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Abstract. Applications for the Internet of Things (IoT) may use, be-
yond the IoT devices themselves, also edge and cloud resources. Thus,
the modules of an application can be placed on a variety of nodes with
different capabilities in terms of security, trustworthiness, and capac-
ity. Application modules may exist in multiple instances. This makes it
possible to assign users to the most appropriate module instances, tak-
ing into account requirements on security, privacy, and latency. There
is a non-trivial interplay between application placement decisions and
user assignment decisions. For example, if a certain user is assigned to
a module, then that module may not be allowed to be placed on nodes
not trusted by the user. However, most existing research neglects this
interplay and its implications on security and privacy. In this paper, we
address the joint problem of application placement and user assignment.
Beside capacity and latency constraints, we consider several types of
security and privacy constraints: (i) module-level location constraints,
(ii) user-level location constraints, (iii) co-location constraints, and (iv)
k-anonymity constraints. We formalize the problem and develop an al-
gorithm to solve it using quadratically constrained mixed integer pro-
gramming. We demonstrate the applicability of the proposed approach
by applying it to an IoT system in the smart home domain. Controlled
experiments on problem instances of increasing size show that the algo-
rithm can solve even large problem instances in acceptable time.

Keywords: Internet of Things · IoT · Fog computing · Edge computing
· Application placement · Security · Privacy

1 Introduction

Modern computing infrastructures offer a continuum of computational resources,
from cloud data centers through fog and edge nodes to end devices in the Internet
of Things [4]. Network connections among the different compute nodes make it
possible to place the modules of an application on different nodes. Taking into
account the different capacity of the nodes and the network latency between
nodes, optimal decisions on application placement can be made [5]. However, it
is also important to take into account the heterogeneity of the nodes in terms of
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security and privacy protection: for example, cloud data centers may offer better
security than fog nodes, whereas processing data from end devices in nearby fog
nodes may be more advantageous from a privacy point of view than offloading
to the cloud [2, 22, 3].

To optimally serve users, a distributed application may contain multiple in-
stances of the same module. This is beneficial for example for a geographically
dispersed user base: the different instances of a module can be placed in such a
way that all users can access a nearby instance with low latency. Beside the la-
tency implication, the assignment of users to module instances is also important
from a data protection point of view. For example, a module may have to have
at least k users assigned to guarantee k-anonymity [24, 15].

Decisions on application placement (i.e., which application module to place
on which infrastructure node) and decisions on user assignment (i.e., which user
to assign to which module instance) may mutually impact each other. For ex-
ample, for data protection reasons it may not be allowed to process the data of
certain users in certain locations. Hence, if such a user is assigned to a module,
then that module is not allowed to be placed on nodes that are in the forbidden
locations. Moreover, if many users are assigned to a module, this may lead to an
increase in the computational needs of the module, thus requiring a node with
high computational capacity.

Despite this interplay between application placement and user assignment,
most existing work in this domain targets either application placement [6] or user
assignment [10], but not both. Furthermore, most related work either completely
ignores security and privacy requirements, or handle them in a rudimentary way.

To the best of our knowledge, this is the first paper to address the joint
problem of application placement and user assignment with a focus on security
and privacy requirements. Beside capacity and latency constraints, we investigate
four types of constraints that result from security and privacy requirements:

– Module-level location constraints, which prohibit the placement of certain
critical application modules on certain insecure infrastructure nodes

– User-level location constraints, which prohibit the placement of modules pro-
cessing the data of certain users on infrastructure nodes not trusted by those
users

– Co-location constraints, which prohibit the placement of certain pairs of
application modules on the same infrastructure node (e.g., because such co-
location could lead to side-channel attacks)

– k-anonymity constraints, which ensure that the data pertaining to at least
k users is processed together

We formalize the resulting problem, which combines application placement
and user assignment, also taking into account the mentioned types of security
and privacy constraints. We devise a quadratically constrained mixed integer
formulation, which can be solved by an appropriate solver. The resulting algo-
rithm is guaranteed to always find a placement of the application modules and
an assignment of the users that satisfy all constraints, whenever this is possible.
The practical applicability of the proposed approach is shown by applying it to
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Fig. 1. The Smart Bell example

a fog computing case study from the smart home domain. Moreover, we perform
controlled experiments on problem instances of increasing size to assess the scal-
ability of the approach. The results show that the algorithm can solve even quite
large problem instances in acceptable time on a commodity computer.

