
Optimized Cloud Deployment of Multi-tenant
Software Considering Data Protection Concerns

Zoltán Ádám Mann and Andreas Metzger
paluno – The Ruhr Institute for Software Technology

University of Duisburg-Essen, Essen, Germany

Paper published in the Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2017), pages 609-618, IEEE Press, 2017

Abstract—Concerns about protecting personal data and intel-
lectual property are major obstacles to the adoption of cloud
services. To ensure that a cloud tenant’s data cannot be accessed
by malicious code from another tenant, critical software compo-
nents of different tenants are traditionally deployed on separate
physical machines. However, such physical separation limits
hardware utilization, leading to cost overheads due to inefficient
resource usage. Secure hardware enclaves offer mechanisms to
protect code and data from potentially malicious code deployed
on the same physical machine, thereby offering an alternative
to physical separation. We show how secure hardware enclaves
can be employed to address data protection concerns of cloud
tenants, while optimizing hardware utilization. We provide a
model, formalization and experimental evaluation of an efficient
algorithmic approach to compute an optimized deployment of
software components and virtual machines, taking into account
data protection concerns and the availability of secure hardware
enclaves. Our experimental results suggest that even if only a
small percentage of the physical machines offer secure hardware
enclaves, significant cost savings can be achieved.

Index Terms—virtual machine placement; cloud deployment;
data protection; privacy; secure computing

I. INTRODUCTION

Ensuring the protection of critical business data (intellectual
property) and sensitive personal data is key for business
success and end-user adoption of cloud services [1]. Data
protection concerns may especially arise in a multi-tenant
setting, in which the confidentiality of a tenant’s data may
be breached by malicious code from another tenant.

Virtualization offers some level of data protection by de-
ploying different tenants’ code and data in different virtual
machines (VMs). However, if these separate VMs are deployed
on the same physical machine (PM), malicious code in one
VM may still breach the confidentiality of data in another
VM; e.g., by means of covert channels in the underlying
hardware [2], [3]. To address such security risks, the traditional
solution is to physically separate critical code and data of one
tenant from the code and data of other tenants by deploying
each on different PMs. However, physical separation reduces
the opportunity for sharing resources, thus leading to limited
hardware utilization and increased costs.

Secure enclaves (such as offered by intel’s SGX technol-
ogy1) provide hardware mechanisms to protect critical code

1Software Guard Extensions, see https://software.intel.com/en-us/sgx

and data, maintaining confidentiality even when an attacker
has physical control of the hardware platform and can conduct
direct attacks on memory [4]. Secure enclaves thereby make
it possible to protect code and data within a PM, thus offering
an alternative to physical separation.

Since PMs offering secure enclaves are likely to remain a
scarce resource in data centers in the near future, a combina-
tion of secure hardware and physical separation on traditional
hardware appears to be a good compromise to achieve data
protection goals while aiming to optimize resource usage.

In recent years, resource-efficient cloud deployment has
received much attention [5]. However, the problem we are
addressing is much more difficult than traditional formulations.
First, we have to take into account which software component
contains code and data of which tenants and which of those
data is critical for the tenant, also considering the possibility of
multiple tenants sharing a component (multi-tenancy). Second,
VMs need to be selected for the software components, sized,
and placed on the PMs appropriately. Third, we have to con-
sider a pool of PMs with different security attributes. A special
challenge is that, since data protection requirements arise on
the level of software components but security capabilities are
given at the level of PMs, we need to address the deployment
problem in a holistic way, from software components via VMs
down to PMs. This is in contrast with previous work that
focused either on deploying software components on VMs or
VMs on PMs, but not both [6].

Thus, this paper aims at answering the following questions:

• How can data protection concerns be taken into account
while optimizing resource usage of the deployment?

• Is it algorithmically feasible to solve a joint optimization
problem with all the above aspects in acceptable time?

• Is it true that secure enclaves can be leveraged to improve
PMs’ utilization and thus reduce costs?

The paper answers these questions affirmatively, by making
the following contributions:

• We define and formalize a cloud deployment model
considering data protection concerns.

• We introduce efficient heuristic algorithms to compute
an optimized cloud deployment for tenant components
(i.e., code and data) and VMs, taking into account data

protection concerns and capacity constraints.
• By means of a comprehensive empiric evaluation with

real workload data, we analyze how cost savings depend
on data security properties. In particular, we find that even
if only 20% of the PMs offer secure hardware enclaves,
savings of energy consumption (which is a major cost
driver) may be as high as 47.5%.

After a discussion of related work in Section II, we in-
troduce our cloud deployment model in Section III and its
formalization in Section IV. Our algorithms are described
in Section V, followed by a case study in Section VI and
experimental evaluation in Section VII.

II. RELATED WORK

The generic problem of cloud deployment has received
significant attention in the literature; e.g., see [7], [5]. Most
solutions focus either on placing VMs on PMs [8], [9] or
on selecting VMs for deploying software components [10],
[11]. These existing solutions mainly consider performance,
costs, and energy consumption, but do not explicitly take
into account data protection concerns. Therefore, the resulting
deployments may violate data protection requirements.

Cloud deployment considering data protection concerns has
been approached from the point of view of cloud users and
cloud providers. From the point of view of cloud users that
aim to deploy cloud components on public or multi-clouds,
Massonet et al. formalize security requirements (together with
other quality requirements) of the cloud components and the
security mechanisms offered by the cloud providers as a
constraint programming problem [12]. The solution of the
problem delivers an optimal selection of the cloud service
providers for deploying the given cloud components. Garcia
et al. focus on comparing cloud providers by assessing the
level of security they provide [13]. These approaches do
not consider specific characteristics of the concrete compute
hardware (such as secure hardware enclaves), because internals
of the cloud (in particular the underlying PMs) are hidden
from the cloud user. In addition, these approaches consider the
problem for a single cloud user and as such do not address
multi-tenancy concerns.

