
Joint Optimization of Scaling and Placement of
Virtual Network Services

Published in: Proc. 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 365-370, 2017

Sevil Dräxler, Holger Karl
Paderborn University, Paderborn, Germany

Zoltán Ádám Mann
University of Duisburg-Essen, Essen, Germany

Abstract—The management of complex network services re-
quires flexible and efficient service provisioning as well as
optimized handling of continuous changes in the workload
of the services. To adapt to changes in the demand, service
components need to be replicated (scaling) and allocated to
physical resources (placement) dynamically. In this paper, we
propose a fully automated approach to the joint optimization
problem of scaling and placement, enabling quick reaction to
changes. We formalize the problem, analyze its complexity, and
develop two algorithms to solve it. Empirical results show the
applicability and effectiveness of the proposed approach.

I. INTRODUCTION

Large-scale cloud and data center networks are typically
hosting several network services (e.g., video streaming) com-
posed of different (virtualized) components, serving a contin-
uously changing demand. For managing these services, fast,
flexible, and automatic deployment and scaling mechanisms
are required, which has led to concepts like network function
virtualization [1]. Such technologies provide the basic mech-
anisms to flexibly adapt to changing demands; in particular,
(i) services can be scaled by adding or removing instances
of service components, (ii) resource allocation of service
components can be modified, and (iii) network flows between
the service components can be re-routed.

Having so many degrees of freedom also means an enor-
mous search space so that finding the best adaptation requires a
complex strategy. Moreover, trade-offs between the conflicting
goals can be highly non-trivial, for example: placing a data
processing component on a node with limited resources near
the source (e.g., a service component generating data flows
or service users generating requests), thus minimizing latency,
versus placing it on a more powerful node further away in the
network, thus minimizing processing time.

Given the complexity of this optimization problem and the
pace of the changes in demand, automation is indispensable.
Existing solutions typically focus on a partial solution, e.g.,
scaling without placement, or placement without scaling.

We argue that a more comprehensive approach is necessary.
In our proposed solution, each service is described by a service
template, containing information about the components of the
service, the interconnections among them, and their resource
demands. Both the resource demands and the outgoing data
rates of a component are specified as functions of the incoming

data rates. These functions can be specified by the service
developers or determined using service profiling methods [2].
Service developers can focus on building services from com-
ponents, without having to worry about the instantiation and
placement of the components.

Our optimization approach takes care of the rest: based on
the location and current data rate of the sources, the templates
are scaled by replicating service components as necessary, the
placement of components on physical nodes is determined,
and data flows are routed along network paths. Node and link
capacity constraints are taken into account and the solution is
optimized along multiple objectives, including minimization
of resource usage, latency, and deployment adaptation costs.

In this paper, we formalize the template embedding process
as a joint optimization problem for scaling and placing service
templates, where demands of service components are deter-
mined as a function of the incoming data rate to each instance.
We present two algorithms for solving the template embedding
problem, one based on mixed integer programming, the other a
custom heuristic, and evaluate their strengths and weaknesses.

With the proposed approach, service developers obtain a
flexible way to define services on a high level of abstraction
while providers obtain powerful methods to optimize the
scaling and placement of multiple services in a single step,
fully automatically.

II. PREVIOUS WORK

Similar to the virtual network embedding (VNE) prob-
lem [3], template embedding deals with mapping virtual nodes
and virtual links of a graph into another graph. Unlike static
VNE solutions, in this paper we also deal with optimizing
already embedded templates, besides the initial embedding. In
addition to relocating the embedded nodes and links, presented
in dynamic VNE solutions, our approach can also determine
and modify the structure of the graph to be embedded by
adding/removing nodes and links.

This problem has recently gained importance also in the
field of Network Function Virtualization (NFV), where ser-
vices composed of multiple virtual network functions are
mapped into the network. Several solutions [4], [5], [6] have
been proposed for this problem. In contrast to existing so-
lutions, our approach can be used for initial placement as

well as adapting existing placements. Moreover, our approach
determines both the structure of the service and its mapping to
the network in one single step, aiming for a global optimum.

