
Graph coloring: the more colors, the better?
Tamás Szép and Zoltán Ádám Mann

Budapest University of Technology and Economics
Department of Computer Science and Information Theory

1117 Budapest, Magyar tudósok körútja 2, Hungary

This paper appeared in:Proceedings of the 11th IEEE International Symposium on Computational Intelligence
and Informatics, pages 119-124, Budapest (Hungary), 2010

Abstract—In this paper, we investigate the algorithmic com-
plexity of deciding colorability, as a function of the number of
available colors. Intuitively, one may assume that the problem’s
complexity is highest around the chromatic number of the
graph. We give substantial empirical evidence that this intuition
is largely true, both for exact and heuristic graph coloring
algorithms. We give a rigorous proof that the complexity of
a class of exact algorithms is monotonously increasing in the
number of available colors in the non-colorable case, and give a
counter-example to demonstrate that the analogous claim does
not always hold for colorable graphs.

I. I NTRODUCTION AND PREVIOUS WORK

Graph coloring is a fundamental problem in algorithmic
graph theory, with many practical applications, like frequency
assignment [1] or register allocation [4]. For solving graph col-
oring problems, both exact and heuristic algorithms are widely
used. Most exact algorithms use some kind of backtracking
to perform an exhaustive search of the possible colorings,
while at the same time being able to prune large parts of the
search space. Variations of this scheme are branch-and-bound,
branch-and-cut, and branch-and-price algorithms [14], [15],
[17]. Heuristics include greedy algorithms, genetic algorithms,
simulated annealing, and tabu search [3], [5], [9].

In the worst case, graph coloring is NP-complete [6], but
many problem instances are eays to color. The systematic
study of the complexity of different graph coloring problem
instances mostly focuses on random graphs [2], [10], [16],
[18], [21], [12]. Most previous work in this area focuses
on how the number of nodes and the density of the graph
(i.e. the average number of neighbors of a vertex) influence
the complexity of the coloring problem. In particular, it is
known that the average-case complexity of graph coloring is
O(1), meaning that increasing the number of vertices does not
increase the complexity of the problem above a given bound.
It is also known that the complexity of graph coloring as a
function of the density of the graph exhibits an easy-hard-easy
pattern [11], [7].

Much less is known about the dependence of the problem
complexity on the number of available colors, which we
denote byk. Intuitively, one may assume that the problem’s
complexity is highest whenk is around the chromatic number
of the graph, denoted byχ(G). In the colorable case, i.e.
when k ≥ χ(G), it is intuitively quite clear that increasing
the number of available colors will make it easier to find

a proper coloring of the graph. Hence in this region one
expects that the complexity decreases monotonously, both for
exact and heuristic algorithms. In the uncolorable region,an
exact algorithm’s task is to prove that there exists no proper
coloring. This becomes easier whenk decreases, since the
infeasibility of a region of the search space becomes apparent
more quickly if the number of colors is smaller. Hence in this
regime one expects complexity to be monotonously increasing.
It is generally believed that the complexity is maximal when
k = χ(G) − 1 [8].

In this paper, we describe our findings from a systematic
study about the dependence of the complexity on the number
of available colors. We use two state-of-the-art algorithms,
as typical representatives of the kinds of algorithms that are
widely used to solve graph coloring problems:

• A Branch-and-bound algorithm (BB) as a typical exact
algorithm

• A genetic algorithm (GA) as a typical heuristic
We carried out empirical experiments on random graphs as
well as on benchmarks from the literature. Our main findings
and contributions are as follows:

• As expected, the measured complexity is monotonously
increasing ink when k < χ(G) and monotonously
decreasing whenk ≥ χ(G).

• We give a rigorous proof that the BB algorithm’s com-
plexity is monotonously increasing ink whenk < χ(G).

• We give a counter-example showing that the BB algo-
rithm’s complexity is not always decreasing ink when
k ≥ χ(G). (Although in practice this is usually the case.)

