Graph coloring: the more colors, the better?

Tamas Szép and Zoltan Adam Mann
Budapest University of Technology and Economics
Department of Computer Science and Information Theory
1117 Budapest, Magyar tudésok koératja 2, Hungary

This paper appeared ifroceedings of the 11th IEEE International Symposium on fiLdational Intelligence
and Informatics, pages 119-124, Budapest (Hungary), 2010

Abstract—In this paper, we investigate the algorithmic com-
plexity of deciding colorability, as a function of the numbe of
available colors. Intuitively, one may assume that the prolem’s
complexity is highest around the chromatic number of the
graph. We give substantial empirical evidence that this ingition
is largely true, both for exact and heuristic graph coloring
algorithms. We give a rigorous proof that the complexity of
a class of exact algorithms is monotonously increasing in th
number of available colors in the non-colorable case, and gé a
counter-example to demonstrate that the analogous claim &3
not always hold for colorable graphs.

I. INTRODUCTION AND PREVIOUS WORK

a proper coloring of the graph. Hence in this region one
expects that the complexity decreases monotonously, looth f
exact and heuristic algorithms. In the uncolorable regam,
exact algorithm’s task is to prove that there exists no prope
coloring. This becomes easier whéndecreases, since the
infeasibility of a region of the search space becomes appare
more quickly if the number of colors is smaller. Hence in this
regime one expects complexity to be monotonously incrgasin
It is generally believed that the complexity is maximal when
k=x(G)—118].

In this paper, we describe our findings from a systematic
study about the dependence of the complexity on the number

Graph coloring is a fundamental problem in algorithmiof available colors. We use two state-of-the-art algorghm

graph theory, with many practical applications, like fregay
assignment [1] or register allocation [4]. For solving drajol-
oring problems, both exact and heuristic algorithms areelyid

as typical representatives of the kinds of algorithms that a
widely used to solve graph coloring problems:

« A Branch-and-bound algorithm (BB) as a typical exact

used. Most exact algorithms use some kind of backtracking
to perform an exhaustive search of the possible colorings,.

algorithm
A genetic algorithm (GA) as a typical heuristic

while at the same time being able to prune large parts of)& carried out empirical experiments on random graphs as

search space. Variations of this scheme are branch-amiiboye|| as on benchmarks from the literature. Our main findings
branch-and-cut, and branch-and-price algorithms [14%],[1 319 contributions are as follows:

[17]. Heuristics include greedy algorithms, genetic ailgpons,
simulated annealing, and tabu search [3], [5], [9].

In the worst case, graph coloring is NP-complete [6], but
many problem instances are eays to color. The systematic
study of the complexity of different graph coloring problem
instances mostly focuses on random graphs [2], [10], [16],
[18], [21], [12]. Most previous work in this area focuses *
on how the number of nodes and the density of the graph
(i.e. the average number of neighbors of a vertex) influence
the complexity of the coloring problem. In particular, it is
known that the average-case complexity of graph coloring is
O(1), meaning that increasing the number of vertices does not
increase the complexity of the problem above a given bound.
It is also known that the complexity of graph coloring as a
function of the density of the graph exhibits an easy-hasire
pattern [11], [7].

Much less is known about the dependence of the problem

As expected, the measured complexity is monotonously
increasing ink when k < x(G) and monotonously
decreasing whek > x(G).

« We give a rigorous proof that the BB algorithm’s com-

plexity is monotonously increasing inwhenk < x(G).
We give a counter-example showing that the BB algo-
rithm’s complexity is not always decreasing inwhen
k > x(G). (Although in practice this is usually the case.)

« The maximum complexity is either &t = x(G) — 1 or

k = x(G). There can be a significant difference between
the complexity of these two cases in both directions; the
hypothesis that coloring withy(G) — 1 colors is more
difficult than coloring withx(G) colors does not seem to
be justified.