From the point of view of cloud providers aiming to opti-
mize resource allocation, Caron et al. propose a set of heuris-
tics for mapping VMs to PMs, while considering security
constraints [14], [2]. Their solution focuses on one particular
security threat, which is the potential data leakage among VMs
due to their placement on the same PM. To this end, cloud
users may specify the level of isolation they require. Similarly,
Shetty et al. address the placement of VMs on PMs with the
aim of minimizing the impact of vulnerabilities of one VM on
others that are hosted on the same PM [15]. However, these
approaches only consider the mapping of VMs to PMs and do
not concern themselves with multi-tenant software components
and their respective, more fine-grained security concerns. They
only focus on physical separation and do not take into account
the possibility to deploy onto secure hardware, allowing even
critical VMs to be deployed on the same PM.

III. CLOUD DEPLOYMENT MODEL

We now describe our cloud deployment model considering
data protection concerns. A diagrammatic representation of the
model with its key concepts is shown in Fig. 1. The model
takes the point of view of a cloud provider that uses its own
PMs to offer Software-as-a-Service (SaaS) or Platform-as-a-
Service (PaaS) solutions to various Tenants.

Tenant

serves

instance of

deployed in

deployed in

1..1

Component
type

sec_hw_capable

1..*

Component
instance

size
crit

PM

cap load
sec state

VM

size

1..1

1..1

0..*

0..*

0..*

0..*implementation by

requests

0..*

0..1

0..*

0..*

cu
st

o
m

Fig. 1. Cloud deployment model considering data protection concerns

The cloud services are implemented by Components that
are hosted in the provider’s virtualized data center. Com-
ponents may contain code, data or both. To offer tenants
customized services, there can be multiple instances of the
same component, so that different tenants may use different
component instances [16]. Hence, we differentiate between
Component Types and Component Instances. A tenant may
request a set of component types. The provider has to decide
for each requested component type which instance of the given
type should serve the given tenant, taking into account the
possibilities of reusing existing component instances. This is
also where data protection concerns are formulated: for each
requested component type, the tenant specifies whether the
given component is critical (crit) in terms of data protection. If
so, the component instance of the given type serving the tenant
will be handled by the provider accordingly. In particular, the
component instance will be a dedicated instance and not shared
with other tenants. Note that the same component type can be
critical for one tenant and non-critical for another tenant. This
is why crit is an attribute of the component instance and not
of the component type.

In the case of SaaS, beyond the component types imple-
mented by the cloud provider, tenants may create their own
implementation of a component type or customize an existing
component type. In the case of PaaS, usually most component
types are implemented by the tenants. Therefore, in our model
a component type may be implemented by either the provider

or one of the tenants; the latter case is modeled through the
custom implementation by relation. We assume that tenants
trust the provider but not each other, i.e., components created
by other tenants may pose a threat.

Actual deployment happens at two levels: component in-
stances are deployed in VMs and VMs are deployed in PMs.
Each PM may offer certain capacities (cap) for its various
resource types, such as CPU, memory, and disk. Component
instances and VMs have resource requirements according to
these resource types, which we call their size. The size of a
component instance depends on the tenants using it. The size
of a VM arises from the size of the component instances that
it hosts. The load of a PM is the aggregated size of the VMs
it hosts.

To serve the tenant requests, components have to be instan-
tiated by the cloud provider, deployed on VMs, which must be
deployed on PMs. To address data protection requirements, our
model facilitates two mechanisms to protect sensitive tenant
data from untrusted code of other tenants:
• Physical separation. As mentioned in the introduction,

this is the traditional approach to ensure that malicious
code in one VM may not breach the confidentiality of
data in a VM co-located on the same PM.

• Secure enclaves. Some PMs may support secure enclaves,
in which data processing takes place in a protected envi-
ronment (e.g., intel SGX). On such a PM, a VM hosting
a critical component of one tenant may be co-located
with another VM hosting the non-trusted component
of another tenant, as long as the critical component is
run in a secure enclave2. The sec attribute of the PM
encodes whether the PM supports secure enclaves. A
prerequisite of secure sharing is also that the critical
component be able to take advantage of secure enclaves
(sec hw capable)3.

Previous work focused only on parts of Fig. 1, e.g., the
upper half (multi-tenant software provisioning [16]) or the
lower half (VM provisioning in virtualized data centers [5]).
However, we argue that the effective handling of data pro-
tection concerns requires an end-to-end approach, since data
protection requirements arise at the level of component types,
but data protection mechanisms reside at the PM level.

IV. DEPLOYMENT MODEL FORMALIZATION

Based on the cloud deployment model from Section III,
this section formally describes the constraints that a cloud
deployment needs to maintain.

As Table I shows, let X denote the set of tenants. The set
of component types provided by the provider itself is denoted
by Cstd. The set of custom component types created by tenant
x ∈ X is denoted by Ccust(x). Let

C := Cstd ∪
⋃
x∈X

Ccust(x)

2For virtualization on SGX-enabled hardware, see https://01.org/
intel-software-guard-extensions/sgx-virtualization.

3To leverage SGX, a program needs to explicitly create an enclave, add
code and/or data to it etc., using the special instruction set of SGX.

TABLE I
SUMMARY OF NOTATION

Notation Explanation

X Set of tenants
C Set of all component types
C(x) Set of component types requested by tenant x
Cstd Set of standard component types
Ccust(x) Set of custom component types created by tenant x
I Set of all deployed component instances
I(c) Set of instances of component type c
c(i) Component type of component instance i
X(i) Set of tenants served by component instance i
V Set of VMs
v(i) VM hosting component instance i
d Number of resource types
size(i) Size of component instance i
∆(i, x) Size increase of component instance i due to tenant x
size(v) Size of VM v
s0 Size of an empty VM
P Set of PMs
cap(p) Capacity of PM p
p(v) PM hosting VM v
load(p) Total size of the VMs hosted by PM p

denote the set of all component types.
For each component type c ∈ C, the set of currently

deployed instances of the given type is denoted by I(c).
Further, let I :=

⋃
c∈C I(c) denote the set of all deployed

component instances. The component type that component
instance i ∈ I belongs to is denoted by c(i). For a component
instance i ∈ I , the set of tenants that are served by i is denoted
by X(i) ⊆ X . For a tenant x, the set of component types that
the tenant requires is denoted by C(x) ⊆ C.