• The maximum complexity is either atk = χ(G) − 1 or
k = χ(G). There can be a significant difference between
the complexity of these two cases in both directions; the
hypothesis that coloring withχ(G) − 1 colors is more
difficult than coloring withχ(G) colors does not seem to
be justified.

II. PRELIMINARIES

A. Problem formulation

We consider the graph coloring problem as a decision
problem. The input consists of a graphG = (V,E) and a
numberk ∈ Z

+. The vertices of the graph are denoted by
v1, v2, . . . , vn, the available colors by1, 2, . . . , k. A coloring
assigns a color to each vertex; apartial coloring assigns a



color to some of the vertices. A (partial) coloring isinvalid
if there is a pair of adjacent vertices with the same color,
otherwise it isvalid. The task is to decide whether a valid
coloring exists.

The chromatic number of the graph, denoted byχ(G), is
the minimumk such thatG is colorable withk colors.

The set of neighbours of a given vertexv will be denoted
by N(v).

A cut is a set of edgesX ⊆ E such thatG \X consists of
more components thanG. The size of a cut is the number of
edges forming the cut.

B. The BB algorithm

Most of our results relate to the BB algorithm. This is the
implementation of the usual backtracking scheme for con-
straint satisfaction problems, with both generic and problem-
specific improvements suggested in the literature.

The algorithm assigns colors to the vertices, one at a time,
as long as no conflict occurs. If all vertices can be colored this
way, the algorithm terminates. On the other hand, when there
is a conflict, the algorithm backtracks, i.e. it goes back to the
last consistent state by removing the last color assignment.
Then it proceeds to an unexplored branch by trying a new
color assignment for the currently selected vertex. When all
possible branches from a given state have been tried without
success, the algorithm backtracks.

The algorithm traverses the space of partial solutions in a
tree structure. There are two possible termination situations:
either a solution is found, or the algorithm checks all branches
from the root of the tree without success, and tries to backtrack
from the root. In this case, we can be sure that the input
problem instance is unsolvable. In many cases, the algorithm
can prune large subtrees of the search tree, which can consider-
ably decrease its runtime. We use the number of backtracks to
characterize the speed of a run of the algorithm in a machine-
independent manner.

We used a number of techniques to accelerate the algorithm
as much as possible (note that all of them are formulated in
such a way that the algorithm remains fully deterministic):

Vertex selection:For each vertexv of the graph, we
maintain the list of colorsC(v) that are available forv. When
choosing the next vertex of the graph to color, we choose the
one with minimum|C(v)|. The rationale behind this choice
is that this way we can keep the branching factor (i.e., the
average number of branches from a given state in the search
tree) low. If there are multiple vertices with the same minimum
|C(v)| value, then the one with smallest index is chosen.

Color selection: After having selected a vertexv to
color, we try to assign the colors inC(v) to v. If the given
problem instance – or at least the subproblem defined by the
current partial coloring – is unsolvable, then we will have
to check all colors inC(v) and backtrack afterwards. In this
case, it is unimportant in what order we iterate throughC(v).
However, if at least one of the colors inC(v) leads to success,
then the order does matter. Hence, we start with the color
that will result in the least constraint on the neighbours of
v, i.e. the color that appears in the leastC(w) sets of the

neighbours ofv. More generally, for a colorc ∈ C(v), let
λ(c) := |{w ∈ N(v) : c ∈ C(w)}|. Then we take the colors
in C(v) in increasing order of theirλ values. This way, we
start with the least restrictive color assignment, thus increasing
the probability of finding the solution quickly. Colors withthe
sameλ value are taken in increasing order of their indices.

Initial coloring: Before starting the BB algorithm, we
use a simple heuristic to find a (preferably large) clique of
the graph. Obviously, each node in the clique must obtain a
different color. So we first assign colors to these nodes, and
then start the BB algorithm from this partial coloring. This
partial coloring is the root of the search tree; when the BB
algorithm later tries to backtrack from this state, this implies
the unsuccessful finish of the search. When coloring the clique,
we take the vertices in increasing order of their indices, and
the first one receives color 1, the second receives color 2 etc.