Il. PRELIMINARIES

complexity on the number of available colors, which wé. Problem formulation

denote byk. Intuitively, one may assume that the problem’s We consider the graph coloring problem as a decision
complexity is highest wheh is around the chromatic numberproblem. The input consists of a gragh = (V,F) and a

of the graph, denoted by (G). In the colorable case, i.e.numberk € Z*. The vertices of the graph are denoted by

whenk > x(G), it is intuitively quite clear that increasingvy,vs, ..

., vn, the available colors by,2,... k. A coloring

the number of available colors will make it easier to findssigns a color to each vertex;partial coloring assigns a

color to some of the vertices. A (partial) coloringims/alid neighbours ofv. More generally, for a color € C(v), let

if there is a pair of adjacent vertices with the same colok(c) := [{w € N(v) : ¢ € C(w)}|. Then we take the colors
otherwise it isvalid. The task is to decide whether a validn C(v) in increasing order of theii values. This way, we
coloring exists. start with the least restrictive color assignment, thusdasing
The chromatic number of the graph, denoteddy), is the probability of finding the solution quickly. Colors withe
the minimumk such thatG is colorable withk colors. same)\ value are taken in increasing order of their indices.
The set of neighbours of a given vertexwill be denoted Initial coloring: Before starting the BB algorithm, we
by N(v). use a simple heuristic to find a (preferably large) clique of

A cutis a set of edgeX C E such thatG'\ X consists of the graph. Obviously, each node in the clique must obtain a
more components tha@. The size of a cut is the number ofdifferent color. So we first assign colors to these nodes, and
edges forming the cut. then start the BB algorithm from this partial coloring. This
partial coloring is the root of the search tree; when the BB
. algorithm later tries to backtrack from this state, this liep
B. The BB algorithm the unsuccessful finish of the search. When coloring theieliq

Most of our results relate to the BB algorithm. This is theve take the vertices in increasing order of their indices| an
implementation of the usual backtracking scheme for cothe first one receives color 1, the second receives color.2 etc
straint satisfaction problems, with both generic and probl Symmetry breaking:Colors that are not assigned to
specific improvements suggested in the literature. any vertex yet are indistinguishable. Hence, when perfogmi

The algorithm assigns colors to the vertices, one at a tintgranching, such colors are treated as a single color. Thys wa
as long as no conflict occurs. If all vertices can be colorél thye only investigate one of the possibly several equivalent
way, the algorithm terminates. On the other hand, when thaseanches that only differ in indistinguishable colors. déra
is a conflict, the algorithm backtracks, i.e. it goes backh® t cally, this means that we use only the color with the smallest
last consistent state by removing the last color assignmefidex among the indistinguishable ones.

Then it proceeds to an unexplored branch by trying a new Constraint propagation:When a specific color: is as-
color assignment for the currently selected vertex. Wheén glgned to a vertex, then for all neighboursy of v, ¢ is re-
possible branches from a given state have been tried withesgved fromC (w). This might have important consequences:
success, the algorithm backtracks. « If C(w) becomes empty, this signalizes a conflict, leading

The algorithm traverses the space of partial solutions in a 4 backtracking.

tree structure. There are two possible termination staati | | |C(w)| becomes 1, this means that the colorohas

either a solution is found, or the algorithm checks all breesc essentially become fixed. The same procedure can then
from the root of the tree without success, and tries to backtr be applied to the neighbours of