2 A motivating example

We consider an example IoT system from the smart home domain, based on
the Smart Bell system presented in [28]. The aim of Smart Bell is to recognize
visitors of a set of smart homes and react intelligently. For this purpose, cameras
capture images of visitors. The captured images are compared to images stored
in a database. This way, the system can recognize inhabitants, their friends,
neighbors, and neighbors’ friends. On this basis, the system can automatically
open the door, notify the inhabitants of the home, or activate an alarm.

The Smart Bell system serves a block of smart homes that are connected
via a network. The Smart Bell software application is shown in Fig. 1(a). The



rectangles in the figure are the modules of the application, the arrows represent
data flows. Extractor modules are used to extract faces from pictures taken
by the cameras. The Recognizer compares the extracted face with the faces
in the Database in order to recognize known faces. Based on the result of the
Recognizer, the Decider decides how to react, and the reaction is carried out by
the Executer. The Logger logs the visits in an anonymized form.

The stick figures represent users together with their end devices. In our case, a
family, together with the smart end devices in their home (camera, door control,
alarm) is represented by a stick figure, and is referred to as a user in the following.

To serve several users, some modules may exist in multiple instances. In the
example of Fig. 1(a), there are two instances of the Extractor and Executer
modules. Thus, users (in this case, the families whose homes are to be served)
can be assigned to one of two alternative data processing paths:

1. User → Extractor A → Recognizer → Database → Recognizer → Decider
→ Executer A → User

2. User → Extractor B → Recognizer → Database → Recognizer → Decider
→ Executer B → User

In the shown example, Families 1–3 are assigned to the first, and Families 4–6
to the second data processing path. However, this assignment is not predefined;
also other assignments would be possible.

The infrastructure available for the Smart Bell system is shown in Fig. 1(b),
consisting of nodes and links. Different nodes may have different computational
capacity: the capacity of the Smart Home Controllers is very limited, while the
Gateway offers higher capacity, and the capacity of the Cloud is practically
unlimited. On the other hand, the link between the Cloud and the Gateway is
characterized by a much higher latency than the links between the Gateway and
the Smart Home Controllers. Each module of the application has to be placed
onto one of the infrastructure nodes. It has to be ensured for each infrastructure
node that its computational capacity is not exceeded by the total computational
load of the modules that the node should host.

An application processing private or otherwise sensitive data may have to
satisfy different types of security and privacy requirements. In our case, for rea-
sons of privacy protection, the Database is not allowed to be placed in the Cloud
(module-level location constraint), since the Database contains sensitive personal
information and placing it in the Cloud would potentially enable unauthorized
parties to gain access to that sensitive information. Smart Home Controller 1 is
mounted in the home of Family 1, and Family 2 does not trust Family 1, so that
modules processing data of Family 2 must not be placed on Smart Home Con-
troller 1 (user-level location constraint). Executer A and B must not be placed on
the same node, so that at least one of them works even in the case of the failure
of a node and can provide backup for the other instance (co-location constraint).
Both Extractor A and B must be assigned at least three users each so that the
required level of anonymity can be guaranteed (k-anonymity constraint).



3 Problem formulation

In this section, we formalize the combined problem of application placement and
user assignment, also taking into account security and privacy constraints. For
this purpose, we describe the inputs of the problem, the output that needs to be
computed, and the constraints that the output must fulfill. The used notation
is summarized in Table 1.

3.1 Inputs

The inputs to the addressed problem comprise the description of the infrastruc-
ture, of the applications to deploy, and of the users to serve, as well as further
information needed for formulating the security and privacy requirements.

Infrastructure. The set of infrastructure nodes (servers, data centers etc.)
is denoted by N . Each node n ∈ N is characterized by its computational capacity
Cn ∈ R≥0. For each pair of nodes n1, n2 ∈ N , the network connection between
them is characterized by a latency value ℓn1,n2

∈ R≥0.
Applications. The set of applications to deploy is denoted by A. Each ap-

plication a ∈ A consists of a set of modules Ma. The set of all modules of all
applications is M =

⋃
{Ma : a ∈ A}. For a module m ∈ M , its size (i.e., the

computational capacity required by the module) is given by

Sm(wm) = αm + βm · wm,

where αm ∈ R≥0 and βm ∈ R≥0 are given constants and wm ∈ N is the number
of users served by module m. Note that only αm and βm are part of the input,
wm is not; hence, the input defines the function Sm(·).

