
0018-9162/06/$20.00 © 2006 IEEE July 2006 23P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

C O M P U T I N G P R A C T I C E S

Three Public Enemies:
Cut, Copy, and Paste

Copy-paste might seem to make life easier, but it
often leads to inconsistencies. Giving users the
freedom to specify semantic relationships among
copied objects can help rectify this crime.

M any software developers know the feeling of desperately debugging a
program only to discover after a sleepless night that the error stemmed
from copy-pasted code segments that had become inconsistent in sub-
sequent editing. Even worse is the sinking feeling that many more
such subtle errors are waiting to be discovered.

The problems arising from copied code are not new, and many researchers have
investigated how to automatically find copied code segments.1-4 An often recom-
mended approach is to refactor the copied code—generalize the segments to a
meaningful programming language abstraction, such as function, macro, or class,
and replace the segment’s occurrences with references to that abstraction.5 However,
refactoring is not always the method of choice6 and is obviously not a solution for
other kinds of text editing, which suffer from the same copy-paste deficiencies.

Given the extensive use of copy-paste operations and their tendency to cause
inconsistencies, there is clearly a pressing need to rethink current editor pro-
grams. One solution is to replace cut, copy, and paste with operations that cor-
respond directly to the intended semantics behind their use. With these operations,
the user can specify semantic relationships among copied objects and the editor
program can use that information to help in the long-term support of those rela-
tionships. It would thus avoid the inconsistencies that currently arise from the use
of cut, copy, and paste.

USE SCENARIOS
To understand why cut, copy, and paste can produce errors, it helps to see

exactly why people use these operations. There are five typical scenarios, some
of which can create inconsistencies:

Cut to delete. Although this is not what its creators intended as the cut func-
tion—and most programs do indeed have a separate delete operation—it is nev-
ertheless possible. However, such use does not lead to inconsistencies, so this
scenario is relatively harmless.

Cut and paste to move something. Again, there’s no potential for inconsis-
tencies, since something is simply moving from one place to another.

Copy and paste to duplicate. The idea is to have exactly the same thing at sev-
eral places. Typing variable names is a good example of this scenario. Software

Zoltán Ádám Mann
Budapest University of
Technology and Economics

24 Computer

engineers learn to use more descriptive variable names
than i, j, or k, so they might create a variable
myActionListenerForTheUpperRightButton, which they
might need to access a dozen times. A possible strategy
is to copy and paste the variable name.

Copy and paste to create a template. In this case, the
aim is to have two similar instances. Continuing the
example in the previous scenario, suppose a software
engineer has finished the code that handles
myActionListenerForTheUpperRightButton, and now
he wants to do the same thing with
myActionListenerForTheUpperLeftButton. To avoid
going mad, he copy-pastes and mod-
ifies the code.

Copy and paste without a logical
connection. In this case there is no
logical relationship between original
and replica. For example, when pro-
gramming a Java class, a software
engineer might start the declaration
of several methods with public void.
To save time, she might want to type
this string only once and copy-paste
it for the other methods, and change
it for those that are, say, public int. This example differs
from the previous one on the point of logical connec-
tion. In the previous case, the text copies have a logical
connection; here they do not. If the software engineer
changes the code that handles
myActionListenerForTheUpperRightButton, chances are high
that she will make analogous changes to the other copy.
However, if she changes a method’s modifier from public to
private, she won’t usually need to change the modifier of
the other methods in the same class. Consequently, this
scenario is less harmful—text copies need not be con-
sistent, so there’s no chance of inconsistency problems.

These five basic use scenarios also cover one more
interesting scenario: cut and then several pastes, which
is really a move operation followed by one or more
copies.

WHY THINGS GO WRONG
Inconsistencies arise in the third and fourth use sce-

narios. The most frequent problem is that the user
changes some text copies but forgets to change the oth-
ers. In the fourth use, forgetting to change the copied
text can open another possibility for inconsistency.

This is especially problematic for large, long-lived
texts—manuals, specifications, books, and program
code, for example—that must be updated multiple times
during their life. In such cases, the writer often no longer
remembers what additional changes she must make to
text to make it internally consistent, or the original
writer has moved on and others have inherited the text.

At the root of these errors is a key restriction: The user
can’t specify the exact semantics of copying. In their pre-

sent form, cut, copy, and paste help users replicate text,
but they don’t help with the task of making sure that the
copied instances remain consistent. What is the point of
having a computer if it can’t perform this kind of task?

TOWARD THE IDEAL PROGRAM
The ideal editor program would have two key fea-

tures. First, it would not use a clipboard. The clipboard
is problematic because it offers only short-term support
for copying text and does not let users specify the seman-
tics behind the copy operations. Second, instead of the
traditional cut, copy, and paste operations, the ideal pro-

gram would provide four operations
that correspond to the use scenarios
just described: move, copy-identical,
copy-and-change, and copy-once.

The move operation is exactly
what it implies: The user moves text
completely from one place to
another with no other effect. Thus,
the move operation does not lead to
inconsistencies. This contrasts to the
currently used combination of cut
and paste, in which text remains on

a clipboard, thus enabling the user to paste the text in
additional locations, which can lead to inconsistencies.