Symmetry breaking:Colors that are not assigned to
any vertex yet are indistinguishable. Hence, when performing
branching, such colors are treated as a single color. This way,
we only investigate one of the possibly several equivalent
branches that only differ in indistinguishable colors. Practi-
cally, this means that we use only the color with the smallest
index among the indistinguishable ones.

Constraint propagation:When a specific colorc is as-
signed to a vertexv, then for all neighboursw of v, c is re-
moved fromC(w). This might have important consequences:

• If C(w) becomes empty, this signalizes a conflict, leading
to backtracking.

• If |C(w)| becomes 1, this means that the color ofw has
essentially become fixed. The same procedure can then
be applied to the neighbours ofw.

These rules are applied to the vertices in increasing order of
their index.

C. The GA algorithm

In order to implement a genetic algorithm for the graph
coloring problem, we used the following encoding: an indi-
vidual is a – possibly invalid – coloring, represented by a
vector of lengthn. Genei contains the color of vertexvi in
the given coloring. The fitness of an individual is calculated
as the number of conflicts, i.e. the number of adjacent vertex
pairs with the same color. Note that lower fitness values are
better, with 0 representing a solution.

The initial population is filled partly with random individu-
als, partly with individuals created by greedy coloring. The
individuals created by greedy coloring usually have higher
quality than the random ones and thus they guarantee that
already the first population contains some good individuals.
On the other hand, the random individuals lead to great
variety of genetic characteristics, thus prohibiting premature
degeneration of the population. To further increase variety
in the initial population, we use two different strategies for
greedy coloring: for some individuals, we carry out coloring
in decreasing order of the degree of vertices, while for others,
the order is determined by a breadth-first search.

Every time we generate a new individual, we check it for
trivially repairable conflicts. That is, we check if there are two



Figure 1. An example showing the ineffectiveness of random recombination.
The numbers indicate colors. Both of the parents have one conflict, marked
with a flash. The dashed boxes show which portions of the parents are
transferred to the offspring. The offspring has three conflicts.

adjacent verticesv andw with the same colorc and there is a
color c′ 6= c such that the color ofv or w can be changed to
c′ without generating a new conflict. If this case occurs, we
correct it immediately.

For mutation, we experimented both with purely random
gene modification and with some more sophisticated local
improvement methods. According to our empirical test results,
random gene modification is clearly outperformed by the more
sophisticated schemes. In particular, the following method
proved to be the most successful: if there are two adjacent
verticesv andw with the same colorc andw has a neighbour
x with color c′ 6= c such thatx is the only neighbour ofw
with color c′, then the colors ofv andx are swapped. Note
that – because of the immediate repair step described above
– this is the best case, as the chosen conflict is corrected, and
only one new conflict arises.

For recombination, we also experimented with random
mixing of the parents’ genes and with more sophisticated,
problem-specific methods, and again, the latter proved to
be more effective. The problem with randomly mixing the
genes of the parents is that even if the parents contained few
conflicts, the offspring will often contain a high number of
conflicts. This problem is illustrated in Figure 1. The problem
originates from adjacent vertices whose colors are taken from
different parents, as these colors can easily coincide, leading to
a new conflict. In graph-theoretic terms, for the recombination
we need a cut of the graph (shown with the dashed boxes in
the Figure); the bigger the cut, the higher the probability that
new conflicts are generated. Therefore, it is desirable to use
small cuts for recombination. For instance, in the example
of Figure 1, if we choose the minimum cut (the single edge
between the two triangles), the recombination will yield an
individual with 0 conflict. On the other hand, we do not want
the cut to be too asymmetric. Roughly the same number of
genes should be taken from the two parents. Hence, we need
small balanced cuts, minimizing the functionn1·n2

t
, where the

colors ofn1 vertices are taken from one parent,n2 from the
other parent, andt denotes the number edges between the two
parts. We use a heuristic to generate some good cuts at the
beginning of our algorithm, and then for each recombination,
we select one of them at random.

III. T HEORETICAL RESULTS

A. Non-colorable case

Let BT (G, k) denote the number of backtracks of the BB
algorithm on input graphG and number of colorsk. Note
that the BB algorithm is deterministic, hence the number of
backtracks only depends onG andk.