In an application a ∈ A, a data processing path P is a sequence (m1,m2, . . . ,mκP
),

where mi ∈ Ma ∪ {∗} for all 1 ≤ i ≤ κP . Here, ∗ is a symbol representing a
user. An element of the sequence (either a module or the symbol ∗) can appear
multiple times in a data processing path. We write m ∈ P if module m appears
at least once in the sequence of the data processing path P . For each application
a ∈ A, a set of data processing paths Pa is given. Moreover, each P ∈ Pa is
associated with a maximum allowed latency, denoted as LP . The set of all data
processing paths of all applications is P =

⋃
{Pa : a ∈ A}. For a module m ∈ M ,

the set of data processing paths containing m is P(m) = {P ∈ P : m ∈ P}.
Users. A finite set U of users is given. For each user u ∈ U , the location of

the user in the network is given as nu ∈ N . Moreover, for each user u ∈ U , the
application that u wants to use is given as au ∈ A.

Information for security and privacy requirements. For formulating
the security and privacy requirements, some further notation is necessary. For a
module m ∈ M , Im ⊂ N denotes the set of illegal nodes for m, i.e., the nodes
that are not allowed to host m. In addition, for a user u ∈ U and a module
m ∈ Mau

, Im,u ⊂ N denotes the set of illegal nodes for the pair (m,u), i.e., the
nodes that are not allowed to host m if m processes data of user u.

The set I consists of pairs of modules that must not be colocated. If (m1,m2) ∈
I, then the modules m1 and m2 must not be placed on the same node.



Table 1. Notation overview

Notation Description

Inputs
N Set of all infrastructure nodes
Cn Computational capacity of node n
ℓn1,n2 Latency between nodes n1 and n2

A Set of applications to deploy
Ma Set of modules of application a
M Set of modules of all applications
αm, βm Parameters in the function Sm(·)
Pa Set of data processing paths in application a
P Set of all data processing paths of all applications
P(m) Set of data processing paths containing module m
κP Length of data processing path P
∗ Symbol representing a user in a data processing path
LP Maximum allowed latency of data processing path P
U Set of users
nu Location (i.e., node) of user u
au Application that user u wants to use
Im Set of illegal nodes for module m
Im,u Set of illegal nodes for module m with data of user u
I Set of pairs of modules that must not be colocated
km Minimum number of users for module m
Outputs
f(m) Node on which module m is placed
f−1(n) Set of modules placed on node n
g(u) Data processing path to which user u is assigned
g−1(P ) Set of users assigned to data processing path P
Other
wm Number of users served by module m
Sm(wm) Computational capacity required by module m
L(u) Latency perceived by user u

For a module m ∈ M , km ∈ N denotes the minimum number of users that
must be assigned to m to achieve a sufficient level of anonymity. (km = 0 means
that there is no such limitation for the given module.)

3.2 Outputs

Our aim is to determine two mappings: the placement of the applications and
the assignment of the users.

The placement of the applications is a function f : M → N . For a module
m ∈ M , f(m) is the node in N on which m is placed. The inverse function of f
is denoted by f−1; for a node n ∈ N , f−1(n) is the set of modules placed on n.

The assignment of the users is a function g : U → P. For a user u ∈ U , g(u)
is the data processing path in P to which user u is assigned. The inverse function



of g is denoted by g−1; for a data processing path P ∈ P, g−1(P ) is the set of
users assigned to P .

The output that we need to determine thus consists of the functions f and
g. Based on the function g, we can compute the number of users served by a
module m ∈ M as follows:

wm =
∑

P∈P(m)

|g−1(P )|. (1)

To see the correctness of (1), it should be noted that each user is assigned
to exactly one data processing path, and hence is contained in exactly one of
the g−1(P ) sets. Therefore, each user served by module m is counted exactly
once in (1). Moreover, it should be noted that wm is not an output, but an
auxiliary number depending on the function g and playing a role in formulating
the constraints (see below).