The copy-identical operation corresponds to the third
use scenario described earlier—copying to have exactly
the same thing at several places. But copy-identical
would not put the burden of ensuring consistency on the
user. Instead, after a copy-identical operation, the editor
program would guarantee that the copies remain iden-
tical. That is, when the user employs the copy-identical
operation, the program memorizes which pieces of the
document must remain identical. When the user changes
one copy, the program automatically updates the oth-
ers. The program also tells the user how many other
copies it has changed and invites the user to look at the
other copies and possibly break the stored relationships.

The copy-and-change operation addresses the fourth
use scenario—copy text and modify the new instance to
obtain something similar, but not identical, to the orig-
inal. The program isn’t as proactive in this case because
it can’t know how to apply a change in the original to
the replica. However, it can memorize when the user
employs the copy-and-change operation and notify her
when it is possible that a change could lead to inconsis-
tencies.

As long as the replica remains unchanged after copy-
ing, the program should mark it with a suitable visual
reminder to the user that she wanted to change it. When
the user does change the replica, the program would
remove the reminder. When the user later changes the
replica again, the program should make it possible to
navigate to the original and change it if the user so
desires, but it would not signal her that she must change

Forgetting to change
the copied text

is especially
problematic

for large,
long-lived texts.

July 2006 25

the original. On the other hand, if a user changes the
original, the program should tell her which replicas she
might have to change as well. Again, the program should
offer the user the chance to investigate and potentially
break the stored relationships.

Finally, the copy-once operation addresses the fifth
use scenario—copy text and possibly change it without
implicitly wanting to define a logical relationship
between original and replica. This is similar to the nor-
mal copy-paste, in which the user copies text but the
program does not store any relation between the origi-
nal and the replica and will not try to help the user avoid
inconsistency problems. This operation is also suitable
for people who have grown up with copy and paste and
do not want to become familiar with new semantics, as
well as for those who become annoyed when comput-
ers try to be more intelligent than their users.

In addition to these four operations, the program
should provide a way to mark text for the next opera-
tion. In contrast to copying something to the clipboard,
marking has no remaining side effects beyond the next
operation. This is not possible with traditional copy-
paste because there is no way to remove something from
the clipboard.

An example
To illustrate how the operations might work, consider

a programmer who wants to create a Java class repre-
senting a point in the plane. He might start with the code
segment in Figure 1a.

At this point, the time is ripe for the first copying, as
in Figure 1b. The programmer created a copy of the def-
inition of xCoordinate and changed the name of the
attribute in the replica to yCoordinate. He used the
copy-and-change operation because there is a logical
connection between the two lines (it is no accident that
the definition of the two coordinates is similar), but of
course the two lines are not meant to be identical.

Now the programmer adds a get method for one of
the attributes—using additional copy operations—as in
Figure 1c. Notice that he used the copy-identical oper-
ation for the return statement because the name of the
returned variable must be identical to the name in the
declaration of that variable. On the other hand, he
copied the public modifier using copy-once because there
is no logical connection between the modifier of the class
and the modifier of the get method. To reduce the
amount of typing, he merely exploited the coincidence
that the two modifiers match.

Implementation issues
Implementing the copy-identical operation and the

associated automatic updating is not trivial. The user
can apply the copy-identical operation to text that con-
tains or is contained in a block previously copied using
copy-identical. Therefore the program must store two

relations between the copied blocks: which blocks it
must keep identical (an equivalence relation) and the is-
part-of relation.

Implementing the copy-and-change operation is simi-
lar because again the text in a copy-and-change operation
could contain or be part of another block copied using
copy-and-change. Therefore, the block hierarchy is
important in this case as well. The only difference is that
the other stored relation—which block was copied from
which one—is not symmetric. In the copy-identical oper-
ation, the operation’s direction did not matter because
the aim was only to keep those blocks identical. However,
in the copy-and-change operation, the roles of the orig-
inal and the replica are slightly different.

Of course, the relations that the copy-identical and
copy-and-change operations define are not independent:
For example, text copied using copy-identical can con-
tain another block of text involved in a copy-and-change
operation. Therefore, the program must take into
account all three relations—those induced by copy-
identical and copy-and-change as well as the is-part-of
relation.

The program must also store these relations persis-
tently so that it can enforce them beyond single editing
sessions. Typically, this means storing them in the file
that contains the document. Another possible strategy is
to store the relations in an additional file to avoid pol-
luting the actual file with this information. A source-
code editor, for example, could employ this strategy,
since source files must contain only program code.

copy-identical

public class Point
{
 private int xCoordinate;
}
(a)

public class Point
{
 private int xCoordinate;
 private int yCoordinate;
}
(b)

public class Point
{
 private int xCoordinate;
 private int yCoordinate;

 public int getXCoordinate()
 {
 return xCoordinate;
 }
}
(c)

copy-and-change

copy-once

Figure 1. Copy operations used to create a Java class
representing a point in the plane. (a) Original code, (b) first
copy operation, and (c) additional copy operations.