If tenant x requested a component of type c, there must be
a component instance of the given type serving tenant x. This
is expressed by the following constraint:

∀x ∈ X,∀c ∈ C(x) : ∃i ∈ I(c), x ∈ X(i). (1)

The set of VMs currently in use is denoted by V . For each
component instance i ∈ I , v(i) ∈ V denotes the VM in which
it is deployed.

The set of resource types (e.g., CPU, memory, disk) is
denoted by R, the number of resource types is d = |R|.
We formalize the size of a component instance i as a d-
dimensional vector size(i). The size of a component instance
typically depends on the number of tenants served by the
component instance and the load with which they use it.
We formalize this as follows: the addition of a tenant x
to component instance i leads to an increase of size(i) by
∆(i, x). The size of a VM v is also a d-dimensional vector:
the sum of the sizes of the component instances deployed in
v, plus the overhead of virtualization:

size(v) = s0 +
∑

i∈I:v(i)=v

size(i),

where s0 ∈ Rd
+ is the size vector of an empty VM.

Component Tenant1 Tenant2
critical

(a)

Tenant1 Tenant2
critical

Component1 Component2
custom

VM

(b)

Tenant1 Tenant2
critical

Component1 Component2
custom

VM1 VM2

PM
non-secure

(c)

Fig. 2. Potential violations of data security requirements

The set of available PMs is denoted by P . Each PM
p ∈ P has given capacity according to each of the considered
resource types. Therefore, the capacity of a PM p is given by a
d-dimensional vector cap(p). For a VM v, the PM that hosts
the VM is denoted by p(v). The mapping of VMs on PMs
must respect the capacity of the PMs:

∀p ∈ P : load(p) =
∑

v∈V :p(v)=p

size(v) ≤ cap(p). (2)

Note that here, “≤” is a component-wise comparison of
d-dimensional vectors: for x, y ∈ Rd, x ≤ y if and only if
xj ≤ yj for each j = 1, . . . , d [17].

Further constraints arise from data protection requirements.
A critical component instance must not be shared by more
than one tenant (Fig. 2(a)):

∀i ∈ I : (crit(i)⇒ |X(i)| = 1). (3)

A component marked as critical by a tenant must not be in
the same VM as custom components of other tenants, so that
data protection violation by malicious code running within the
same VM can be avoided (Fig. 2(b)):

∀i, i′ ∈ I : (crit(i), X(i) = {x}, v(i) = v(i′)

⇒ c(i′) ∈ Cstd ∪ Ccust(x)). (4)

If a VM accommodating a critical component instance i
of a tenant is deployed on PM p, then either p must support
secure enclaves and i must be capable of taking advantage of
secure enclaves, or p must not host any VM with a custom
component instance of another tenant (Fig. 2(c)):

∀i, i′ ∈ I :(crit(i), X(i) = {x}, p(v(i)) = p(v(i′))

⇒ (sec(p(v(i))) ∧ sec hw capable(c(i)))

∨ c(i′) ∈ Cstd ∪ Ccust(x)).

(5)

Beside complying with constraints (1)-(5), our aim is to
minimize overall energy consumption because of its impact
on operational costs and the environment. We assume that the
power consumption of a PM is 0 when switched off, otherwise
it is given by a function depending on the PM’s CPU load.

V. ALGORITHMIC APPROACH

Our algorithmic approach for computing optimized deploy-
ment automates the following three main types of decisions to
be made by a SaaS/PaaS provider:
• Creation and removal of component instances, and their

mapping to tenants (top layer of Fig. 1)
• Mapping of components to VMs (middle layer of Fig. 1)
• Mapping of VMs to PMs (bottom layer of Fig. 1)
Decision-making may happen in both event-triggered and

time-triggered manner. Events requiring immediate reaction
include component instantiation requests from new tenants and
termination requests from existing tenants. On the other hand,
the provider may periodically re-optimize mappings to react
to relevant changes in the workload [9].

Next, we describe our proposed algorithms for handling new
requests, handling termination requests, and performing re-
optimization. Each algorithm must strike a balance between
the objectives of data protection and cost minimization. Be-
cause of the hardness of the problem [18], we use heuristics.

A. Handling of a new request

A request r is given by the tuple (xr, cr, critr), where xr

is a tenant, cr is a component type, and the flag critr specifies
the criticality of the component instance for the tenant.

Algorithm 1 Handling a new request
1: procedure PROCESS REQUEST(xr, cr, critr)
2: if ∃i ∈ I(cr) s.t. MAY INST HOST TENANT(i, xr, critr)

then
3: map xr to i
4: else
5: let inew be a new instance of cr
6: map xr to inew

7: if ∃v ∈ V s.t. MAY VM HOST INSTANCE(v, inew) then
8: map inew to v
9: else

10: let vnew be a new VM
11: map inew to vnew

12: P ′ = SORT PMS(P)
13: if ∃p ∈ P ′ s.t. MAY PM HOST VM(p, vnew) then
14: let p0 be the first such PM in P ′

15: if p0 is off then
16: switch on p0
17: end if
18: map vnew to p0
19: else
20: return failure
21: end if
22: end if
23: end if
24: return success
25: end procedure

As shown in Algorithm 1, we first aim to reuse an existing
component instance to accommodate the new request (lines
2-3) and create a new component instance only if such reuse
is not possible (lines 4-6). In the latter case, the newly created
component instance needs to be placed on a VM. Again, the
algorithm first tries to reuse an existing VM for this purpose

Algorithm 2 Subroutines to determine placeability
1: procedure MAY INST HOST TENANT(i, xr, critr)
2: if load(p(v(i))) + ∆(i, x) 6≤ cap(p(v(i))) then
3: return false
4: end if
5: if (¬crit(i) ∧ ¬critr) ∨X(i) ⊆ {xr} then
6: return true
7: else
8: return false
9: end if

10: end procedure
11:
12: procedure MAY VM HOST INSTANCE(v, inew)
13: if load(p(v)) + size(inew) 6≤ cap(p(v)) then
14: return false
15: end if
16: if crit(inew) ∧ X(inew) = {x} ∧ ∃i (v(i) = v ∧ c(i) 6∈