3.3 Constraints

To build a valid solution, a number of constraints have to be satisfied. For the
validity of the function g, it is necessary that each user is assigned to a data
processing path of the application that the user wants to use, i.e.:

∀u ∈ U : g(u) ∈ Pau
. (2)

The following capacity constraint ensures that the total size of the modules
that are placed on a node n does not exceed the capacity of n:

∀n ∈ N :
∑

m∈f−1(n)

Sm(wm) ≤ Cn. (3)

To formulate the latency constraints, we first compute the latency perceived
by a user u, depending on the f and g functions. For this purpose, let P =
(m1,m2, . . . ,mκP

) be a data processing path, where mi ∈ M ∪ {∗} for all 1 ≤
i ≤ κP , and let g(u) = P , i.e., user u is assigned to data processing path P . The
latency between mi and mi+1 (where 1 ≤ i ≤ κP − 1), perceived by user u, is
given by

λP,i,u =


ℓf(mi),f(mi+1) if mi,mi+1 ∈ M

ℓf(mi),nu
if mi ∈ M and mi+1 = ∗

ℓnu,f(mi+1) if mi = ∗ and mi+1 ∈ M

0 if mi = mi+1 = ∗

With this notation, the latency perceived by user u can be computed as

L(u) =

κP−1∑
i=1

λP,i,u,



and the latency constraint can be formulated as follows:

∀u ∈ U : L(u) ≤ LP , where P = g(u). (4)

Now we formulate the constraints stemming from security and privacy re-
quirements. The module-level location constraints ensure that modules are not
placed on illegal nodes:

∀m ∈ M : f(m) ̸∈ Im. (5)

User-level location constraints enforce that modules processing data of a
given user are not placed on the disallowed nodes:

∀u ∈ U, ∀m ∈ Mau
: m ∈ g(u) ⇒ f(m) ̸∈ Im,u. (6)

(Note that m ∈ g(u) means that module m processes data of user u.)
Colocation constraints stipulate that given pairs of modules are not allowed

to be placed on the same node:

∀(m1,m2) ∈ I : f(m1) ̸= f(m2). (7)

k-anonymity constraints ensure that a sufficient number of users are assigned
to modules that require this to achieve the predefined level of anonymity:

∀m ∈ M : wm ≥ km. (8)

Thus, our aim is to find functions f and g such that constraints (2)–(8) are
satisfied. It should be noted that while some constraints only relate to the appli-
cation placement f (e.g., (7)) or only to the user assignment g (e.g., (2)), several
constraints express the interdependence of f and g (e.g., (6)). This underlines
the importance of jointly handling application placement and user assignment.

3.4 Discussion

We would like to emphasize that our problem formulation is an abstraction.
Applying our formulation in practice will raise some questions. In particular,
obtaining the input data (e.g., the set of disallowed nodes for a module) may
be challenging and may require complex manual or automated processes (e.g.,
in the field of risk management), which are out of the scope of this paper. Also,
in a specific system, possibly only a subset of the types of security and privacy
requirements considered in this paper is relevant.

Another aspect is what happens if the problem defined here is not solvable. In
this case, either the design of the system needs to be changed, or the requirements
may have to be re-negotiated.

4 Algorithm using mixed integer programming

To solve the problem defined in Section 3, we devise an algorithm, which reads
the inputs and transforms them to a quadratically constrained mixed integer



Table 2. Variables

Variable Index set Range

xm,n m ∈ M,n ∈ N {0, 1}
yu,P u ∈ U,P ∈ P {0, 1}
wm m ∈ M N
λP,i,u P ∈ P, i ∈ {1, . . . , κP − 1}, u ∈ U R≥0

programming formulation. This mixed integer program is solved using an appro-
priate external solver. Finally, our algorithm transforms the output of the solver
back to create the output of the problem as defined in Section 3.