from the_ root. In _th|s case, we can be sure that the 'n.p*'f‘lese rules are applied to the vertices in increasing orfler o
problem instance is unsolvable. In many cases, the algn)rltrg eir index
can prune large subtrees of the search tree, which can esnsi '
ably decrease its runtime. We use the number of backtracks to
characterize the speed of a run of the algorithm in a machirfe- The GA algorithm
independent manner. In order to implement a genetic algorithm for the graph
We used a number of techniques to accelerate the algoritbaioring problem, we used the following encoding: an indi-
as much as possible (note that all of them are formulatedvitlual is a — possibly invalid — coloring, represented by a
such a way that the algorithm remains fully deterministic): vector of lengthn. Genei contains the color of vertex; in
Vertex selection:For each vertexv of the graph, we the given coloring. The fitness of an individual is calcuthte
maintain the list of color€’(v) that are available for. When as the number of conflicts, i.e. the number of adjacent vertex
choosing the next vertex of the graph to color, we choose thairs with the same color. Note that lower fitness values are
one with minimum|C(v)|. The rationale behind this choicebetter, with 0 representing a solution.
is that this way we can keep the branching factor (i.e., theThe initial population is filled partly with random individu
average number of branches from a given state in the seaat$y partly with individuals created by greedy coloring.eTh
tree) low. If there are multiple vertices with the same minim individuals created by greedy coloring usually have higher
|C'(v)| value, then the one with smallest index is chosen. quality than the random ones and thus they guarantee that
Color selection: After having selected a vertex to already the first population contains some good individuals
color, we try to assign the colors i'(v) to v. If the given On the other hand, the random individuals lead to great
problem instance — or at least the subproblem defined by teiety of genetic characteristics, thus prohibiting patune
current partial coloring — is unsolvable, then we will haveegeneration of the population. To further increase wariet
to check all colors inC(v) and backtrack afterwards. In thisin the initial population, we use two different strategies f
case, it is unimportant in what order we iterate throdglv). greedy coloring: for some individuals, we carry out colgrin
However, if at least one of the colors @(v) leads to success, in decreasing order of the degree of vertices, while for isthe
then the order does matter. Hence, we start with the cokhie order is determined by a breadth-first search.
that will result in the least constraint on the neighbours of Every time we generate a new individual, we check it for
v, i.e. the color that appears in the ledstw) sets of the trivially repairable conflicts. That is, we check if theredwo

IIl. THEORETICAL RESULTS

A. Non-colorable case

Let BT (G, k) denote the number of backtracks of the BB
algorithm on input grapiG and number of colorg:. Note
that the BB algorithm is deterministic, hence the number of
backtracks only depends @r and k.

Theorem 1:Let k1 < ko < x(G). Then BT (G, k) <
BT (G, k2).

Proof: Let ¢ denote the size of the cliqgue found at the
Figure 1. An example showing the ineffectiveness of randecombination. P€ginning of the algorithm. Ik; < ¢, then BB1 immediately
The numbers indicate colors. Both of the parents have onidpmarked finds a contradiction, leading t87(G, k1) = 0, in which case
with a flash. The dashed boxes show which portions of the [mrare ha claim of the theorem is trivial. Hence in the followinge w
transferred to the offspring. The offspring has three cotsfli)

assume that < ki, meaning that both BB1 and BB2 must
start the actual branch-and-bound.

In the uncolorable case, the number of backtracks equals
adjacent vertices andw with the same colot and there is a the size of the search tree. Hence our aim is to prove that the
color ¢ # ¢ such that the color of or w can be changed to search tree of BB2, denoted K, is at least as big as the
¢ without generating a new conflict. If this case occurs, weearch tree of BB1, denoted . In order to do so, we will
correct it immediately. show the existence of an injective functign 77 — 75 with
the following property: for each partial coloring € T3, a

For mutation, we experimented both with purely randor\%rtex is colored inw iff it is colored in the partial coloring

gene modification and with some more sophisticated loc e . .
: : iy w), and if it is colored, then it has the same colorirand
improvement methods. According to our empirical test rssul :)
i w). In this case, we catb and f (w) congruentNote that, if
random gene modification is clearly outperformed by the mo o
- . . w and f(w) are always congruent, then it is guaranteed fhat
sophisticated schemes. In particular, the following méthg_ .~.~~ . . i i
o .__1s injective. We show the existence of this function by using
proved to be the most successful: if there are two adjacent . . :) .
. . : induction according to the depth af in 73 (i.e. on which
verticesv andw with the same color andw has a neighbour

2 with color ¢ # ¢ such thatx is the only neighbour ofv IeV(;I inT; the nli)dew ca? ?e fo\l/vd)'.” denote th . f
with color ¢/, then the colors of) and z are swapped. Note (Some remarks on notation. We will denote the vertices o

that — because of the immediate repair step described abm/% original input graph withy (potentially with indices), the

— this is the best case, as the chosen conflict is corrected gﬁrtices of the search tree hy (potentially with indices). The
only one new conflict :alrises ' set of available colors for a vertex depends on the current

partial coloringw, and will thus be denoted b§',(v).)