Cstd ∪ Ccust(x)) then
17: return false
18: else if ∃i (v(i) = v ∧ crit(i) ∧ X(i) = {x} ∧ c(inew) 6∈

Cstd ∪ Ccust(x)) then
19: return false
20: else
21: return true
22: end if
23: end procedure
24:
25: procedure MAY PM HOST VM(p, vnew)
26: if load(p) + size(vnew) 6≤ cap(p) then
27: return false
28: end if
29: if ∃i, i′ (((v(i) = vnew ∧ p(v(i′)) = p) ∨ (v(i′) =

vnew ∧ p(v(i)) = p)) ∧ crit(i) ∧ X(i) = {x} ∧ c(i′) 6∈
Cstd ∪ Ccust(x)) ∧ ¬(sec(p) ∧ sec hw capable(c(i))) then

30: return false
31: else
32: return true
33: end if
34: end procedure

(lines 7-8) and creates a new VM only if none of the existing
VMs can host the new component instance (lines 9-11). If a
new VM was created, it is placed on a PM (lines 12-18). The
algorithm’s attempts to reuse existing component instances and
VMs help to avoid unnecessary costs.

The questions whether an existing component instance can
host one more tenant, whether an existing VM can host a new
component instance, and whether a PM can host a new VM are
answered by the appropriate subroutines shown in Algorithm
2. Each subroutine investigates the implications with respect
to the capacity constraints and data protection constraints, in
line with the cases shown in Fig. 2. Even though the three
subroutines are similar, they differ in important details.

In MAY INST HOST TENANT, the algorithm must make
sure that the load of the PM accommodating the given com-
ponent instance does not grow too large when the component
instance grows as a result of serving one more tenant (lines
2-4). Note that “6≤” between vectors means that in at least one
dimension the left side is greater than the right side. Moreover,
we must make sure not to share a critical component between
different tenants (lines 5-9).

In MAY VM HOST INSTANCE, the algorithm must make
sure that the load of the PM hosting the given VM does
not grow too large because of the new component instance
(lines 13-15). If the new component instance is a critical
component dedicated to tenant x, then there must be no custom
components created by another tenant in the VM (lines 16-17),
and vice versa, if there is a critical component instance in the
VM, then the new component instance must not be a custom
component instance of a different tenant (lines 18-19).

Finally, MAY PM HOST VM ensures that the aggregate size
of the VMs remains below the capacity of the PM (lines 26-
28). Furthermore, it is checked whether there is a component
instance in the VM and another in the PM or vice versa
that would violate the data protection constraint, taking into
account the criticality and custom nature of the components,
as well as the security capabilities of the PM and whether the
critical component could take advantage of such capabilities
(lines 29-33).

One more detail to be clarified for Algorithm 1 is the
order in which the algorithm searches for a PM (in line 13,
based on the SORT PMS call in line 12). To minimize energy
consumption, a new PM should be turned on only if necessary.
Hence, the algorithm orders the PMs based on their power
state: PMs that are turned on precede those that are turned
off. Since we assume that secure PMs are a scarce resource,
the algorithm aims to use non-secure PMs whenever possible.
Therefore, within the two PM groups based on power state,
we sort PMs such that non-secure ones precede secure ones,
leading to the following partial order (x and y are two PMs):

x ≺ y ⇔ (state(x) = on ∧ state(y) = off)

∨ (state(x) = state(y) ∧ ¬sec(x) ∧ sec(y)).

B. Termination of a request

Algorithm 3 Termination of a request
1: procedure TERMINATE REQUEST(xr, ir)
2: remove xr from X(ir)
3: if X(ir) = ∅ then
4: remove ir from v(ir)
5: if v(ir) becomes empty then
6: remove v(ir) from p(v(ir))
7: if p(v(ir)) becomes empty then
8: switch off p(v(ir))
9: end if

10: end if
11: end if
12: end procedure

The termination of a request r means that a tenant xr stops
using a component instance ir. As shown in Algorithm 3,
removing xr from X(ir) may result in X(ir) becoming empty,
in which case it makes sense to remove the component instance
to avoid unnecessary resource consumption. Removing ir may
in turn lead to its accommodating VM becoming empty, in
which case it is again useful to remove the entire VM. If this
way the accommodating PM also becomes empty, then it can
be switched off.

C. Re-optimization

The above algorithms for handling new requests and termi-
nation requests make local decisions and minimal modifica-
tions to react quickly to external events. In the long run, such
greedy choices can lead to sub-optimal solutions and thus to
unnecessarily high operational costs4. This is why it is useful
to check time and again if the operation of the system can be
optimized by means of live migration of VMs5.

Algorithm 4 Re-optimization
1: procedure RE-OPTIMIZE
2: // check if an active PM can be emptied
3: for all p ∈ P with state(p) = on do
4: for all v ∈ V with p(v) = p do
5: for all p′ ∈ P with state(p′) = on do
6: if MAY PM HOST VM(p′, v) then
7: tentatively migrate v from p to p′ and go to

next VM
8: end if
9: end for

10: end for
11: if p has become empty then
12: commit the tentative migrations
13: switch off p
14: else
15: undo the tentative migrations
16: end if
17: end for
18: // check if a secure PM can take the load from two (non-

secure) PMs
19: while ∃p, p1, p2 ∈ P : sec(p), state(p) =

off, state(p1) = state(p2) = on, load(p1) + load(p2) ≤
cap(p) do

20: switch on p
21: migrate all VMs from p1 and p2 to p
22: switch off p1 and p2
23: end while
24: // check if the load of a secure PM can be moved to a non-

secure PM
25: while ∃p, p′ ∈ P : sec(p), state(p) =

on,¬sec(p′), state(p′) = off, @i, i′ : (p(v(i)) = p(v(i′)) =
p, crit(i), X(i) = {x}, c(i′) 6∈ Cstd ∪ Ccust(x)) do

26: switch on p′

27: migrate all VMs from p to p′

28: switch off p
29: end while
30: end procedure

As shown in Algorithm 4, three kinds of optimization oppor-
tunities are explored. The first is the traditional consolidation
[19]: emptying an active PM by migrating all its VMs to
some other already active PMs (lines 2-17). The subroutine
MAY PM HOST VM is reused here to make sure that the
capacity and data protection constraints are not violated by
the migrations.