To create the mixed integer program, we first define appropriate variables,
which are summarized in Table 2. The function f is encoded using a set of binary
variables. For a module m ∈ M and a node n ∈ N :

xm,n =

{
1 if f(m) = n

0 otherwise

The function g is encoded using another set of binary variables. For a user
u ∈ U and a data processing path P ∈ P:

yu,P =

{
1 if g(u) = P

0 otherwise

The following equation ensures that each module is placed on exactly one
node:

∀m ∈ M :
∑
n∈N

xm,n = 1 (9)

The following pair of equations ensure that each user is assigned to exactly
one of the data processing paths of the application that the user wants to use,
and to no data processing path of any other application:

∀u ∈ U :
∑

P∈Pau

yu,P = 1 (10)

∀u ∈ U, ∀P ̸∈ Pau : yu,P = 0 (11)

In addition, a set of integer variables is used to reflect the number of users
served by each module, corresponding to the quantity wm in Section 3. By a
slight abuse of notation, we use wm here as a variable: for a module m ∈ M ,
the number of users served by m is captured by variable wm. The value of wm

is determined by the values of the y variables as follows:

wm =
∑

P∈P(m)

∑
u∈U

yu,P (12)



To see the correctness of (12), it should be noted that the value of the inner
sum is the number of users assigned to data processing path P . In addition, the
equations (10)–(11) ensure that for each user u, yu,P will be 1 for exactly one
data processing path, so that no user is counted twice in (12).

Using the wm variables, the capacity constraint can be formulated as follows:

∀n ∈ N :
∑
m∈M

xm,n · (αm + βm · wm) ≤ Cn (13)

To calculate latencies, we consider a data processing path P = (m1,m2, . . . ,mκP
),

where mi ∈ M ∪ {∗} for all 1 ≤ i ≤ κP . Again by a slight abuse of notation, we
use λP,i,u to denote the real-valued variable that captures the latency between
mi and mi+1 for user u. The value of λP,i,u can be computed from the x variables
as follows:

λP,i,u =



∑
n∈N

∑
n′∈N

ℓn,n′ · xmi,n · xmi+1,n′ if mi,mi+1 ∈ M∑
n∈N

ℓn,nu · xmi,n if mi ∈ M , mi+1 = ∗∑
n∈N

ℓnu,n · xmi+1,n if mi = ∗, mi+1 ∈ M

0 if mi = mi+1 = ∗

(14)

To see the correctness of (14), it should be noted that, because of (9), exactly
one term will be non-zero in each sum.

Using the λP,i,u variables, the latency constraint can be formulated as follows:

∀u ∈ U :
∑

P∈Pau

yu,P ·

(
κP−1∑
i=1

λP,i,u

)
≤

∑
P∈Pau

yu,P · LP (15)

To see the correctness of (15), it should be noted that, because of (10)–(11), yu,P
will be non-zero for exactly one P .

Module-level location constraints can be easily formulated using the x vari-
ables as follows:

∀m ∈ M, ∀n ∈ Im : xm,n = 0. (16)

User-level location constraints depend on both the x and y variables and can
be formulated as follows:

∀u ∈ U, ∀m ∈ Mau
, ∀n ∈ Im,u : xm,n ≤ 1−

∑
P∈P(m)

yu,P (17)

To see the correctness of (17), it should be noted that the sum on the right-hand
side is 1 if module m processes data of user u and 0 otherwise. In the former case,
(17) ensures that xm,n = 0, while in the latter case, (17) imposes no constraint.

Colocation constraints can be formulated using the x variables as follows:

∀(m1,m2) ∈ I, ∀n ∈ N : xm1,n + xm2,n ≤ 1. (18)



Table 3. Settings used in the experiments

Setting Values

Size Each module: 30 + 5 · wm

Capacity Smart Home Controllers: 100
Gateway: 200
Cloud: ∞

Latency Users – Smart Home Controllers: 0
Smart Home Controllers – Gateway: 10
Gateway – Cloud: 100
Maximum allowed latency for the data paths: 300

Finally, k-anonymity constraints can be directly formulated using the w vari-
ables as follows:

∀m ∈ M : wm ≥ km. (19)

As can be easily seen, Equations (9)–(19) describe exactly the constraints
that a solution to the problem of Section 3 has to satisfy. Hence, the mixed
integer program is solvable if and only if the original problem was solvable. It
should also be noted that the constraints are either linear (e.g., (9)), or quadratic
(e.g., (15)) in the variables.

A solution to the mixed integer program can be transferred back to a solution
to the problem of Section 3 by using the following rules:

– For a module m ∈ M , f(m) is the single node n ∈ N for which xm,n = 1.
– For a user u ∈ U , g(u) is the single data processing path P ∈ P for which

yu,P = 1.

