

R. CrypTFlow: Secure TensorFlow inference. IEEE Symposium on

Security and Privacy (SP), pp. 336-353, 2020

[LMD2021] Lachner, C., Mann, Z. Á., Dustdar, S. Towards understanding the

adaptation space of AI-assisted data protection for video analytics at

the edge. IEEE 41st International Conference on Distributed

Computing Systems Workshops (ICDCSW), pp. 7-12, 2021

[LXZ2015] Li, S., Xu, L. D., Zhao, S. The Internet of Things: a survey. Information

Systems Frontiers, 17:243-259, 2015

[LYZ+2022] Li, Z., Yoon, J., Zhang, R., Rajabipour, F., Srubar III, W. V., Dabo, I.,

Radlińska, A. Machine learning in concrete science: Applications,

challenges, and best practices. npj Computational Materials, Article

127, 2022

[Man2022] Mann, Z. Á. Security- and privacy-aware IoT application placement

and user assignment. Computer Security – ESORICS 2021

International Workshops, pp. 296-316, Springer, 2022

[MLS+2020] Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R. A.

Delphi: a cryptographic inference service for neural networks. 29th

USENIX Security Symposium, pp. 2505-2522, 2020

[MWC+2023] Mann, Z. Á., Weinert, C., Chabal, D., Bos, J. W. Towards practical

secure neural network inference: The journey so far and the road ahead.

ACM Computing Surveys, https://dl.acm.org/doi/10.1145/3628446,

2023

[MZ2017] Mohassel, P., Zhang, Y. SecureML: A system for scalable privacy-

preserving machine learning. IEEE Symposium on Security and

Privacy (SP), pp. 19-38, 2017

[OSS+2020] Osia, S. A., Shamsabadi, A. S., Sajadmanesh, S., Taheri, A., Katevas,

K., Rabiee, H. R., Lane, N. D., Haddadi, H. A hybrid deep learning

architecture for privacy-preserving mobile analytics. IEEE Internet of

23

Things Journal, 7(5):4505-4518, 2020

[QIU+2020] Qayyum, A., Ijaz, A., Usama, M., Iqbal, W., Qadir, J., Elkhatib, Y.,

Al-Fuqaha, A. Securing machine learning in the cloud: A systematic

review of cloud machine learning security. Frontiers in Big Data,

3:587139, 2020

[RRK2018] Rouhani, B. D., Riazi, M. S., Koushanfar, F. DeepSecure: Scalable

provably-secure deep learning. Proceedings of the 55th Annual Design

Automation Conference (DAC’18), art. 2, 2018

[RRK+2020] Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi,

A., Sharma, R. CrypTFlow2: Practical 2-party secure inference.

Proceedings of the 2020 ACM SIGSAC Conference on Computer and

Communications Security (CCS), pp. 325–342, 2020

[RSC+2019] Riazi, M. S., Samragh, M., Chen, H., Laine, K., Lauter, K. E.,

Koushanfar, F. XONN: XNOR-based Oblivious Deep Neural Network

Inference. USENIX Security Symposium, pp. 1501-1518, 2019

[SAF+2018] Syafrudin, M., Alfian, G., Fitriyani, N. L., Rhee, J. Performance

analysis of IoT-based sensor, big data processing, and machine

learning model for real-time monitoring system in automotive

manufacturing. Sensors, 18(9):2946, 2018

[SKA+2023] Sarker, I. H., Khan, A. I., Abushark, Y. B., Alsolami, F. Internet of

Things (IoT) security intelligence: a comprehensive overview,

machine learning solutions and research directions. Mobile Networks

and Applications, 28(1):296-312, 2023

[SRR+2021] Somani, S., Russak, A. J., Richter, F., Zhao, S., Vaid, A., Chaudhry,

F., De Freitas, J. K., Naik, N., Miotto, R., Nadkarni, G. N., Narula, J.,

Argulian, E., Glicksberg, B. S. Deep learning and the

electrocardiogram: review of the current state-of-the-art. EP Europace,

23(8):1179-1191, 2021

[TKC+2020] Tran-Dang, H., Krommenacker, N., Charpentier, P., Kim, D. S.

Toward the Internet of Things for physical internet: Perspectives and

challenges. IEEE Internet of Things Journal, 7(6):4711-4736, 2020

[TM2021] Timan, T., Mann, Z. Data protection in the era of artificial intelligence:

trends, existing solutions and recommendations for privacy-preserving

technologies. The Elements of Big Data Value: Foundations of the

Research and Innovation Ecosystem, pp. 153-175, Springer, 2021

[WTB+2021] Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P.,

Rabin, T. Falcon: Honest-majority maliciously secure framework for

private deep learning. Proceedings on Privacy Enhancing

Technologies, 2021(1):188-208, 2021

[ZWY+2022] Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B.,

Ye, L. A review of the application of machine learning in water quality

evaluation. Eco-Environment & Health, 1(2):107-116, 2022