26 Computer

Implementing the move and copy-once operations
does not pose similar challenges because the program
does not have to offer any further support after moving
or copying the given text, thus it does not have to record
these operations.

To illustrate the persistently stored relations induced
by the copy operations, Figure 2 shows the relations
resulting from Figure 1. The edge representing the copy-
identical operation has arrows on both ends, since copy-
identical defines a symmetric relation. In contrast, the
edge representing the copy-and-change operation points
from the original to the replica, since copy-and-change
defines an asymmetric relation. The copy-once opera-
tion does not appear in this representation because it
does not affect document consistency.

Applying the relations
To illustrate the benefits of the proposed program, con-

sider the scenario based on the previous example,
in which the programmer later changes the definition pri-
vate int xCoordinate to private int horizontalCoordinate.
The editor program would then make two suggestions.
The first would be to change the definition of
yCoordinate. Because the programmer had copied the
changed definition using copy-and-change to yield the
definition of yCoordinate, the program would suggest
that this definition might also need changing. And indeed,
the programmer will probably want to change it to
verticalCoordinate.

The second suggestion would be to automatically
change the getXCoordinate method to return
horizontalCoordinate. Because the programmer copied
the block xCoordinate using copy-identical to the return
statement of the getXCoordinate method, the program
would suggest automatically changing that line to return
horizontalCoordinate, which is exactly what the pro-
grammer would want.

A lthough most of the examples given here are from
the programming domain, the proposed opera-
tions are also suitable for copying objects such as

parts of a picture or an audio or video file or spread-
sheet cells. The operations offer powerful possibilities
for defining semantic relations between object copies
and help ensure consistency as the document evolves.
Of course, with more flexibility comes the need to more
carefully consider the best option, which implies a
slightly longer learning curve, but these efforts are a
small price to pay for the relief of not having to worry
about inconsistent text copies. This is especially true for
long-lived documents.

Instead of resorting to a one-size-fits-all solution, one
approach could be to use traditional copy-paste for
short-lived texts and the proposed operations for long-
lived texts. But using mark, move, and copy-once gives
the user approximately the same functionality as tradi-
tional cut, copy, and paste. The new concepts simply
scale better because of the additional copy-identical and
copy-and-change operations.

All this works well and is relatively easy to implement
if the user employs only one editor program to edit and
copy objects within one document. All copying is in the
realm of the editor program, which can thus support the
long-term maintenance of the defined relations. The edi-
tor program might even provide the same support for
copying across document boundaries. For that, it would
probably store the interdocument relationships in a cen-
tral database.

However, things rapidly become more complicated
when the user must rely on multiple editor programs.
Several users might be editing the same document, each
with a preferred editor, or users might need different
programs to copy objects between different document
types, such as between a spreadsheet and a diagram.
Administering semantic relations beyond program
boundaries clearly requires a generic mechanism that
the operating system must provide and that editor pro-
grams would access through standardized interfaces. In
this respect, the situation is similar to that of the clip-
board: The operating system provides a means for doing
copy operations between programs. Designing such a
facility for the proposed operations on the operating-
system level is an important goal for future research. ■

Figure 2. Internal representation of the copy operations in Figure 1.The vertical lines correspond to the is-part-of relation between
the relevant blocks of text; the other edges represent the copy-identical and copy-and-change operations.

public int getXCoordinate()
{
 return xCoordinate;
}

copy-and-change

private int yCoordinate;

xCoordinate; xCoordinate;

private int xCoordinate;

copy-identical

July 2006 27

References

1. B.S. Baker, “A Program for Identifying Duplicated Code,”
Computing Science and Statistics, vol. 24, 1992, pp. 49-57.

2. S. Ducasse, M. Rieger, and S. Demeyer, “A Language-Inde-
pendent Approach for Detecting Duplicated Code,” Proc. Int’l
Conf. Software Maintenance, IEEE Press, 1999, pp. 109-118.

3. T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multi-
Linguistic Token-Based Code Clone Detection System for
Large-Scale Source Code,” IEEE Trans. Software Eng., vol.
28, no. 6, 2002, pp. 654-670.

4. J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the
Automatic Detection of Function Clones in a Software Sys-
tem Using Metrics,” Proc. Int’l Conf. Software Maintenance,
IEEE Press, 1996, pp. 244-253.

5. M. Fowler et al., Refactoring: Improving the Design of Exist-
ing Code, Addison-Wesley, 1999.

6. M. Kim et al., “An Ethnographic Study of Copy and Paste
Programming Practices in Object-Oriented Programming Lan-
guages,” Proc. Int’l Symp. Empirical Software Engineering,
IEEE CS Press, 2004, pp. 83-92.

Zoltán Ádám Mann is a doctoral student in computer sci-
ence at Budapest University of Technology and Econom-
ics. His research interests include software engineering and
embedded system design. Mann received an MS in computer
engineering from Budapest University of Technology and
Economics. He is a member of the IEEE. Contact him at
zoltan.mann@cs.bme.hu.