5 Evaluation

We implemented our approach in the form of a Java program, which uses the
Gurobi Optimizer1 version 9.0.1 to solve mixed integer programs. To foster re-
producibility, we made our implementation available online2.

5.1 Example application

To validate the applicability of our approach, we first apply it to the example of
Section 2. The values that are used for the parameters of the infrastructure and
the application are given in Table 3.

The result of applying our approach is shown in Fig. 2. The arrows between
users and data processing paths show the g function (i.e., the assignment of
users) computed by our approach. The arrows between data processing paths
and modules show which modules each data processing path consists of, which

1 https://www.gurobi.com
2 https://sourceforge.net/p/vm-alloc/sec-place-usr-asgn
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Fig. 2. Result of applying the proposed algorithm to the example of Section 2

is given as part of the input. The arrows between modules and nodes show the f
function (i.e., the placement of application modules) computed by our approach.

It can be verified that all constraints described in Section 2 are satisfied in
the computed solution. In particular, the Database is not in the Cloud, modules
processing data of Family 2 are not placed on Smart Home Controller 1, Executer
A and Executer B are on different nodes, and Extractor A and B are assigned
at least three users, as stipulated by the security and privacy requirements.

The experiment also shows that finding an application placement and user
assignment satisfying all constraints is quite complicated and challenging even
for problem instances of moderate size. Manually solving the problem is hard and
may take a long time. Our algorithm, however, solves the problem in a fraction
of a second.

5.2 Scalability

In the next set of experiments, we investigated the scalability of the proposed
approach. This is important because our method is based on quadratically con-
strained mixed integer programming, which has exponential worst-case complex-
ity. Hence it is interesting to evaluate how big problem instances can be solved
in acceptable time.

To investigate the effects of increasing problem instance size, we scale the
Smart Bell system of Section 2 to an increasing number of homes. We simul-
taneously increase the number of nodes (adding new Smart Home Controller
nodes), the number of modules (adding new Extractor and Executer instances)
and corresponding data processing paths, as well as the number of users (one
more family with each new home). As a result, also the number of constraints
stemming from security and privacy requirements increases. Table 4 summarizes
the parameters of the considered problem instances.

Fig. 3 shows the execution time of our algorithm for increasing problem
size. The execution time includes the time to create the mixed integer program,
solve it with the external solver, and retrieve the application placement and
user assignment from the results. The experiments were carried out on a Lenovo
ThinkPad X1 laptop with Intel Core i5-4210U CPU @ 1.70GHz and 8GB RAM.
Note that, although the horizontal axis in Fig. 3 only shows the number of users



Table 4. Scaling experiment. S&P: security & privacy

Nodes Modules Users S&P constraints Time [s]

11 8 6 12 0.16
20 12 12 19 0.75
29 16 18 26 1.43
38 20 24 33 3.99
47 24 30 40 8.76
56 28 36 47 16.25
65 32 42 54 28.86
74 36 48 61 45.56
83 40 54 68 74.38
92 44 60 75 109.61
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Fig. 3. Scaling behavior of the algorithm’s execution time

(which equals the number of smart homes considered), the problem instances
also grow at the same time in the other dimensions as shown in Table 4.

From Fig. 3 it is clear that the execution time indeed exhibits rapid growth.
Nevertheless, even the largest problem instance, which comprises the joint op-
timization of module placement and user assignment for 60 smart homes, takes
less than 2 minutes. Thus we can conclude that our approach can solve even
quite complex problem instances (which would be an overwhelming challenge
for humans) with acceptable execution time, using a commodity computer.

5.3 Impact of security and privacy constraints

We also investigate how an increasing number of security and privacy constraints
impacts the solvability of the problem instances and the execution time of our
algorithm.
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Fig. 4. Impact of the number of module-level location constraints
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Fig. 5. Impact of the number of user-level location constraints

Figures 4-6 show the impact of location and colocation constraints. In these
experiments, we started from the instance of the previous scaling experiment
(see Table 4) with 30 homes, which includes 47 nodes, 24 modules, and 30 users.
Unlike in the previous scaling experiment, we now started with an empty set
of security and privacy constraints, and then added an increasing number of a
specific type of constraint. Fig. 4 shows the impact of adding up to 1000 module-
level location constraints for randomly chosen modules and nodes. Fig. 5 shows
the impact of adding up to 1000 user-level location constraints for randomly
chosen users, modules, and nodes. Fig. 6 shows the impact of adding up to 100
colocation constraints for randomly chosen pairs of modules. In each of these
cases, the data points represent the average of 10 measurements each. Each
figure shows the impact of the number of constraints (horizontal axis) on the
execution time of the algorithm (black squares, left vertical axis) and on the ratio
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Fig. 6. Impact of the number of colocation constraints

of solvable problem instances (gray diamonds, right vertical axis). Furthermore,
the trendlines for the execution time (black dotted line) and for the ratio of
solvable problem instances (gray dashed line) are also shown.