The second optimization opportunity arises if there is a
pair of PMs, the loads of which would allow consolidating
them to a single PM, but this is not allowed because the two

4But data protection requirements are always satisfied.
5Although some components might support migration between VMs, this

cannot be assumed in general, so we do not rely on such mechanisms.

PMs are non-secure and host VMs that need to be separated
because of data protection reasons. In this case, the traditional
consolidation step cannot be applied. But if a secure PM can
be switched on, the load of the two non-secure PMs can be
migrated to the secure one, and the two emptied PMs can
be switched off (lines 18-23), thus ultimately decreasing the
number of active PMs by one.

The third optimization opportunity does not decrease the
number of active PMs but fosters economic handling of secure
PMs as scarce resources: if there is an active secure PM, the
VMs of which would not need separation, then they can all
be migrated to a newly switched-on non-secure PM, and the
secure PM can be switched off (lines 24-29).

D. Run-time complexity of the algorithms

TABLE II
ASYMPTOTIC EXECUTION TIME OF THE ALGORITHMS

Algorithm Worst-case execution time

PROCESS REQUEST O(|I|+|V |·Imax+|P |·log|P |+|P |·I2max)
TERMINATE REQUEST O(1)
RE-OPTIMIZE O(|P |2·Vmax·I2max+|P |3·Vmax+|P |2·(I2max+Vmax))

An analysis of the presented algorithms reveals the asymp-
totic bounds on their run-time complexity as shown in Table
II. Here, Imax is an upper bound to the number of component
instances within a single VM or PM, whereas Vmax is an
upper bound to the number of VMs in a single PM; both
of these bounds are typically not too large. As can be seen,
all three algorithms have polynomial complexity and thus
exhibit efficient execution times, with RE-OPTIMIZE having
the highest complexity in line with its more global coverage.

These algorithms all are heuristics with no guarantee of opti-
mality regarding optimization criteria like energy consumption
or the number of active PMs [18]. However, the algorithms do
guarantee that all constraints – both data protection constraints
and capacity constraints – are always obeyed.

VI. CASE STUDY

We implemented our algorithms in C++ and tested them in
a simulation environment.6 The program is publicly available
from https://sourceforge.net/p/vm-alloc/multitenant/.

To demonstrate the applicability and effectiveness of our
optimization approach, we employ the cloud-based variant of
the CoCoME case study [20]. CoCoME models cloud services
that support the typical trading operations of a supermarket
chain, like the management of stores, inventory management,
and product dispatching. As such, CoCoME as SaaS offers a
realistic case study covering both efficiency concerns of cloud
data centres and data protection concerns of tenants.

An example deployment – created by our algorithm – for 3
tenants (A, B, C) is shown in Fig. 3a. As can be seen, non-
critical standard components like the ProductDispatcher can

6In contrast to existing cloud simulators which do not account for critical or
tenant-specific components, nor secure hardware, our program was explicitly
written to support all concepts of our problem formulation.

a)

PM1 (non-secure)

VM1, [195, 5450]

Reporting (std)
non-critical; A, B

[50, 1350]

Inventory (std)
critical; A
[45, 1300]

Inventory (std)
critical; B
[45, 1300]

Inventory (std)
critical; C
[45, 1300]

PM2 (non-secure)

VM2, [305, 4050]

ProductDispatcher (std)
non-critical; A, B, C

[110, 1110]

Reporting (std)
non-critical; C

[30, 750]

StoreMgr (A)
non-critical; A

[35, 200]

StoreMgr (std)
non-critical; B, C

[80, 700]

Loyalty (std)
critical; A
[40, 1100]

PM3 (non-secure)

VM3, [85, 2000]

PickUpShop (std)
critical; B
[35, 700]

Loyalty (std)
critical; B
[40, 1100]

PM name
and type

Component
instance

Standard
/ custom

Criticality and
tenants using
the instance

Size (CPU,
memory)

VM name and size
(CPU, memory)

b) PM1 (non-secure)

VM1, [150, 4150]

Reporting (std)
non-critical; A, B

[50, 1350]

Inventory (std)
critical; A
[45, 1300]

Inventory (std)
critical; B
[45, 1300]

PM2 (non-secure)

VM2, [215, 2750]

ProductDispatcher (std)
non-critical; A, B

[80, 800]

StoreMgr (A)
non-critical; A

[35, 200]

StoreMgr (std)
non-critical; B

[50, 450]

Loyalty (std)
critical; A
[40, 1100]

PM3 (non-secure)

VM3, [85, 2000]

PickUpShop (std)
critical; B
[35, 700]

Loyalty (std)
critical; B
[40, 1100]

c) PM1 (non-secure)

VM1, [150, 4150]

Reporting (std)
non-critical; A, B

[50, 1350]

Inventory (std)
critical; A
[45, 1300]

Inventory (std)
critical; B
[45, 1300]

PM4 (secure)

VM2, [215, 2750]

ProductDispatcher (std)
non-critical; A, B

[80, 800]

StoreMgr (A)
non-critical; A

[35, 200]

StoreMgr (std)
non-critical; B

[50, 450]

Loyalty (std)
critical; A
[40, 1100]

VM3, [85, 2000]

PickUpShop (std)
critical; B
[35, 700]

Loyalty (std)
critical; B
[40, 1100]

d) PM1 (non-secure)

VM1, [85, 2250]

Reporting (std)
non-critical; B

[30, 750]

Inventory (std)
critical; B
[45, 1300]

PM4 (secure)

VM2, [110, 1150]

ProductDispatcher (std)
non-critical; B

[50, 500]

StoreMgr (std)
non-critical; B

[50, 450]

VM3, [85, 2000]

PickUpShop (std)
critical; B
[35, 700]