Theorem 1:Let k1 < k2 < χ(G). Then BT (G, k1) ≤
BT (G, k2).

Proof: Let ` denote the size of the clique found at the
beginning of the algorithm. Ifk1 < `, then BB1 immediately
finds a contradiction, leading toBT (G, k1) = 0, in which case
the claim of the theorem is trivial. Hence in the following, we
assume that̀ ≤ k1, meaning that both BB1 and BB2 must
start the actual branch-and-bound.

In the uncolorable case, the number of backtracks equals
the size of the search tree. Hence our aim is to prove that the
search tree of BB2, denoted byT2, is at least as big as the
search tree of BB1, denoted byT1. In order to do so, we will
show the existence of an injective functionf : T1 → T2 with
the following property: for each partial coloringw ∈ T1, a
vertex is colored inw iff it is colored in the partial coloring
f(w), and if it is colored, then it has the same color inw and
f(w). In this case, we callw andf(w) congruent. Note that, if
w andf(w) are always congruent, then it is guaranteed thatf

is injective. We show the existence of this function by using
induction according to the depth ofw in T1 (i.e. on which
level in T1 the nodew can be found).

(Some remarks on notation. We will denote the vertices of
the original input graph withv (potentially with indices), the
vertices of the search tree byw (potentially with indices). The
set of available colors for a vertexv depends on the current
partial coloringw, and will thus be denoted byCw(v).)

First, if w is at level 0, then it is the root ofT1. Then,f(w)
should be the root ofT2. This is appropriate, since in bothw
and f(w), exactly the` vertices of the initially found clique
are colored; because of our deterministic method of finding
and coloring this clique,w andf(w) are congruent.

Now assume thatw is not the root. Thenw has a parent
nodew0 in T1. According to the induction condition,w0 has a
congruent partial coloringf(w0) ∈ T2. From the congruence
of w0 andf(w0), it follows that for any vertexv ∈ V (G),

Cf(w0)(v) = Cw0
(v) ∪ {k1 + 1, k1 + 2, . . . , k2} . (1)

Sincew0 has at least one child (w) in T1, there is no conflict
in w0, i.e. for each vertexv ∈ V (G), Cw0

(v) 6= ∅. From (1) it
follows, that the same is also true forf(w0), and hencef(w0)
also has at least one child inT2.

BB1 moved fromw0 to w by assigning a color to a vertex,
e.g. colorj to vertexvi. There may be two reasons for this:
eithervi andj were chosen by the vertex selection and color
selection mechanisms, respectively (case I), or by constraint
propagation (case II).

Case I:vi was selected by the vertex selection mechanism.
That is, |Cw0

(vi)| is minimal among all uncolored vertices
in w0, and if there are multiple uncolored vertices with this
minimum value, thenvi has minimal index among them.



Because of (1), the same is also true inf(w0). It follows
that also inf(w0), the vertexvi is chosen.

Since colorj was chosen forvi, it follows thatj ∈ Cw0
(vi),

and hence alsoj ∈ Cf(w0)(vi). Moreover, if j is one of
multiple indistinguishable colors inCw0

(vi), then it is the one
with minimal index. InCf(w0)(vi), the set of indistinguishable
colors is the same as inCw0

(vi), extended with the colors
k1 + 1 throughk2. Hence,j is also the color with minimal
index among the indistinguishable colors inCf(w0)(vi). In
any case,j will be chosen sooner or later in BB2 as well. The
corresponding child off(w0) in T2 is obviously congruent
with w, and thus will play the role off(w).

Case II:vi was selected by constraint propagation. That is,
|Cw0

(vi)| = 1, and if there are multiple vertices with only
1 available color, thenvi has minimum index among them.
Since the number of available colors is at least 1 for each
vertex, it is again true that|Cw0

(vi)| is minimal among all
uncolored vertices inw0, and if there are multiple uncolored
vertices with this minimum value, thenvi has minimal index
among them. That is, Case II is actually a special case of Case
I, hence the same argumentation works here as well.
From the proof it is obvious, that the claim remains true for
several other versions of the algorithm, e.g. if we choose the
next vertex to color based on the degree of vertices instead of
the |C(v)| numbers etc.