Keller et al. [7] formulate the template embedding problem
similar to our approach. Our assumptions and terminology are
partly based on their work, but there are important differences
that make our approach stronger and more flexible than their
solution. Their templates describe strict scaling restrictions
on components; e.g., the front-end server of an application
needs exactly m instances of the back-end server. The number
of application users then determines the number of instances
required for each component, based on the scaling restrictions.
We determine the number of required instances for each
component based on the data rate (e.g., requests or bits per
second) from different sources on different network nodes,
without scaling restriction, providing a more fine-grained
control. Moreover, they assign pre-defined resource demands
to components. We determine the demands during the template
embedding process as a function of the input data rate. Finally,
we use a more sophisticated multi-objective optimization
approach where different metrics are considered, providing a
more realistic model for optimizing virtual network services.

Another related area is the allocation of virtual machines to
physical machines in cloud data centers. Scaling and placing
instances within capacity constraints are also typical features
of such problem formulations [8]; however, communication
among virtual machines is typically not taken into account
or considered only in a rudimentary way [9], [10], [11],
without including routing decisions. Moreover, our approach
of specifying resource consumption as a function of input data
rates allows a much more realistic demand modeling than the
constant resource needs assumed by existing approaches.

We do not impose any limitation on the type of compo-
nents used. Therefore, our solution is applicable in different
contexts, e.g., NFV, (distributed) cloud computing, and data
center network management.

III. PROBLEM MODEL

In this section, we formalize our model and define the
problem we are tackling. Our model uses three different graphs
for representing the generic service structure (template), a
concrete and deployable instantiation of the service (overlay),
and the actual network (substrate network). We use different
names and notations to distinguish among these graphs.

Informally, the problem we are addressing is as follows:
given a set of services with their templates and sources, we
want to optimally embed the services into the network.

A. Substrate Network

We model the substrate network as a directed graph
Gsub=(V,L). Each node v ∈ V is associated with CPU
and memory capacities, capcpu(v) and capmem(v)1. We assume
every node has forwarding capabilities and can forward traffic
to its neighboring nodes.2 Each link l ∈ L is associated with

1This can be easily extended to other resource types.
2Capacities can be 0, e.g., to represent conventional switches.

a maximum data rate b(l) and a delay d(l). For each node
v, we assume its internal communications can be done with
unlimited data rate and negligible delay.

B. Templates

The substrate network hosts a set T of network services. We
define the structure of each service T ∈ T using a template,
which is a directed acyclic graph Gtmpl(T)=(CT , AT). We re-
fer to the nodes and edges of the template graph as components
and arcs, respectively. They define the types of components
required in the service and specify the way they should be
connected to each other to deliver the desired service. Fig. 1(a)
shows an example template.

A component j ∈ CT has a set In(j) of inputs and a set
Out(j) of outputs. Its resource consumption depends on data
rates of the flows entering the component. We characterize
this using a pair of functions pj ,mj : R|In(j)|≥0 → R≥0, where
pj is the CPU load and mj is the required memory size of
component j. These functions should typically account for
the data rate of the flows entering the component as well as
a fixed consumption value at idle times. Data rates of the
outputs are determined as a function of data rates of the inputs
specified as rj : R|In(j)|≥0 → R|Out(j)|

≥0 . Fig. 1(b) shows examples
for functions pj ,mj , rj that define the resource demands and
output data rates of an example component. Each arc in AT

connects an output of a component to an input of another
component.

Source components are special components in the template:
they have no inputs, a single output with unspecified data rate,
and zero resource consumption.