For recombination, we also experimented with random First if is at level 0, then it is the root &f; . Then, f(w)
mixing of the parents’ genes and with more sophisticateghould be the root of,. This is appropriate, since in both
problem-specific methods, and again, the latter proved 4Qq f(w), exactly the/ vertices of the initially found clique
be more effective. The problem with randomly mixing thee colored; because of our deterministic method of finding
genes of the parents is that even if the parents contained fgyy coloring this cliquew and f(w) are congruent.
conflicts, the offspring will often contain a high number of Now assume thaty is not the root. Thenw has a parent
conflicts. This problem is illustrated in Figure 1. The pexhl nodewy in T} . According to the induction conditiom, has a
originates from adjacent vertices whose colors are takam fr congruent partial coloring(wo) € T». From the congruence

different parents, as these colors can easily coinciddigdo ¢ wo and f(wp), it follows that for any vertex € V(G)
a new conflict. In graph-theoretic terms, for the recombamat

we need a cut of the graph (shown with the dashed boxes in C () (v) = Cuo (v) U{k1 + 1, k1 +2,...,k2}. (1)

the Figure); the bigger the cut, the higher the probabitityt t

new conflicts are generated. Therefore, it is desirable & us Sincew, has at least one childy) in 71, there is no conflict
small cuts for recombination. For instance, in the exampi@ wo, i.e. for each vertex € V(G), Cy,(v) # 0. From (1) it

of Figure 1, if we choose the minimum cut (the single edgellows, that the same is also true ffwo), and hencef (wo)
between the two triangles), the recombination will yield aalso has at least one child .

individual with 0 conflict. On the other hand, we do not want BB1 moved fromw, to w by assigning a color to a vertex,
the cut to be too asymmetric. Roughly the same number &@@. colorj to vertexv;. There may be two reasons for this:
genes should be taken from the two parents. Hence, we ne@itierv; andj were chosen by the vertex selection and color
small balanced cuts, minimizing the functiés™2, where the selection mechanisms, respectively (case 1), or by canstra
colors ofn; vertices are taken from one parent, from the propagation (case).

other parent, and denotes the number edges between the twoCase |:v; was selected by the vertex selection mechanism.
parts. We use a heuristic to generate some good cuts at Theat is, |C\,(v;)| is minimal among all uncolored vertices
beginning of our algorithm, and then for each recombinatioim wg, and if there are multiple uncolored vertices with this
we select one of them at random. minimum value, thenv; has minimal index among them.

Because of (1), the same is also true fifw). It follows
that also inf(wp), the vertexv; is chosen.

Since colorj was chosen fov;, it follows thatj € Cy,, (v;),
and hence alsg € Cj,,)(vi). Moreover, if j is one of
multiple indistinguishable colors i@, (v;), then it is the one
with minimal index. InC's (., (v;), the set of indistinguishable e o o
colors is the same as i@, (v;), extended with the colors
k1 + 1 throughks. Hence,j is also the color with minimal
index among the indistinguishable colors @y, (v;). In
any casey will be chosen sooner or later in BB2 as well. The % % % 0
corresponding child off (wp) in Ty is obviously congruent
with w, and thus will play the role of (w).

Case ll:v; was selected by constraint propagation. That iFigure 2.
|Cuwo (v:)| = 1, and if there are multiple vertices with only
1 available color, ther; has minimum index among them.