B. Colorable case

Now consider the colorable case. Assume thatχ(G) ≤ k1 <

k2. The intuition is that it is easier to colorG with k2 colors
than withk1 colors. While this is often indeed true (see also
the empirical results in Section IV), there are several factors
to consider:

• When allowing more colors, this significantly increases
the size of the search space.

• On the other hand, more colors mean more solutions, in-
creasing the probability that the search finds one quickly.

• In contrast to the uncolorable case where all color assign-
ments to the chosen vertex must be examined, here we
do not necessarily have to check all possible colors of the
chosen vertex. Rather, we check the colors until we find
an assignment that leads to a solution. As a consequence,
the order in which we examine the color options plays
an important role.

The combination of these conlicting factors makes the com-
plexity harder to predict in the colorable case than in the
uncolorable case. Indeed, it is not necessarily true that coloring
with k2 colors is easier than withk1 colors, as the following
counter-example shows.

Let k1 = 3, k2 = 4, andG be the graph depicted schemat-
ically in Figure 2. There are 3 colour classes:A = {1, 2, 3},
B = {4, 5, 6}, C = {7, 8, 9}. Inside of a colour class there is
no edge, between the color classes possible edges exist. Nodes
of the first colour class are connected with some nodes of a
3-colourable subgraphH and also with some nodes of a giant
3-colourable subgraphH ’. The algorithm starts the colouring
always withH . Let us assume thatH has a 3-coloringC1,
after which the nodes inA must have the same colour and

Figure 2. Counter-example in the colorable case

H has a 4-colouringC2, after which the nodes inA must
have all different colours. (For exampleC2 is not allowed by
colouring with 3 colours, so it had to do some backtracks to
find C1.) Furthermore, assume that the algorithm doesn’t use
constraint propagation.

When coloring with 3 colors, after the colouring ofH , the
algorithm colours the nodes inA with the same colour and
finishes the whole colouring successfully.

When coloring with 4 colors, after colouringH , the al-
gorithm picks 3 different colours for the nodes inA and
lets classesB and C uncoloured for a while and tries to
colourH ’. It will succeed with coloringH ′ – but meanwhile
it may have to do some backtracks – and at the end, the
algorithm establishes that the current colouring is inconsistent
(it’s impossible to colourB andC in a consistent way) and
has to backtrack to the start of the colouring ofH ’. Thus,
the coloring with 4 colors may necessitate significantly more
backtracks than coloring with 3 colors.

IV. EMPIRICAL RESULTS

For our empirical measurements, we used the following
kinds of input graphs:

• Random graphs fromGn,p, meaning that the graph has
n vertices and each pair of vertices is connected by an
edge with probabilityp, independently from each other.

• Random graphs with a small-world topology, created by
rewiring each edge of anr-regular graph (a ring lattice)
of n vertices with probabilityp, independently from each
other [19], [20].

We also used the following DIMACS benchmarks:

• MILES: graphs representing US cities, with two nodes
connected if the cities are physically close to each other
(by Donald Knuth)

• GAMES: a graph representing the games played in a
college football season among the participating college
teams (by Donald Knuth)

• HOMER: a graph representing the encounters between
characters in Homer’s Iliad (by Donald Knuth)

• QUEEN n×n: a graph representing the problem whether
it is possible to placen sets ofn queens on ann × n

chessboard, so that no two queens of the same set are in
the same row, column, or diagonal (by Donald Knuth)



0,001

0,01

0,1

1

10

100

1000

10000

-5 -4 -3 -2 -1 0 1 2 3 4

x

N
r.
 o

f 
ba

ck
tr
a
ck

s

Figure 3. Number of backtracks usingχ(G) + x colors, as a function ofx,
averaged over all benchmarks

• MULSOL: problem based on register allocation for vari-
ables in real codes (by Gary Lewandowski)

Finally, we used Mycielski’s construction, i.e. artificially con-
structed triangle-free graphs with a high chromatic number.