C. Sources and Overlays

A specific, deployable instantiation of a service can be
derived by scaling its template. Depending on data rates of
the service flows and the locations in the network where the
flows start, different numbers of instances for each service
component might be required. To model this, for each service
T , we define a set of sources S(T). The members of S(T)
are tuples of the form (v, j, λ), where v ∈ V is a node of the
substrate network, j ∈ CT is a source component, and λ ∈ R+

is a data rate. Such a tuple means that an instance of source
component j generates a data or request flow from v with rate
λ. Sources may represent populations of users, sensors, or any
other component that can generate network flows.

An overlay is the outcome of scaling the template based
on the location and data rate of its sources. An overlay OL
stemming from template T is described by a directed acyclic
graph GOL(T)=(IOL, EOL). Each component instance i ∈ IOL
corresponds to a component c(i) ∈ CT of the template. To
be able to create the required number of instances for each
component, we assume the components are stateless or a
state management system is in place to handle the state upon
adding or removing instances. Each i ∈ IOL has the same
characteristics (inputs, outputs, resource consumption) as c(i).
Moreover, if there is an edge from an output of an instance i1
to an input of instance i2 in the overlay, then there must be a

A
B

D

C
S

(a)

λ1

λ2

2∙λ1pj: 3∙λ1+λ2+1

mj: λ1+2∙λ2+5
0.5∙λ2

(b)

1

23

4

56

7

8

9

0

S1

S2

(c)

A1

B1

D1

C1

A2

B3

D2

B2
S1

S2

(d)

Fig. 1. Some examples: (a) a template, (b) a component, (c) a substrate
network with bi-directional links, including two sources for the template, and
(d) a corresponding overlay

corresponding arc from the corresponding output of c(i1) to
the corresponding input of c(i2) in the template.

Fig. 1(d) shows an example overlay corresponding to the
template in Fig. 1(a). An overlay might include multiple
instances of a specific template component: e.g., B1, B2, and
B3 all correspond to component B. An output of an instance
can be connected to the input of multiple instances of the same
component, like the output of A1 is connected to the inputs
of B1 and B2. In a case like that, B1 and B2 share the data
rate calculated for the connection between components A and
B. Similarly, outputs of multiple instances in the overlay can
be connected to the input of the same instance, like the input
of C1 is connected to the output of B1, B2, and B3, in which
case the input data rate for C1 is the sum of the output data
rates of B1, B2, and B3.

D. Mapping on the Substrate Network

Each overlay GOL(T) must be mapped to the substrate
network by a feasible mapping PT . We define the mapping
as a pair of functions: PT =

(
P

(I)
T , P

(E)
T

)
.

P
(I)
T : IOL → V maps each instance in the overlay to a

node in the substrate network. We assume that two instances
of the same component cannot be mapped to the same node,
as in this case it would be more efficient to replace the two
instances by a single instance and thus save the idle resource
consumption of one instance.
P

(E)
T : EOL → F maps each edge in the overlay to a flow

in the substrate network; F is the set of possible flows in
Gsub. We assume the flows are splittable, i.e., can be routed
over multiple paths between the corresponding endpoints in
the substrate network.

If e ∈ EOL is an edge from an instance i1 to an instance
i2, then P (E)

T (e) must be a flow with start node P (I)
T (i1) and

end node P (I)
T (i2). Moreover, P (I)

T must map an instance of
source component j to node v if and only if ∃(v, j, λ) ∈ S(T).

The binding of instances of source components to sources
determines the outgoing data rate of these instances. As the
overlay graphs are acyclic, the data rate λ(e) on each further
overlay edge e can be determined based on the input data
rates and the rj functions of the underlying components,
considering the instances in a topological order. The data rates,
in turn, determine the resource demands of the instances.

E. Objectives
The system state consists of the overlays and their mapping

on the substrate network, which can be changed by our
template embedding algorithm.

A valid system state must respect all capacity constraints:
for each node v, the total resource needs of the instances
mapped to v must be within its capacity (for both CPU and
memory), and for each link l, the sum of the flows going
through l must be within its maximum data rate. However, it
is also possible that some of those constraints are violated in a
given system state: for example, a valid system state (i.e., one
without any violations) may become invalid because the data
rate of a source has increased, because of a temporary peak in
resource needs, or a failure in the substrate network. Therefore,
given a current system state σ, our primary objective is to find
a new state σ′, in which the number of constraint violations
is minimal (ideally, zero). For this, we assume violating node
and link capacity constraints are equally undesired.