In each figure, the same pattern can be observed. When the number of con-
straints is low, most problem instances are solvable. As the number of constraints
increases, the ratio of solvable problem instances decreases. With the highest
number of constraints, most problem instances are not solvable anymore. Hence,
security and privacy constraints have a large impact on whether a solution that
satisfies all constraints can be found. On the other hand, the impact of security
and privacy constraints on the algorithm’s execution time is very limited. The al-
gorithm’s execution time seems to have a small peak roughly at the point where
the ratio of solvable instances drops. This is in line with previous experience
on other combinatorial problems: when there are few constraints, it is relatively
easy to find a solution and when there are many constraints, it is relatively easy
to come to a contradiction, but deciding solvability in-between is more difficult
[16]. Overall, there is a slight negative correlation between the number of con-
straints and the algorithm’s execution time, as demonstrated by the negative
slope of the trendlines. This may be attributed to the fact that a higher number
of constraints enables the solver to more effectively prune the parts of the search
space that certainly do not contain any solutions.

Regarding the k-anonymity constraints, two different parameters can be var-
ied, as shown in Fig. 7. We start from the same setup as in the previous ex-
periment, i.e., with 30 homes, which includes 47 nodes, 24 modules, 30 users,
and no security or privacy constraints. In the experiment whose result is shown
in Fig. 7(a), all 10 Extractor components are associated with a k-anonymity
constraint, and we vary k from 0 to 10. The figure shows the impact on the
algorithm’s execution time. For k ≤ 3, the problem is solvable, for k ≥ 4, the
problem is not solvable. In the experiment whose result is shown in Fig. 7(b),
we apply 5-anonymity constraints to a varying number of the 10 Extractor com-
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Fig. 7. Impact of the k-anonymity constraints

ponents. The figure shows the impact on the algorithm’s execution time. For at
most 6 components with 5-anonymity constraints, the problem is solvable, for 7
or more components with 5-anonymity constraints, the problem is not solvable.
Altogether, Fig. 7 supports the same conclusions that we could draw from Fig-
ures 4-6: the number and tightness of security and privacy constraints has only a
minor impact on the algorithm’s execution time, and more or tighter constraints
tend to slightly decrease the algorithm’s execution time.

5.4 Summary

Summarizing the experience from all experiments, we can state that our algo-
rithm can effectively solve the joint problem of application placement and user
assignment, even for problem instances that would be very hard to solve for
a human. With growing problem instances, also the algorithm’s execution time
grows quickly, but the algorithm is still able to solve quite large problem instances
in acceptable time. Security and privacy constraints significantly influence the
problem’s solvability, but only slightly influence the algorithm’s execution time.



6 Related work

In the following, we discuss related work structured according to whether it
applies to application placement or user assignment.

Application placement. Optimizing the placement of application modules
in heterogeneous infrastructures has been the subject of intensive research [6,
17]. However, most of the existing approaches either completely ignore security
and privacy requirements or handle them in a rudimentary way.

A simple way of representing security requirements of application compo-
nents and security capabilities of infrastructure nodes is by using security levels.
Goettelmann et al. used this approach for specifying security constraints, and
then applied a combination of a greedy algorithm and tabu search for optimizing
the placement [14]. Wen et al. also used a similar security model and a custom
heuristic algorithm for placement optimization [26, 27]. Mezni et al. also adopted
a similar security model and used particle swarm optimization to find a good
placement [20]. In contrast to these approaches, we use a rich set of rigorous
security and privacy constraints. In addition, we apply an exact algorithm that
guarantees the fulfillment of all stipulated constraints.