Since the number of available colors is at least 1 for eadh has a 4-colouring”’2, after which the nodes il must
vertex, it is again true thaC,,, (v;)| is minimal among all have all different colours. (For example2 is not allowed by
uncolored vertices invy, and if there are multiple uncoloredcolouring with 3 colours, so it had to do some backtracks to
vertices with this minimum value, ther has minimal index find C1.) Furthermore, assume that the algorithm doesn’t use
among them. That is, Case Il is actually a special case of Cas#straint propagation.

I, hence the same argumentation works here as well. m When coloring with 3 colors, after the colouring &f, the
From the proof it is obvious, that the claim remains true fadlgorithm colours the nodes id with the same colour and
several other versions of the algorithm, e.g. if we choose tfinishes the whole colouring successfully.

next vertex to color based on the degree of vertices instead oWhen coloring with 4 colors, after colouring/, the al-

the |C(v)| numbers etc. gorithm picks 3 different colours for the nodes i and

lets classesB and C' uncoloured for a while and tries to
colour H'. It will succeed with coloringH’ — but meanwhile

_ it may have to do some backtracks — and at the end, the

Now consider the colorable case. Assume #(@) < k1 < g|gorithm establishes that the current colouring is inésiast
ka. The_ intuition is that _|t is easier to C(_)kﬁ with ko colors (it's impossible to colouB and C' in a consistent way) and
than W|th {cl colors. Whlle thl_s is often indeed true (see alsfas to backtrack to the start of the colouring Bf. Thus,
the empirical results in Section 1V), there are severaldect yhe coloring with 4 colors may necessitate significantly enor
to consider: backtracks than coloring with 3 colors.

« When allowing more colors, this significantly increases

the size of the search space.

« On the other hand, more colors mean more solutions, in- .)

creasing the probability that the search finds one quickly, 0" ©Ur empirical measurements, we used the following

« In contrast to the uncolorable case where all color assignds Of input graphs:

ments to the chosen vertex must be examined, here we Random graphs frondz,, ,, meaning that the graph has
do not necessarily have to check all possible colors of the 7 Vertices and each pair of vertices is connected by an

Giant 3-colorable

3-colorable subgraph H subgraph H’

Counter-example in the colorable case

B. Colorable case

IV. EMPIRICAL RESULTS

chosen vertex. Rather, we check the colors until we find
an assignment that leads to a solution. As a consequence,
the order in which we examine the color options plays

edge with probabilityp, independently from each other.
Random graphs with a small-world topology, created by
rewiring each edge of anregular graph (a ring lattice)

an important role. of n vertices with probability, independently from each

The combination of these conlicting factors makes the com- other [19], [20].

plexity harder to predict in the colorable case than in th&e also used the following DIMACS benchmarks:
uncolorable case. Indeed, it is not necessarily true tHatiog e MILES: graphs representing US cities, with two nodes
with ko colors is easier than with; colors, as the following connected if the cities are physically close to each other
counter-example shows. (by Donald Knuth)

Let k&1 = 3, ko = 4, andG be the graph depicted schemat- « GAMES: a graph representing the games played in a
ically in Figure 2. There are 3 colour classes= {1, 2,3}, college football season among the participating college
B ={4,5,6}, C ={7,8,9}. Inside of a colour class there is teams (by Donald Knuth)
no edge, between the color classes possible edges exisssNods HOMER: a graph representing the encounters between
of the first colour class are connected with some nodes of a characters in Homer’s lliad (by Donald Knuth)
3-colourable subgrapH and also with some nodes of a giant « QUEENn x n: a graph representing the problem whether
3-colourable subgrapH’. The algorithm starts the colouring it is possible to place: sets ofn queens on am x n
always with H. Let us assume thatl has a 3-coloring’'1, chessboard, so that no two queens of the same set are in
after which the nodes iM must have the same colour and the same row, column, or diagonal (by Donald Knuth)

can be seen from the Table, increasing the number of availabl
10000 colors from x(G) to x(G) + 1 had a non-positive effect on
1000 | the complexity in every case. In some cases, the reduction in
, complexity was tremendous.
g 1 Comparing the results of these two very different algo-
g, d ™ rithms, we can see that in many cases, there is a correlation
Y / between the hardness of a problem instance for BB and
001 its hardness for GA. For example, theLESs, GAMES, and
0001] MULSOL benchmarks are easy for both algorithms, while the
-5 -4 -3 -2 -1 o] 1 2 3 4
‘ QUEEN instances are relatively hard for both algorithms. This

may indicate that these problem instances are structurally
Figure 3. Number of backtracks usindG) + « colors, as a function at, simple _and hard, respectively. On the (_)ther hand, there are
averaged over all benchmarks some differences between the two algorithms, e.gEtheyl
benchmark is easy for BB but hard for GA. But the main