There are a number of further, secondary objectives, which
can be used as tie-breaker to choose from system states that
have the same number of constraint violations:
• Total delay of all edges across all overlays
• Number of instance addition/removal operations required

to transition from σ to σ′

• Maximum of amounts of capacity constraint violations,
for each resource type (CPU, memory, data rate)

• Total resource consumption of all instances across all
overlays, for each resource type (CPU, memory, data rate)

Higher values for these metrics result in higher costs for the
system or in lower customer satisfaction, so our objective
is to minimize these values. Therefore, our aim is to select
a new state σ′ from the set of states with minimal number
of constraint violations that is Pareto-optimal with respect to
these secondary metrics.

F. Complexity
Theorem 1. For an instance of the Template Embedding
problem as defined in this section, deciding whether a solution
with no violations exists is NP-complete in the strong sense.

It is clear that the problem is in NP: a possible witness
for the positive answer is a solution – i.e., a set of overlays
and their embedding into the substrate network – with 0
violations. The witness has polynomial size and can be verified
in polynomial time wrt. to the input size. To establish NP-
hardness, we have used a reduction from the Set Covering
problem to the Template Embedding problem. We omit the
details of this proof because of space limitations.

Due to the complexity of the problem, we can neither
expect a polynomial or even pseudo-polynomial algorithm
for solving the problem exactly nor a fully polynomial-
time approximation scheme, under standard assumptions of
complexity theory.

IV. SOLUTION

We solve the template embedding problem using two ap-
proaches: using mixed integer programming and a heuristic

TABLE I

Name Domain Definition

xj,v {0, 1} 1 iff an instance of j∈C is mapped to node v∈V
ya,v,v′ R≥0 If a∈AT is an arc from an output of j∈CT to an input

of j′∈CT , an instance of j is mapped on v∈V , and
an instance of j′ is mapped on v′∈V , then ya,v,v′ is
data rate of the flow from v to v′; otherwise it is 0

za,v,v′,lR≥0 If a∈AT is an arc from an output of j∈CT to an input
of j′∈CT , an instance of j is mapped on v∈V , and
an instance of j′ is mapped on v′∈V , then za,v,v′,l
is data rate of the flow from v to v′ that goes through
link l∈L; otherwise it is 0

Λj,v R|In(j)|≥0 Vector of data rates on the inputs of the instance of
j∈CT on node v∈V , or an all-zero vector if no such
instance exists on v

Λ′j,v R|Out(j)|
≥0 Vector of data rates on the outputs of the instance of

j∈CT on node v∈V , or an all-zero vector if no such
instance exists on v

%j,v R≥0 CPU requirement of the instance of j∈CT on node
v∈V , or zero if no such instance is mapped on v

µj,v R≥0 Memory requirement of the instance of component
j∈CT on node v∈V , or zero if no such instance exists
on v

ωv,cpu {0, 1} 1 iff the CPU capacity of node v∈V is exceeded
ωv,mem {0, 1} 1 iff the memory capacity of node v∈V is exceeded
ωl {0, 1} 1 iff maximum data rate of link l∈L is exceeded
ψcpu R≥0 Maximum CPU over-subscription over all nodes
ψmem R≥0 Maximum memory over-subscription over all nodes
ψdr R≥0 Maximum capacity over-subscription over all links
ζa,v,v′,l {0, 1} 1 iff za,v,v′,l > 0
δj,v {0, 1} 1 iff xj,v 6= x∗j,v

algorithm. In this section, we give an overview of these
approaches.

A. Mixed Integer Programming Approach

Based on the assumption that two instances of the same
component cannot be mapped to a node, instances can be
identified by the corresponding component and the hosting
node. This is the basis for our choice of variables, explained
in more detail in Table I.