We conducted experiments in both the uncolorable and
colorable regime, using the BCAT framework [13]. In the
uncolorable case, we used only the BB algorithm, because
the GA algorithm cannot determine that a problem instance is
not solvable. In the colorable case, we used both algorithms.

Figure 3 presents an overview of the measurements with
the BB algorithm. The chart shows the number of backtracks,
averaged over all benchmarks, as a function of the difference
between the number of available colors and the chromatic
number. Note the logarithmic scale on the vertical axis.

The curve is consistent with the intuition that fork < χ(G),
the complexity is monotonously increasing ink, whereas for
k ≥ χ(G) it is monotonously decreasing. It is also interesting
to note that coloring withχ(G) + 2 or more colors is very
easy. Similarly, if the number of available colors is at most
χ(G) − 3, it is very easy to prove the uncolorability. This
suggests that approximate coloring is easy in practice.

In order to understand the complexity curve in more depth,
we include a detailed breakdown of the results on the bench-
marks in Table I. (“N/A” in the last line means that the given
run did not finish within one hour.) The data in the table refine
the findings from Figure 3 in several ways:

• In the uncolorable case, increasing the number of colors
hasalwaysnon-negative impact on the complexity. This
is in line with Theorem 1.

• In the colorable case, increasing the number of colors has
in most casesnon-positive impact on the complexity. On
the other hand, the measurement results on theQUEEN7x7
benchmark show that this is not always the case. Hence,
the counter-example given in Section III represents a rare
but practically relevant case.

• The maximal complexity is always at eitherχ(G) − 1
or χ(G). There can be significant differences in both
directions. The maximum was atχ(G) − 1 in 6 cases
and atχ(G) in 7 cases.

We also conducted experiments using the GA algorithm, see
Table II. For each benchmark, we ran the GA algorithm 100
times withk = χ(G) and 100 times withk = χ(G) + 1, and
counted the percentage of the runs that found a solution. As

can be seen from the Table, increasing the number of available
colors fromχ(G) to χ(G) + 1 had a non-positive effect on
the complexity in every case. In some cases, the reduction in
complexity was tremendous.

Comparing the results of these two very different algo-
rithms, we can see that in many cases, there is a correlation
between the hardness of a problem instance for BB and
its hardness for GA. For example, theMILES, GAMES, and
MULSOL benchmarks are easy for both algorithms, while the
QUEEN instances are relatively hard for both algorithms. This
may indicate that these problem instances are structurally
simple and hard, respectively. On the other hand, there are
some differences between the two algorithms, e.g. theEASY1
benchmark is easy for BB but hard for GA. But the main
consequence is that, in both cases, coloring withχ(G) + 1
colors is usually quite easy and, in particular, easier than
coloring withχ(G) colors.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented two state-of-the-art graph col-
oring algorithms and conducted several experiments with
both real-world and synthetic benchmarks to assess how the
complexity of the coloring problem depends on the number
of available colors. Our study provides substantial evidence
that the complexity is highest at eitherχ(G) − 1 or χ(G),
and rapidly (indeed, exponentially) decreasing with the dis-
tance from these critical values. Between the complexity at
χ(G) − 1 and χ(G), there can be significant difference in
both directions.

We also demonstrated that the uncolorable and colorable
cases are not symmetric: while monotonicity always holds in
the uncolorable case, in the colorable case it holds in most
cases but not always. This finding is also backed by theoretical
contributions: we proved that the presented BB algorithm’s
complexity is indeed monotonous ink in the uncolorable case
and gave a counter-example showing that it is not always
monotonous in the colorable case.

The results of our study contribute to a better understanding
of the origins of complexity in graph coloring, and more
generally, in combinatorial optimization problems. A possible
way to exploit this understanding is the following. According
to our findings, coloring is quite easy when|k − χ(G)| ≥ 2.
Thus if we check colorability withk = 1, 2, . . . and with
k = n, n− 1, . . ., then these decision problems are very easy
as long as we are not near to the chromatic number. This way,
by alternating the two sampling sequences, we can locate the
chromatic number with high precision, without the excessive
running time of an exact algorithm.