_)) consequence is that, in both cases, coloring with?) + 1
« MuLsoL: problem based on register allocation for varigo|ors is usually quite easy and, in particular, easier than

ables in real codes (by Gary Lewandowski) coloring with y(G) colors.
Finally, we used Mycielski's construction, i.e. artifidiaton-
structed triangle-free graphs with a high chromatic number V. CONCLUSIONS AND FUTURE WORK

We conducted experiments in both the uncolorable andin this paper, we presented two state-of-the-art graph col-
colorable regime, using the BCAT framework [13]. In theyring algorithms and conducted several experiments with
uncolorable case, we used only the BB algorithm, becauseth real-world and synthetic benchmarks to assess how the
the GA algorithm cannot determine that a problem instancedémplexity of the coloring problem depends on the number
not solvable. In the colorable case, we used both algorithmst available colors. Our study provides substantial evigen

Figure 3 presents an overview of the measurements wiltat the complexity is highest at eithel(G) — 1 or x(G),
the BB algorithm. The chart shows the number of backtrackgnd rapidly (indeed, exponentially) decreasing with the- di
averaged over all benchmarks, as a function of the differen@nce from these critical values. Between the complexity at
between the number of available colors and the chromati¢y) — 1 and x(G), there can be significant difference in
number. Note the logarithmic scale on the vertical axis. poth directions.

The curve is consistent with the intuition that for< x(G), We also demonstrated that the uncolorable and colorable
the complexity is monotonously increasing in whereas for cases are not symmetric: while monotonicity always holds in
k > x(G) it is monotonously decreasing. It is also interestinghe uncolorable case, in the colorable case it holds in most
to note that coloring withy(G) + 2 or more colors is very cases but not always. This finding is also backed by theatetic
easy. Similarly, if the number of available colors is at mogfontributions: we proved that the presented BB algorithm’s
X(G) — 3, it is very easy to prove the uncolorability. Thiscomplexity is indeed monotonous inin the uncolorable case
suggests that approximate coloring is easy in practice. and gave a counter-example showing that it is not always

In order to understand the complexity curve in more depthonotonous in the colorable case.
we include a detailed breakdown of the results on the bench-The results of our study contribute to a better understandin
marks in Table I. (“N/A” in the last line means that the givernf the origins of complexity in graph coloring, and more
run did not finish within one hour.) The data in the table refil’@enerally' in combinatorial optimization problems. A pbks
the findings from Figure 3 in several ways: way to exploit this understanding is the following. Accargi

« In the uncolorable case, increasing the number of coldis our findings, coloring is quite easy whéh— x(G)| > 2.

hasalwaysnon-negative impact on the complexity. ThisThus if we check colorability witht = 1,2,... and with
is in line with Theorem 1. k=n,n—1,..., then these decision problems are very easy
« Inthe colorable case, increasing the number of colors has long as we are not near to the chromatic number. This way,
in most casesmon-positive impact on the complexity. Onby alternating the two sampling sequences, we can locate the
the other hand, the measurement results otheEN7X7 chromatic number with high precision, without the excessiv
benchmark show that this is not always the case. Hencenning time of an exact algorithm.
the counter-example given in Section Il represents a rare
but practically relevant case. ACKNOWLEDGEMENTS
« The maximal complexity is always at eithgi(G) — 1 This work was partially supported by the Hungarian Na-
or x(G). There can be significant differences in botiional Research Fund and the National Office for Research
directions. The maximum was at(G) — 1 in 6 cases and Technology (Grant Nr. OTKA 67651).
and aty(G) in 7 cases.