C=
⋃

T∈T CT is the set of all components, A=
⋃

T∈T AT

the set of all arcs, and S=
⋃

T∈T S(T) the set of all sources
across all services. M , M1, and M2 denote sufficiently large
constants. (Λj,v)k denotes the kth component of the vector
Λj,v . 0 denotes a zero vector of appropriate length.

The problem inputs are the substrate network, the set of
service templates, and the set of sources. Additionally, infor-
mation about existing instances should be taken into account:
x∗j,v(∀j∈C, v∈V) is a constant given as part of the problem
input. If there is a previously mapped instance of j on node
v in the network, x∗j,v is 1, otherwise it is 0.

Using the following sets of constraints, we enforce the
required rules to optimize the template embedding process.

a) Mapping consistency rules:

∀(v, j, λ) ∈ S : xj,v = 1 (1)

∀(v, j, λ) ∈ S : Λ′j,v = λ (2)

∀j ∈ C, ∀v ∈ V, ∀k ∈ [1, |In(j)|] : (Λj,v)k ≤M · xj,v (3)

∀j ∈ C, ∀v ∈ V, ∀k ∈ [1, |Out(j)|] : (Λ′j,v)k ≤M · xj,v (4)

∀j ∈ C, ∀v ∈ V : xj,v − x∗j,v ≤ δj,v (5)

∀j ∈ C, ∀v ∈ V : x∗j,v − xj,v ≤ δj,v (6)

b) Flow and data rate rules:

∀j ∈ C, j not a source component, ∀v ∈ V :

Λ′j,v = rj(Λj,v)− (1− xj,v) · rj(0) (7)

∀j ∈ C, ∀v ∈ V, ∀k ∈ [1, |In(j)|] :

(Λj,v)k =
∑

a ends in input k of j,v′∈V
ya,v′,v (8)

∀j ∈ C, ∀v ∈ V, ∀k ∈ [1, |Out(j)|] :

(Λ′j,v)k =
∑

a starts in output k of j,v′∈V
ya,v,v′ (9)

∀a ∈ A, ∀v, v1, v2 ∈ V :∑
vv′∈L

za,v1,v2,vv′ −
∑

v′v∈L
za,v1,v2,v′v =

=


0 if v 6= v1 and v 6= v2
ya,v1,v2 if v = v1 and v1 6= v2
0 if v = v1 = v2

(10)

∀a ∈ A, ∀v, v′ ∈ V, ∀l ∈ L : za,v,v′,l ≤M · ζa,v,v′,l (11)

c) Calculation of resource consumption:

∀j ∈ C, ∀v ∈ V : %j,v = pj(Λj,v)− (1− xj,v) · pj(0) (12)
∀j ∈ C, ∀v ∈ V : µj,v = mj(Λj,v)− (1− xj,v) ·mj(0) (13)

d) Capacity constraints:

∀v ∈ V :
∑
j∈C

%j,v ≤ capcpu(v) +M · ωv,cpu (14)

∀v ∈ V :
∑
j∈C

%j,v − capcpu(v) ≤ ψcpu (15)

∀v ∈ V :
∑
j∈C

µj,v ≤ capmem(v) +M · ωv,mem (16)

∀v ∈ V :
∑
j∈C

µj,v − capmem(v) ≤ ψmem (17)

∀l ∈ L :
∑

a∈A;v,v′∈V
za,v,v′,l ≤ b(l) +M · ωl (18)

∀l ∈ L :
∑

a∈A;v,v′∈V
za,v,v′,l − b(l) ≤ ψdr (19)

e) Objective function:

minimize M1 ·
(∑

v∈V
(ωv,cpu + ωv,mem) +

∑
l∈L

ωl

)
+M2 ·

(∑
a∈A

v,v′∈V
l∈L

(d(l) · ζa,v,v′,l) +
∑
j∈C
v∈V

δj,v

)

+ ψcpu + ψmem + ψdr +
∑
j∈C
v∈V

(%j,v + µj,v) +
∑
a∈A

v,v′∈V
l∈L

za,v,v′,l (20)

This can be used for initial embedding of service templates
as well as optimizing an existing embedding. In the first case,
the term

∑
j∈C,v∈V δj,v should be removed from the objective

function to ensure that the decision is not biased towards
embeddings with fewer instances.