Loyalty (std)
critical; B
[40, 1100]

e) PM1 (non-secure)

VM1, [85, 2250]

Reporting (std)
non-critical; B

[30, 750]

Inventory (std)
critical; B
[45, 1300]

VM2, [110, 1150]

ProductDispatcher (std)
non-critical; B

[50, 500]

StoreMgr (std)
non-critical; B

[50, 450]

VM3, [85, 2000]

PickUpShop (std)
critical; B
[35, 700]

Loyalty (std)
critical; B
[40, 1100]

Fig. 3. Sample CoCoME scenario. a) Starting state with tenants A, B, C. b)
State after tenant C left. c) State after re-optimization. d) State after tenant A
left. e) State after further re-optimization. Each PM has capacity [400, 6000].

be shared by multiple tenants. Some components are critical
because they contain personally identifiable information, such
as the Loyalty component that offers rebates based on personal
purchase history, or they may contain business secrets, such as
the Inventory component. These components are not shared.
Moreover, tenant A implemented their own StoreMgr compo-
nent. Since this component may contain malicious code, the
critical components of the other tenants are not on the same
PM as the StoreMgr of tenant A.

Now assume that tenant C terminates its contract with
the cloud provider. Fig. 3b shows the resulting system state
after our algorithm processed the termination request. Now
VM2 and VM3 are small enough so that they could be
consolidated to a single PM. However, this would violate the
data protection constraint since A’s custom component and B’s
critical component would be on the same PM. Our algorithm
solves this problem by turning on a new, secure PM, migrating
VM2 and VM3 to this PM, and switching off their old PMs
(Fig. 3c). If subsequently also tenant A leaves, this results in
the configuration depicted in Fig. 3d. Now the algorithm can
consolidate all VMs to a single non-secure PM (Fig. 3e).

As can be observed, all data protection requirements are
fulfilled throughout the scenario, while the number of used
PMs is always minimized.

VII. EVALUATION

To assess the performance of the algorithms and the de-
pendence of the results on different problem parameters, we
performed a set of controlled experiments with real-world test
data modeling a PaaS provider.

A. Experiment setup

For the components, we used a real workload trace from
the Grid Workloads Archive, namely the AuverGrid trace7.
From the trace, we used the first njob jobs (where njob varied
from 10,000 to 60,000) that had valid CPU and memory usage
data. The simulated time (i.e., the time between the start of
the first job and the end of the last one) was one month, thus
giving sufficient exposure to practical workload patterns. Each
job was mapped to a request where the size of the job from
the trace was used as component size increase ∆(i, x) for the
request. The finishing of a job was mapped to an appropriate
termination request.

Since the workload trace does not contain all information
we need, we generated the missing information as follows:
• Each job was marked as critical with probability pcrit.
• Each job was marked as custom with probability pcust.
• Each job was marked as capable of using secure enclaves

with probability pcap.
• We generated a number nten of tenants, and assigned

each job randomly to one of the tenants.
As PMs, we simulated HP ProLiant DL380 G7 servers

with Intel Xeon E5640 quad-core CPU and 16 GB RAM.
Their power consumption varies from 280W (zero load) to

7Available from http://gwa.ewi.tudelft.nl/datasets/gwa-t-4-auvergrid

0

100

200

300

400

500

600

0 5 10 15 20 25 30

N
r.

o
f

jo
b

s
/

P
M

s

Time [day]

#PM #Job

(a) Number of jobs and number of PMs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

O
ve

ra
ll

u
ti

liz
at

io
n

Time [day]

(b) Overall utilization of the PMs by the jobs

Fig. 4. Time series of an example simulation run (psec = pcrit = pcust =
pcap = 1, njob = 30000, nten = 7500)

540W (full load) [21]. Each PM was marked as secure with a
probability of psec. Throughout the experiments, we focus on
two resource types: CPU and memory, i.e., d = 2. Concerning
virtualization overhead, previous work reported 5-15% for
the CPU [22] and 107-566 MB for memory [23]. In our
experiments, we use 5% CPU overhead and 200 MB memory
overhead. The VM placement is re-optimized every 5 minutes,
like in [24]. Several metrics are logged, including energy
consumption, number of active jobs, number of active PMs,
utilization of the PMs, and the number of migrations. We
performed measurements on a Lenovo ThinkPad X1 laptop
with Intel Core i5-4210U CPU @ 1.70GHz and 8GB RAM.

B. Time series analysis

Fig. 4(a) shows the temporal development of the num-
ber of active jobs and the number of active PMs in an
example simulation run. As can be observed, the capacity
of the system (measured by the number of active PMs)
closely follows the demand (the number of active jobs).
The capacity also reacts quickly to sudden changes in the
demand. As a result, the overall utilization of the system
is continuously very high (except for the beginning and

0

20000

40000

60000

80000

0 0.2 0.4 0.6 0.8 1

En
er

gy
 c

o
n

su
m

p
ti

o
n

 [
kW

h
]

Ratio of secure PMs

10000 jobs 20000 jobs 30000 jobs 40000 jobs 50000 jobs 60000 jobs

Fig. 5. Energy consumption as a function of the number of jobs and the ratio
of secure PMs (pcrit = pcust = pcap = 1, nten = njob/4)

end of the simulation, when the number of jobs and PMs
is low), as documented by Fig. 4(b). Overall utilization is
computed as max(cpu utilization,memory utilization),
where cpu utilization is the total CPU demand of all active
jobs divided by the total CPU capacity of all active PMs
and memory utilization is computed analogously. Note that
this is actually lower than the average physical utilization of
the PMs, because the latter also includes the virtualization
overhead that we do not include in our metric.