Instead of security levels, a more precise way of capturing security constraints
is by defining the specific security controls required by the different application
modules, respectively offered by the different infrastructure nodes. Massonet et
al. used this approach for specifying security constraints [19]. They proposed
a method based on constraint programming that finds an optimized placement
respecting the given security requirements. Forti et al. also used a similar ap-
proach, extended with probabilities and trust relations among stakeholders [13].
Our approach also allows to capture security constraints stemming from the
security controls required by application modules and offered by infrastructure
nodes, in the form of location constraints, but also many other types of con-
straints – including co-location and k-anonymity constraints – not supported by
the mentioned previous works.

Co-location constraints have been taken into account by some previous ap-
proaches. Fdhila et al. considered such constraints when partitioning and placing
composite applications on federated clouds [12]. Agarwal and Duong also focused
on the risks of co-location in public infrastructure clouds [1]. In our earlier work,
we devised custom heuristics for handling co-location constraints during appli-
cation placement, also taking into account the availability of secure hardware
enclaves [18]. The approach of the present paper also takes into account co-
location constraints, but in combination with several other types of security and
privacy requirements.

Workflow scheduling was considered in conjunction with data protection con-
cerns by Wen et al. [25]. However, in that work, data protection constraints are
limited to the specification of the allowed set of data centers for a task. Also for
the placement of applications on a fog infrastructure, several approaches take se-
curity and privacy concerns into account by means of constraining the placement
of certain application modules to trusted hosts [28, 21, 7]. While our approach



also supports such location constraints, it can take into account various other
types of security and privacy constraints as well.

Yuchi and Shetty define simple metrics to quantify the vulnerability of vir-
tual machines containing application modules and the survivability of physical
infrastructure nodes [30]. They use these pieces of information to place the ap-
plication modules on the nodes with the aim of minimizing the overall risks.
They propose a heuristic algorithm for this purpose. In contrast, our approach
can guarantee the fulfillment of strict security and privacy requirements.

User assignment. The assignment of users to different modules has also
been investigated in different contexts.

Deng et al. address the problem of assigning requests of users to fog devices
and cloud servers, with the goal of balancing latency and energy consumption
objectives [10]. A similar problem is addressed by Shah-Mansouri and Wong,
aiming to allocate fog and cloud resources to users with the objective of serv-
ing as many users as possible with as low latency as possible [23]. Xiao and
Krunz also consider the assignment of users’ workload to fog nodes, with the
aim of improving quality of experience for the users [29]. Chen et al. address
the allocation of user requests to a heterogeneous set of network resources in
a mobile-edge cloud computing scenario, with the objective of minimizing the
overhead observed by users [9]. Dräxler et al. assign users to instances of network
services, with the objective of minimizing the number of violations of capacity
constraints [11].

Our approach also takes into account the key objectives of these works, in-
cluding low latency and good utilization of the available capacity of the nodes. On
the other hand, none of the above works consider security and privacy require-
ments, despite the huge importance of such requirements in modern computing
systems. Our approach significantly advances the state of the art by adding
security and privacy constraints.

7 Conclusions and future work

In this paper, we have addressed the joint problem of application module place-
ment and user assignment in the context of heterogeneous applications, hetero-
geneous infrastructure, and different types of security and privacy constraints,
in addition to the more traditional constraints on capacity and latency. Beside
formally defining the problem, we devised an algorithm to solve the problem by
means of quadratically constrained mixed integer programming. The algorithm
is guaranteed to find a placement of the application modules and assignment of
the users satisfying all constraints, whenever this is possible.

We demonstrated the applicability of the proposed approach by applying it
to an IoT system from the smart home domain. In addition, we assessed the
scalability of the algorithm by applying it to problem instances of increasing
size. We also investigated the impact of the number of security and privacy
constraints. The experiments showed that the proposed algorithm can solve even
quite large problem instances in acceptable time using a commodity computer.



Several interesting paths for future research can be identified. One promising
direction is to consider an online variant of the module placement and user as-
signment problem, in which the aim is to react to changes (e.g., the appearance
of new users) by adapting the module placement and/or the user assignment
so that the continued satisfaction of the requirements is guaranteed. Another
interesting possibility is the parallelization of the proposed algorithm using mul-
tiple nodes, so as to reduce the execution time of the algorithm. (For distributed
solving of integer programs, see [8] and references therein.)
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