If all functions pj , mj , and rj are linear, then we obtain
a mixed-integer linear program (MILP), which can be solved
by appropriate solvers.

B. Heuristic Approach

The heuristic shown in Algorithm 1 is not guaranteed to
find an optimal solution but is much faster than the mixed
integer programming approach. It also has the advantage that
it works for non-linear functions pj , mj , and rj , as well.

The algorithm starts by checking that each service has
a corresponding overlay and each overlay corresponds to a
service (lines 1–5). If templates have arrived or left since the
last invocation of the algorithm, the corresponding overlay is
created or removed at this point. Next, the mapping of the
sources is checked (lines 6–11): if a new source emerged, an
instance of the corresponding source component is created;
if the data rate of a source changed, the output data rate of
the corresponding source component instance is updated; if
a source disappeared, the corresponding source component
instance is removed. Finally, to propagate the changes of
the sources to the processing instances, we iterate over all
instances and ensure that the new output data rates, determined
by the new input data rates, are discharged correctly by out-
going flows (lines 12–24). For this, it is important to consider
the instances in topological order (according to the overlay) so
that when an instance is dealt with, its incoming flows have
already been updated. If a change in the outgoing flows is
necessary, then the INCREASE or DECREASE procedures are
called.

DECREASE removes as many edges as possible and when
this is not possible anymore, it reduces the next flow on each
link by the same factor to achieve the required reduction.
INCREASE first checks if new instances need to be created
to be consistent with the template, then tries to increase the
existing flows, and if this is not sufficient, creates further
instances and flows.

V. EVALUATION

First, we illustrate our approach on a small substrate net-
work of 10 nodes and 20 arcs (Fig. 1(c)) in which the CPU
and memory capacity of each node is 100. We consider a

Algorithm 1 Main procedure of the heuristic algorithm
1: if ∃GOL(T) with T 6∈ T then
2: remove GOL(T)

3: for all T ∈ T do
4: if @GOL(T) then
5: create empty overlay GOL(T)

6: for all (v, j, λ) ∈ S(T) do
7: if @i ∈ IOL with c(i) = j and P (I)

T (i) = v then
8: create i ∈ IOL with c(i) = j and P (I)

T (i) = v

9: set output data rate of i to λ
10: if ∃i ∈ IOL, where c(i) is a source component but

@(P
(I)
T (i), c(i), λ) ∈ S(T) for any λ then

11: remove i
12: for all i ∈ IOL in topological order do
13: if all input data rates of i are 0 then
14: remove i and go to next iteration
15: compute output data rates of i
16: for all output k of i do
17: Φ: set of flows currently leaving output k
18: λ: sum of the data rates of the flows in Φ
19: λ′: new data rate on output k
20: if λ′ < λ then
21: E : set of edges leaving output k
22: DECREASE(E ,λ− λ′)
23: else if λ′ > λ then
24: INCREASE(i,k,Φ,λ′ − λ)