We also conducted experiments using the GA algorithm, see
Table II. For each benchmark, we ran the GA algorithm 100t Karen I. Aardal, Stan P.M. van Hoesel, Arie M.C.A. Kost&@arlo
times with & = y(G) and 100 times with: = x(G) + 1, and Mannino, and Antonio Sassano. Models and solution teclesiqu

) for frequency assignment problem#nnals of Operations Research
counted the percentage of the runs that found a solution. As 153:79-129, 2007.

REFERENCES

Table |

NUMBER OF BACKTRACKS IN THEBB ALGORITHM, AROUND THE CHROMATIC NUMBER, FOR DIFFERENT PROBLEM INSTANCES

Number of backiracks, with given number of colors

Graph type Instance details x(G)—-3 x(G) -2 x(G) -1 x(G) x(G)+1 x(G)+2
Gnp n="70,p=025x=7 0.1 125 7000 750 0.6 0
n,p n=280,p=0.25xx=8 45 478 814223 206 0.7 0
n,p n=45p=0.5,x =9 0 0.5 372 400 5.5 0
n,p n=>50,p=0.5,x =9 0.3 6.2 285 2703 29.5 0.5
n,p n=40,p =0.75,x = 13 0.1 5.5 103 177 18.5 1.7
n,p n=>50,p=0.75,x =15 5.1 70.5 1625 2353 186 10.3
Small world n="70,r=10,p=0.1,x =6 0 0 0 1250 4.7 0
Small world n=280,r=8p=0.1,x=6 0 0 133907 2.7 0 0
DIMACS benchmark EASY1 (n = 125,m = 736, x = 5) 0 0 0 1045 0 0
DIMACS benchmark MILES750 (o = 128, m = 2113, x = 31) 0 0 0 0 0 0
DIMACS benchmark MILES1000 (» = 128, m = 3216, x = 42) 0 0 0 0 0 0
DIMACS benchmark MILES1500 (v = 128, m = 5198, x = 73) 0 0 6 0 0 0
DIMACS benchmark GAMES120 (» = 120, m = 638, x = 9) 0 0 0 0 0 0
DIMACS benchmark HOMER (n = 561, m = 1629, x = 13) 0 0 0 0 0 0
DIMACS benchmark QUEENT7X7 (n =49, m =476, x = 7) 0 0 0 72 1230 0
DIMACS benchmark QUEENB8X8 (n = 64, m = 728, x = 9) 0 0 390824 642758 23 1
DIMACS benchmark MuLSOL.i.5 (n = 186, m = 3973, x = 31) 0 0 0 0 0 0
Mycielski n=47,x =6 13 407 189792 0 0 0
Mycielski n=95x=7 935 692210 N/A 0 0 0
Table Il

PERCENTAGE OF SUCCESSFUGA RUNS ON DIFFERENT BENCHMARKSWITH x(G) Vs. x(G) + 1 COLORS

Graph type Instance details x(G) x(G)+1

Grp n=10,p=0.25x =7 1% 95%

Grp n=280,p=0.25x =38 0% 96%

Grp n=45,p=05,x =09 19% 100%

Grp n=50,p=05x=09 0% 81%

Gnp n =40,p = 0.75, x = 13 53% 100%

Gn,p n =50,p=0.75,x = 15 6% 79%

Small world n=70,r=10,p=0.1,x =6 32% 100%
Small world n=80,r=8p=0.1,x=6 100% 100%

DIMACS benchmark EASYL1 (n = 125, m = 736, x = 5) 0% 3%

DIMACS benchmark MILES750 (n = 128, m = 2113, x = 31) _ 100% 100%
DIMACS benchmark MILES1000 q = 128, m = 3216, x = 42) 100% 100%
DIMACS benchmark MILES1500 (z = 128, m = 5198, x = 73) _ 100% 100%
DIMACS benchmark GAMES120 (n = 120, m = 638, x = 9) 100% 100%
DIMACS benchmark HOMER (n = 561, m = 1629, x = 13) 100% 100%