C. Costs

Next, we investigate how different parameter settings impact
energy consumption as a key cost metric. Fig. 5 shows the
dependence of energy consumption on njob and psec. The
figure reinforces our hypothesis that secure PMs offer more
possibilities for consolidating the workload, which in turn
leads to energy and thus also cost savings. As can be seen in
the figure, the savings can be substantial. For 10,000 jobs, 20%
secure PMs lead to 47.5% reduction in energy consumption.
Further increasing the ratio of secure PMs leads to even
higher reduction in energy consumption, but obviously with
a diminishing returns pattern. At the extreme, having 100%
secure PMs leads to a reduction in energy consumption of an
additional 7.4% over the 20% case. The curves of the figure
representing higher numbers of jobs exhibit the same trend.
Some slight changes can be observed though: the reduction
of energy consumption from psec = 0% to psec = 20%
gets a bit less (e.g., for njob = 60000, it is 43.5%), but
the reduction from psec = 20% to psec = 100% gets higher
(for njob = 60000, it is 13.2%), so that the overall reduction
from psec = 0% to psec = 100% also gets higher (56.7% for
njob = 60000 versus 54.9% for njob = 10000).

We also experimented with varying the ratio of critical
components, the ratio of custom components, and the ratio of
components capable of using secure enclaves. Those experi-
ments lead to very similar plots, which are therefore skipped.

The effect of the number of tenants for a constant number
of requests is shown in Fig. 6. If the number of tenants is

0

5000

10000

15000

20000

25000

30000

35000

10 tenants 100 tenants 1000 tenants 10000 tenants

En
er

gy
 c

o
n

su
m

p
ti

o
n

 [
kW

h
]

Ratio of secure PMs: 0 0.2 0.4 0.6 0.8 1

Fig. 6. Energy consumption as a function of the number of tenants and the
ratio of secure PMs (pcrit = pcust = pcap = 1, njob = 20000)

0

50

100

150

200

250

300

350

400

10000 20000 30000 40000 50000 60000

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 [

m
s]

Number of jobs

New request Terminate request Re-optimization

Fig. 7. Execution time of the algorithms as a function of the number of jobs
(pcrit = pcust = pcap = 1, nten = njob/4)

low, then each tenant has a large number of jobs. Since the
jobs of the same tenant can be placed on the same VM or PM
without any restrictions, the statistical multiplexing effect [25]
leads to very good utilization within the set of jobs of each
tenant, even if there are no secure PMs. In other words, the
addition of secure PMs hardly helps to increase utilization,
which is the reason why the energy consumption is hardly
affected by the ratio of secure PMs. If, however, the number
of tenants is high, then the average number of jobs per tenant is
low. In this case, in the absence of secure PMs, consolidation
opportunities are rather limited (only within the small sets of
jobs of the same tenant). Hence, the emergence of secure PMs
creates many new consolidation opportunities, which leads to
a significant reduction in energy consumption.

D. Scalability

Fig. 7 shows how the execution time of the proposed
algorithms scales with increasing problem size. In accordance
with the results of Section V-D, we find that the execution
time of both PROCESS REQUEST and TERMINATE REQUEST
are negligible. The execution time of RE-OPTIMIZE is of
course much higher. However, even for 60,000 jobs and 15,000
tenants, where up to 700 active PMs are used in parallel, the

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

N
r.

o
f

m
ig

ra
ti

o
n

s
p

e
r

P
M

 p
e

r
d

ay

Ratio of secure PMs

Fig. 8. Number of migrations per active PM per day, as a function of the ratio
of secure PMs (pcrit = pcust = pcap = 1, njob = 20000 nten = 100)

execution time of RE-OPTIMIZE stays below 0.4 seconds. Thus
it can be efficiently used with practical problem sizes.

E. Migrations

Finally, we analyze the number of migrations caused by the
RE-OPTIMIZE algorithm. This is important because too many
migrations could lead to performance degradation or could
even make the system unstable [26]. As shown in Fig. 8, the
average number of migrations per active PM is less than 12 per
day. This is a reassuringly low number that does not threaten
the performance or stability of the system.

The pattern shown by Fig. 8 also gives some interesting
insight. When there are no secure PMs, there are very few con-
solidation opportunities, so that also the number of migrations
is very low. As secure PMs emerge, they lead to a significant
increase in the number of consolidation opportunities (the
positive effects of which we have already seen in previous
plots), which in turn results in more migrations. When the ratio
of secure PMs is already high, adding even more secure PMs
does not lead to more consolidation opportunities, so we could
expect a plateau in the number of migrations. As can be seen in
Fig. 8, there is a decline in migrations instead. This is probably
due to a secondary effect: when the number of secure PMs is
high, most jobs are already placed by PROCESS REQUEST on
a secure PM that they share with other tenants’ components,
so that RE-OPTIMIZE will rarely find a situation where the
components from two non-secure PMs can be unified on a
secure PM by means of migrations.

VIII. CONCLUSIONS AND FUTURE WORK

We demonstrated that it is feasible to express data
protection-aware deployment of cloud services as a single
optimization problem. This problem considered a multi-tenant
virtualized cloud system from software components down
to the physical infrastructure, taking into account capacity
constraints, data protection requirements, and the availability
of secure hardware. Based on this problem, we introduced
appropriate heuristics that allow efficiently carrying out com-
ponent instantiation and deployments in an optimized way.

The SaaS case study and the empiric evaluation on a real-
world workload led to the following observations:
• The suggested approach managed to optimize utilization

while satisfying the data protection requirements.
• Resource usage followed the demand closely, leading to

continuously high overall utilization.
• With 20% of the PMs offering secure enclaves, energy

consumption could be reduced by up to 47.5%.
• The relative cost reduction is especially high if the

average number of components per tenant is not too large.
• The proposed algorithms are very fast, with execution

time below 0.4 second in each tested case.
• The number of migrations generated by the proposed

approach is below 12 migrations per PM per day.
Based on these results, the proposed approach is appropriate
for practical use, offering reduced costs for cloud providers
and reduced risks for cloud tenants.

Our future work will include the extension of this work with
other security mechanisms. Furthermore, we plan to evaluate
our methods in a more realistic environment, i.e., within an
existing cloud simulator and/or a real deployment.

While this paper focused on the theoretical possibilities and
the expected benefits of secure enclave based data protection
assurance, it is obviously still a long way until the practical
implementation of such a scheme. Important technical chal-
lenges include, e.g., the definition of appropriate interfaces for
tenants to specify their data protection requirement and the de-
velopment of virtualization middleware capable of exploiting
secure hardware enclaves.