Node 1

Capacity: 100

Used: 80

S

0

FW

17

DPI

37

AV

9

PC

17

8

8

44

(a) Initial
embedding

Node 1

Capacity: 100

Used: 100

S

0

FW

31

DPI

40.43

AV

9.86

PC

18.71

15

8.86

4.434.43

Node 3

Capacity: 100

Used: 50

DPI

29.57

AV

7.14

PC

13.29

3.073.07

6.14

(b) Result of increased
source data rate

Node 1

Capacity: 100

Used: 100

S

0

FW

31

DPI

40.43

AV

9.86

PC

18.71

15

8.86

4.434.43

Node 3

Capacity: 100

Used: 84

DPI

49

AV

12

PC

23

5.505.50

6.14

Node 9

Capacity: 100

Used: 100

S

0

FW

29

DPI

41.57

AV

10.14

PC

19.29

14

9.14

4.574.57

4.86

(c) Result of the emergence of a sec-
ond source

Fig. 2. Embedding of a template into an example substrate network, showing
CPU values (memory values omitted for readability) and overlay data rates

template consisting of a source (S), a firewall (FW), a deep
packet inspection (DPI), an anti-virus (AV), and a parental
control (PC) component. Initially, there is a single source in
node 1 with a moderate data rate. As a result, our MILP-based
algorithm3 deploys all components on node 1 (Fig. 2(a)).

Subsequently, data rate of the source increases. As a result,
the resource demand of the processing components of the
service increases so that they do not fit onto node 1 any-
more. Our algorithm automatically re-scales the service by
duplicating the DPI, AV, and PC components and places the
newly created instances on node 3 (Fig. 2(b)). Later on, a
second source emerges for the same service on node 9. The
algorithm decides to create new instances on node 9 to process
as much as possible of the traffic of the new source locally,
and the excess traffic from the new FW instance is routed to
the existing DPI, AV, and PC instances on node 3 because

3Solved using Gurobi Optimizer 7.0.1 (http://www.gurobi.com)

0

400

800

1200

1600

0

2000

4000

6000

8000

10000

1 7 13 19 25 31 37 43 49 55 61 67

To
ta

l C
P

U
 s

iz
e

 o
f

cr
e

at
e

d
 in

st
an

ce
s

To
ta

l d
at

a
ra

te
 o

f
so

u
rc

e
s

#Event
Data rate of sources CPU size (MILP) CPU size (heuristic)

Fig. 3. Temporal development of the demand and the allocated capacity in a
complex scenario

node 3 still has sufficient free capacity (Fig. 2(c)).
Already this small example shows the difficult trade-offs

that template embedding involves. Next, we show that our
approach is capable of handling also more complex scenarios.

We consider a substrate network with 20 nodes and 44 arcs4,
in which multiple templates are embedded5. Each template
corresponds to a virtual content delivery network for video
streaming, consisting of a streaming server, a DPI, a video
optimizer, and a cache. The number of concurrently embedded
templates varies from 0 to 4, the number of sources varies from
0 to 20. Fig. 3 shows how the total data rate of the sources (as
a metric of the demand) and the total CPU size of the created
instances (as a metric of the allocated processing capacity)
change through re-optimization after each event (an event is
the emergence or disappearance of a service, the emergence
or disappearance of a source, or the change of the data rate
of a source). As can be seen, the allocated capacity using the
heuristic and the MILP algorithms follow the demand very
closely, meaning that our algorithms are successful in scaling
the service in both directions.

Regarding total data rate and total latency of the overlay
edges, the MILP algorithm performs better than the heuristic
algorithm. This is because in the MILP algorithm, the optimal
location for all required instances can be determined at the
same time, based on the location of the sources, resulting in
shorter distances between the source and the instances. The
heuristic algorithm, however, needs to create instances one
by one, resulting in larger data rates traveling through larger
distances in the substrate network. In this scenario, to handle
the peak demand, a total of 127 instances are created using
the MILP algorithms, while the heuristic algorithm creates 261
instances. The corresponding plots have been omitted because
of space constraints.

Since the template embedding problem is NP-hard, scal-
ability of the MILP approach is limited. By increasing the
data rates of sources on this substrate network, the timeout
of 60 seconds we had set for our simulations is reached,

4Network instances from benchmarks for the Virtual Network Mapping
Problem (https://www.ac.tuwien.ac.at/files/resources/instances/vnmp)

5Templates based on examples from IETF’s Service Function Chaining Use
Cases in Mobile Networks (draft-ietf-sfc-use-case-mobility-07)

giving solutions with unacceptable optimality gaps. For bigger
substrate networks, the performance of the algorithm further
deteriorates, up to the point where it cannot be run anymore
because of memory problems. In contrast, the execution time
of the heuristic algorithm remains very low even for very large
substrate networks. For example, with 1000 nodes and 2530
arcs, the execution time is still below 20 milliseconds, suiting
industrial problem sizes as well.