ACKNOWLEDGEMENTS

This work was partially supported by the Hungarian Na-
tional Research Fund and the National Office for Research
and Technology (Grant Nr. OTKA 67651).

REFERENCES

[1] Karen I. Aardal, Stan P.M. van Hoesel, Arie M.C.A. Koster, Carlo
Mannino, and Antonio Sassano. Models and solution techniques
for frequency assignment problems.Annals of Operations Research,
153:79–129, 2007.



Table I
NUMBER OF BACKTRACKS IN THEBB ALGORITHM , AROUND THE CHROMATIC NUMBER, FOR DIFFERENT PROBLEM INSTANCES

Number of backtracks, with given number of colors
Graph type Instance details χ(G) − 3 χ(G)− 2 χ(G)− 1 χ(G) χ(G) + 1 χ(G) + 2

Gn,p n = 70, p = 0.25, χ = 7 0.1 12.5 7000 750 0.6 0
Gn,p n = 80, p = 0.25, χ = 8 4.5 478 814223 206 0.7 0
Gn,p n = 45, p = 0.5, χ = 9 0 0.5 372 400 5.5 0
Gn,p n = 50, p = 0.5, χ = 9 0.3 6.2 285 2703 29.5 0.5
Gn,p n = 40, p = 0.75, χ = 13 0.1 5.5 103 177 18.5 1.7
Gn,p n = 50, p = 0.75, χ = 15 5.1 70.5 1625 2353 186 10.3

Small world n = 70, r = 10, p = 0.1, χ = 6 0 0 0 1250 4.7 0
Small world n = 80, r = 8, p = 0.1, χ = 6 0 0 133907 2.7 0 0

DIMACS benchmark EASY1 (n = 125, m = 736, χ = 5) 0 0 0 1045 0 0
DIMACS benchmark MILES750 (n = 128, m = 2113, χ = 31) 0 0 0 0 0 0
DIMACS benchmark MILES1000 (n = 128, m = 3216, χ = 42) 0 0 0 0 0 0
DIMACS benchmark MILES1500 (n = 128, m = 5198, χ = 73) 0 0 6 0 0 0
DIMACS benchmark GAMES120 (n = 120, m = 638, χ = 9) 0 0 0 0 0 0
DIMACS benchmark HOMER (n = 561, m = 1629, χ = 13) 0 0 0 0 0 0
DIMACS benchmark QUEEN 7x7 (n = 49, m = 476, χ = 7) 0 0 0 72 1230 0
DIMACS benchmark QUEEN 8x8 (n = 64, m = 728, χ = 9) 0 0 390824 642758 23 1
DIMACS benchmark MULSOL.i.5 (n = 186, m = 3973, χ = 31) 0 0 0 0 0 0

Mycielski n = 47, χ = 6 13 407 189792 0 0 0
Mycielski n = 95, χ = 7 935 692210 N/A 0 0 0

Table II
PERCENTAGE OF SUCCESSFULGA RUNS ON DIFFERENT BENCHMARKS, WITH χ(G) VS. χ(G) + 1 COLORS

Graph type Instance details χ(G) χ(G) + 1

Gn,p n = 70, p = 0.25, χ = 7 1% 95%
Gn,p n = 80, p = 0.25, χ = 8 0% 96%
Gn,p n = 45, p = 0.5, χ = 9 19% 100%
Gn,p n = 50, p = 0.5, χ = 9 0% 81%
Gn,p n = 40, p = 0.75, χ = 13 53% 100%
Gn,p n = 50, p = 0.75, χ = 15 6% 79%

Small world n = 70, r = 10, p = 0.1, χ = 6 32% 100%
Small world n = 80, r = 8, p = 0.1, χ = 6 100% 100%