DIMACS benchmark QUEENT7X7 (n =49, m =476, x = 7) 1% 75%

DIMACS benchmark QUEENS8X8 (n =64, m = 728, x = 9) 2% 99%
DIMACS benchmark MULSOL.I.5 (n = 186, m = 3973, x = 31) _ 100% 100%
Mycielski n=47,x=6 100% 100%
Mycielski n=95,x=7 100% 100%

(2]

(3]
(4]

(5]

(6]

(7]

(8]

El

Edward A. Bender and Herbert S. Wilf. A theoretical arsady of
backtracking in the graph coloring problemlournal of Algorithms
6(2):275-282, 1985.

Daniel Brélaz. New methods to color the vertices of a grapommu-
nications of the ACM22(4):251-256, 1979.

Preston Briggs, Keith D. Cooper, and Linda Torczon. loy@ments to

[10]

(11]

graph coloring register allocatiolACM Transactions on Programming [12]

Languages and Systents5(3):428-455, 1994.

Charles Fleurent and Jacques A. Ferland. Genetic andchglgorithms
for graph coloring. Annals of Operations Research3(3):437-461,
1996.

Michael R. Garey, David S. Johnson, and L. J. Stockmey8ome

[13]

simplified NP-complete graph problemEheoretical Computer Science [14]

1:237-267, 1976.

Carla P. Gomes and David Shmoys. Completing quasigraupatin

squares: a structured graph coloring problem. Phoceedings of the
Computational Symposium on Graph Coloring and Generatinat

pages 22-39, 2002.

Francine Herrmann and Alain Hertz. Finding the chromatimber by
means of critical graphsJournal of Experimental Algorithmi¢cs/:10,

2002.

A. Hertz and D. E. Werra. Using tabu search techniques di@ph

coloring. Computing 39(4):345-351, 1987.

[15]

[16]

[17]

Haixia Jia and Cristopher Moore. How much backtrackitags it take
to color random graphs? Rigorous results on heavy tailsPrinciples
and Practice of Constraint Programmingages 742—746, 2004.
Dorothy L. Mammen and Tad Hogg. A new look at the easydhar
easy pattern of combinatorial search difficultylournal of Artificial
Intelligence ResearctV:47—66, 1997.

Zoltan A. Mann and Aniké Szajké. Improved bounds on tbenplexity
of graph coloring. In12th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing010.

Zoltan A. Mann and Tamas Szép. BCAT: A framework for gmilg
the complexity of algorithms. 18th IEEE International Symposium on
Intelligent Systems and Informatjgsages 297-302, 2010.

Anuj Mehrotra and Michael A. Trick. A column generatiapproach for
graph coloring.INFORMS Jounal on Computin@(4):344—354, 1996.
Isabel Méndez-Diaz and Paula Zabala. A branch-ancatgdrithm for
graph coloring.Discrete Applied Mathematicd54(5):826-847, 2006.
R. Monasson. On the analysis of backtrack procedureshfocoloring
of random graphs. In E. Ben-Naim, H. Frauenfelder, and Zodzkai,
editors, Complex Networkspages 235-254. Springer, 2004.

E. C. Sewell. An improved algorithm for exact graph coig. In
David S. Johnson and Michael A. Trick, editofljques, coloring, and
satisfiability: second DIMACS implementation challengages 359—
376. 1996.

[18] Jonathan S. Turner. Almost all-colorable graphs are easy to color.
Journal of Algorithms 9(1):63—-82, 1988.

[19] Toby Walsh. Search in a small world, 1999.

[20] Duncan J. Watts and Steven H. Strogatz. Collective dyes of 'small-
world’ networks. Nature 393:440-442, 1998.

[21] Herbert S. Wilf. Backtrack: an O(1) expected time aition for the
graph coloring problem.Information Processing Lettersd8:119-121,
1984.