ACKNOWLEDGMENTS

This work received funding from the European Commu-
nity’s 7th Framework Programme (FP7/2007-2013) under
grant 610802 (CloudWave), the European Union’s Horizon
2020 research and innovation programme under grant 731678
(RestAssured), and the German Research Foundation under
Priority Programme SPP1593: Design For Future - Managed
Software Evolution, grant PO 607/3-2 (iObserve).

REFERENCES

[1] Networked European Software and Services Initiative, “Security
and privacy: From the perspective of software, services, cloud
and data,” http://www.nessi-europe.eu/Files/Private/NESSI Security
Privacy White Paper issue 1.pdf, 2016.

[2] A. Lefray, E. Caron, J. Rouzaud-Cornabas, and C. Toinard,
“Microarchitecture-aware virtual machine placement under information
leakage constraints,” in 8th IEEE International Conference on Cloud
Computing, CLOUD 2015, 2015, pp. 588–595.

[3] C. Modi, D. Patel, B. Borisaniya, A. Patel, and M. Rajarajan, “A survey
on security issues and solutions at different layers of cloud computing,”
The Journal of Supercomputing, vol. 63, no. 2, pp. 561–592, 2013.

[4] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, 2013.

[5] Z. A. Mann, “Allocation of virtual machines in cloud data centers
– a survey of problem models and optimization algorithms,” ACM
Computing Surveys, vol. 48, no. 1, 2015.

[6] ——, “Interplay of virtual machine selection and virtual machine
placement,” in Proceedings of the 5th European Conference on Service-
Oriented and Cloud Computing, 2016, pp. 137–151.

[7] F. L. Pires and B. Baran, “A virtual machine placement taxonomy,” in
Proceedings of the 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2015, pp. 159–168.

[8] M. R. Chowdhury, M. R. Mahmud, and R. M. Rahman, “Study and
performance analysis of various VM placement strategies,” in 16th
IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, 2015.

[9] P. Svärd, W. Li, E. Wadbro, J. Tordsson, and E. Elmroth, “Continuous
datacenter consolidation,” in IEEE 7th International Conference on
Cloud Computing Technology and Science, 2015, pp. 387–396.

[10] W. Li, P. Svärd, J. Tordsson, and E. Elmroth, “Cost-optimal cloud service
placement under dynamic pricing schemes,” in Proceedings of the 6th
IEEE/ACM International Conference on Utility and Cloud Computing,
2013, pp. 187–194.

[11] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth, “A virtual
machine re-packing approach to the horizontal vs. vertical elasticity
trade-off for cloud autoscaling,” in Proceedings of the 2013 ACM Cloud
and Autonomic Computing Conference, 2013, article nr. 6.

[12] P. Massonet, J. Luna, A. Pannetrat, and R. Trapero, “Idea: Optimising
multi-cloud deployments with security controls as constraints,” in En-
gineering Secure Software and Systems - 7th International Symposium.
Springer, 2015, pp. 102–110.

[13] J. L. Garcia, T. Vateva-Gurova, N. Suri, M. Rak, and L. Liccardo,
“Negotiating and brokering cloud resources based on security level
agreements,” in Proceedings of the 3rd International Conference on
Cloud Computing and Services Science, 2013, pp. 533–541.

[14] E. Caron and J. Rouzaud-Cornabas, “Improving users’ isolation in
IaaS: Virtual machine placement with security constraints,” in IEEE 7th
International Conference on Cloud Computing, 2014, pp. 64–71.

[15] S. Shetty, X. Yuchi, and M. Song, “Security-aware virtual machine place-
ment in cloud data center,” in Moving Target Defense for Distributed
Systems. Springer, 2016, pp. 13–24.

[16] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variability
modeling to support customization and deployment of multi-tenant-
aware Software as a Service applications,” in Proceedings of the 2009
ICSE Workshop on Principles of Engineering Service Oriented Systems
(PESOS’09), 2009, pp. 18–25.

[17] D. Bartók and Z. A. Mann, “A branch-and-bound approach to virtual
machine placement,” in Proceedings of the 3rd HPI Cloud Symposium
“Operating the Cloud”, 2015, pp. 49–63.

[18] Z. A. Mann, “Approximability of virtual machine allocation: much
harder than bin packing,” in Proc. 9th Hungarian-Japanese Symposium
on Discrete Mathematics and Its Applications, 2015, pp. 21–30.

[19] ——, “Rigorous results on the effectiveness of some heuristics for
the consolidation of virtual machines in a cloud data center,” Future
Generation Computer Systems, vol. 51, pp. 1–6, 2015.

[20] R. Heinrich, K. Rostami, and R. Reussner, “The CoCoME platform
for collaborative empirical research on information system evolution,”
Karlsruhe Reports in Informatics, Tech. Rep., 2016.

[21] HP, “Power efficiency and power management in HP ProLiant servers,”
http://h10032.www1.hp.com/ctg/Manual/c03161908.pdf, 2012.

[22] Y. Zhou, Y. Zhang, H. Liu, N. Xiong, and A. V. Vasilakos, “A bare-
metal and asymmetric partitioning approach to client virtualization,”
IEEE Transactions on Services Computing, vol. 7, no. 1, pp. 40–53,
2014.

[23] C. R. Chang, J. J. Wu, and P. Liu, “An empirical study on memory
sharing of virtual machines for server consolidation,” in IEEE 9th
International Symposium on Parallel and Distributed Processing with
Applications, 2011, pp. 244–249.

[24] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, and A. Kem-
per, “An integrated approach to resource pool management: Policies,
efficiency and quality metrics,” in IEEE International Conference on
Dependable Systems and Networks, 2008, pp. 326–335.

[25] Y. Tan, F. Wu, Q. Wu, and X. Liao, “Resource stealing: a resource
multiplexing method for mix workloads in cloud system,” The Journal
of Supercomputing, pp. doi:10.1007/s11 227–015–1609–3, 2016.

[26] U. Deshpande and K. Keahey, “Traffic-sensitive live migration of
virtual machines,” in Proceedings of the 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2015, pp. 51–60.