DIMACS benchmark EASY1 (n = 125, m = 736, χ = 5) 0% 3%
DIMACS benchmark MILES750 (n = 128, m = 2113, χ = 31) 100% 100%
DIMACS benchmark MILES1000 (n = 128, m = 3216, χ = 42) 100% 100%
DIMACS benchmark MILES1500 (n = 128, m = 5198, χ = 73) 100% 100%
DIMACS benchmark GAMES120 (n = 120, m = 638, χ = 9) 100% 100%
DIMACS benchmark HOMER (n = 561, m = 1629, χ = 13) 100% 100%
DIMACS benchmark QUEEN 7x7 (n = 49, m = 476, χ = 7) 1% 75%
DIMACS benchmark QUEEN 8x8 (n = 64, m = 728, χ = 9) 2% 99%
DIMACS benchmark MULSOL.i.5 (n = 186, m = 3973, χ = 31) 100% 100%

Mycielski n = 47, χ = 6 100% 100%
Mycielski n = 95, χ = 7 100% 100%

[2] Edward A. Bender and Herbert S. Wilf. A theoretical analysis of
backtracking in the graph coloring problem.Journal of Algorithms,
6(2):275–282, 1985.

[3] Daniel Brélaz. New methods to color the vertices of a graph. Commu-
nications of the ACM, 22(4):251–256, 1979.

[4] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to
graph coloring register allocation.ACM Transactions on Programming
Languages and Systems, 16(3):428–455, 1994.

[5] Charles Fleurent and Jacques A. Ferland. Genetic and hybrid algorithms
for graph coloring. Annals of Operations Research, 63(3):437–461,
1996.

[6] Michael R. Garey, David S. Johnson, and L. J. Stockmeyer.Some
simplified NP-complete graph problems.Theoretical Computer Science,
1:237–267, 1976.

[7] Carla P. Gomes and David Shmoys. Completing quasigroupsor latin
squares: a structured graph coloring problem. InProceedings of the
Computational Symposium on Graph Coloring and Generalizations,
pages 22–39, 2002.

[8] Francine Herrmann and Alain Hertz. Finding the chromatic number by
means of critical graphs.Journal of Experimental Algorithmics, 7:10,
2002.

[9] A. Hertz and D. E. Werra. Using tabu search techniques forgraph
coloring. Computing, 39(4):345–351, 1987.

[10] Haixia Jia and Cristopher Moore. How much backtrackingdoes it take
to color random graphs? Rigorous results on heavy tails. InPrinciples
and Practice of Constraint Programming, pages 742–746, 2004.

[11] Dorothy L. Mammen and Tad Hogg. A new look at the easy-hard-
easy pattern of combinatorial search difficulty.Journal of Artificial
Intelligence Research, 7:47–66, 1997.

[12] Zoltán Á. Mann and Anikó Szajkó. Improved bounds on the complexity
of graph coloring. In12th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, 2010.

[13] Zoltán Á. Mann and Tamás Szép. BCAT: A framework for analyzing
the complexity of algorithms. In8th IEEE International Symposium on
Intelligent Systems and Informatics, pages 297–302, 2010.

[14] Anuj Mehrotra and Michael A. Trick. A column generationapproach for
graph coloring.INFORMS Jounal on Computing, 8(4):344–354, 1996.

[15] Isabel Méndez-Diaz and Paula Zabala. A branch-and-cutalgorithm for
graph coloring.Discrete Applied Mathematics, 154(5):826–847, 2006.

[16] R. Monasson. On the analysis of backtrack procedures for the coloring
of random graphs. In E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai,
editors,Complex Networks, pages 235–254. Springer, 2004.

[17] E. C. Sewell. An improved algorithm for exact graph coloring. In
David S. Johnson and Michael A. Trick, editors,Cliques, coloring, and
satisfiability: second DIMACS implementation challenge, pages 359–
376. 1996.



[18] Jonathan S. Turner. Almost allk-colorable graphs are easy to color.
Journal of Algorithms, 9(1):63–82, 1988.

[19] Toby Walsh. Search in a small world, 1999.
[20] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-

world’ networks. Nature, 393:440–442, 1998.
[21] Herbert S. Wilf. Backtrack: an O(1) expected time algorithm for the

graph coloring problem.Information Processing Letters, 18:119–121,
1984.