VI. CONCLUSION

We have presented a fully automatic approach to scale and
place multiple virtual network services on a common substrate
network. Besides formally defining this NP-hard problem, we
developed two algorithms for it, an MILP-based one and a
custom constructive heuristic. Empiric tests have shown how
our approach finds a balance between conflicting requirements
and ensures that the allocated capacity quickly follows changes
in the demand. The MILP-based algorithm gives optimal or
near-optimal results for relatively small networks, whereas the
heuristic remains very fast for even the largest networks that
were tested. Overall, the tests gave evidence to the feasibility
of our approach, which makes it possible (i) for service
developers to specify services at a high level of abstraction and
(ii) for providers to quickly reoptimize the system state after
changes. To show the applicability of our solutions in NFV
context, we are working on integrating our solution approaches
into SONATA’s open-source orchestrator [12]. Our algorithms
can be added to the system as service-specific management
plugins, reading the required information from the virtual
network function descriptors used in SONATA.

ACKNOWLEDGMENT

This work has been performed in the context of the
SONATA project, funded by the European Commission under
Grant number 671517 through the Horizon 2020 and 5G-PPP
programs. This work is partially supported by the German
Research Foundation (DFG) within the Collaborative Research
Center On-The-Fly Computing (SFB 901) and the Interna-
tional Graduate School “Dynamic Intelligent Systems”.

The work of Z. Á. Mann was partially supported by
the Hungarian Scientific Research Fund (Grant Nr. OTKA
108947) and the European Union’s Horizon 2020 research and
innovation programme under grant 731678 (RestAssured).

REFERENCES

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2015.

[2] M. Peuster and H. Karl, “Understand Your Chains: Towards Performance
Profile-based Network Service Management,” in Proceeding of the Fifth
European Workshop on Software Defined Networks. IEEE, 2016.

[3] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual Network Embedding: A Survey,” IEEE Communications Sur-
veys & Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[4] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and Placing Chains
of Virtual Network Functions,” in IEEE 3rd International Conference
on Cloud Networking (CloudNet), 2014.

[5] M. Savi, M. Tornatore, and G. Verticale, “Impact of Processing Costs
on Service Chain Placement in Network Functions Virtualization,” in
IEEE 1st Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN), 2015.

[6] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and Evaluation of Algorithms for Mapping and
Scheduling of Virtual Network Functions,” in IEEE 1st Conference on
Network Softwarization (NetSoft), 2015.

[7] M. Keller, C. Robbert, and H. Karl, “Template Embedding: Using
Application Architecture to Allocate Resources in Distributed Clouds,”
in IEEE/ACM 7th International Conference on Utility and Cloud Com-
puting (UCC), 2014.

[8] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559–592, 2014.

[9] Z. A. Mann, “Allocation of virtual machines in cloud data centers
– a survey of problem models and optimization algorithms,” ACM
Computing Surveys, vol. 48, no. 1, 2015.

[10] D. M. Divakaran and M. Gurusamy, “Towards flexible guarantees in
clouds: Adaptive bandwidth allocation and pricing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 6, pp. 1754–1764,
2015.

[11] E. Ahvar, S. Ahvar, Z. A. Mann, N. Crespi, J. Garcia-Alfaro, and
R. Glitho, “CACEV: a cost and carbon emission-efficient virtual ma-
chine placement method for green distributed clouds,” in IEEE 13th
International Conference on Services Computing, 2016, pp. 275–282.

[12] “SONATA project,” http://sonata-nfv.eu, date accessed: 2017-01-30.

