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ABSTRACT
Data processing systems operate in increasingly dynamic environ-
ments, such as in cloud or edge computing. In such environments,
changes at run time can result in the dynamic appearance of data
protection vulnerabilities, i.e., configurations in which an attacker
could gain unauthorized access to confidential data. An autonomous
system can mitigate such vulnerabilities by means of automated
self-adaptations. If there are several data protection vulnerabil-
ities at the same time, the system has to decide which ones to
address first. In other areas of cybersecurity, risk-based approaches
have proven useful for prioritizing where to focus efforts for in-
creasing security. Traditionally, risk assessment is a manual and
time-consuming process. On the other hand, addressing run-time
risks requires timely decision-making, which in turn necessitates
automated risk assessment.

In this paper, we propose a mathematical model for quantifying
data protection risks at run time. This model accounts for the spe-
cific properties of data protection risks, such as the time it takes
to exploit a data protection vulnerability and the damage caused
by such exploitation. Using this risk quantification, our approach
can make, in an automated process, sound decisions on prioritizing
data protection vulnerabilities dynamically. Experimental results
show that our risk prioritization method leads to a reduction of up
to 15.8% in the damage caused by data protection vulnerabilities.
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systems; Vulnerability management.

KEYWORDS
risk assessment, data protection, vulnerability, risk prioritization,
self-adaptation

ACM Reference Format:
Sascha Sven Zmiewski, Jan Laufer, and Zoltán ÁdámMann. 2022. Automatic
online quantification and prioritization of data protection risks. In The 17th
International Conference on Availability, Reliability and Security (ARES 2022),
August 23–26, 2022, Vienna, Austria. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3538969.3539005

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES 2022, August 23–26, 2022, Vienna, Austria
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9670-7/22/08. . . $15.00
https://doi.org/10.1145/3538969.3539005

1 INTRODUCTION
An increasing number of software applications process personal
data, raising concerns about data protection [1, 18]. This is mir-
rored by recent data protection regulation, such as the General
Data Protection Regulation (GDPR) of the European Union (EU).
Data protection covers several aspects of security and privacy. In
particular, a key data protection requirement is that personal data
should only be accessible by authorized actors [26].

Software can be made reasonably secure by design for a known
and stable environment. However, increasingly often, the environ-
ment is subject to dynamic changes at run time [4]. Thus, a static
system configuration may not be able to ensure the continued satis-
faction of data protection requirements. For example, an application
running in the cloud may be migrated during run time from one
data center to another with different security properties, requiring
different data protection mechanisms of the application to be active.
To address this problem, previous work proposed RADAR, an ap-
proach using self-adaptation to detect and mitigate data protection
vulnerabilities automatically at run time [10].

While self-adaptation is a powerful method for the continued
assurance of data protection in dynamic environments, it also poses
new challenges. One such challenge is what to do if multiple data
protection vulnerabilities are detected simultaneously, and not all
of the detected data protection vulnerabilities can be mitigated
at the same time. In such a case, the identified data protection
vulnerabilities have to be prioritized, i.e., it has to be decided which
ones to mitigate first.

For prioritizing security issues, risk-based approaches have proven
useful [25]. Security management standards and best practices, such
as ISO 2700x, advocate continuous identification, assessment, and
handling of security risks [3]. This ensures that efforts to improve
security are put into the areas where this is the most beneficial.
Thus, quantifying the risk associated with different data protection
vulnerabilities could be a good basis for prioritizing them.

Traditionally, risk assessment is done by human experts in a
time-consuming process. In contrast, we need timely mitigation of
data protection vulnerabilities that arise at run time, before they can
be exploited by actual attacks. To allow timely mitigation, our aim
is to automatically assess the risk associated with data protection
vulnerabilities at run time as the vulnerabilities emerge.

In this paper, we propose an approach for automatically quantify-
ing the risks associated with data protection vulnerabilities arising
at run time. Our approach is based on a new mathematical model
that formalizes the key properties of data protection vulnerabilities:
the dependence of the caused damage on the type and amount of
the involved data and on the time that elapsed since the vulnerabil-
ity arose. This model allows us to automatically compute the risk
values of vulnerabilities, and thus to prioritize the vulnerabilities
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based on risk. We implement our approach as an extension to the
RADAR self-adaptive data protection system [10]. We investigate
two different methods for using the risk values to prioritize the
identified data protection vulnerabilities in RADAR. Controlled
experiments show the results of risk prioritization and the effect
of different parameters. In particular, prioritization can save up to
15.8% of the damage stemming from data protection vulnerabilities.

The rest of the paper is organized as follows. Section 2 explains
the background of our study. Section 3 describes our approach, and
Section 4 shows how our approach can be embedded into RADAR.
Section 5 evaluates our approach. Related work is described in
Section 6, and Section 7 concludes the paper.

2 PRELIMINARIES: THE RADAR APPROACH
The research presented in this paper is performed in the context
of RADAR, an approach for ensuring data protection in systems
that are exposed to changes at run time [10]. RADAR automatically
identifies threats to data protection at run time and determines
the best adaptations to keep data protected. RADAR serves as an
example system to motivate and validate our approach. However,
our approach could also be integrated into other systems that detect
and mitigate data protection vulnerabilities.

The elements of RADAR are shown in Fig. 1 and explained below.
Run-time model and meta-model: RADAR performs reason-

ing on a run-time model (box 2.5) representing the data-protection-
related aspects of the current configuration of the system and its
environment. The run-time model is kept up to date using moni-
toring. The meta-model (box 1.3) specifies which types of nodes
and edges can exist in the run-time model and which attributes the
nodes can have. The meta-model supports node types representing
for example data records and datasets as well as software compo-
nents and computing nodes. The meta-model provides a common
language for the run-time model and for other RADAR artefacts
(PCPs and adaptation rules – see below).

PCPs and PCP instances: A problematic configuration pattern
(PCP - box 1.1) describes a sub-structure which, if found in the
run-time model, means that there is a possibility of a data breach.
A PCP can represent a vulnerability stemming from one system
component or from the interplay of multiple components. A PCP
instance (box 2.2) is a specific instance of such a pattern found
in the run-time model. Multiple PCP instances can co-exist, even
multiple instances of the same PCP.

Adaptation rules and adaptations: Adaptation rules (box 1.2)
describe how the system may be adapted to mitigate PCPs. An
adaptation rule may involve adding or removing objects and rela-
tions as well as changing attribute values in the run-time model.
Multiple adaptation rules may correspond to a PCP. An adaptation
rule consists of the associated PCP, preconditions required for the
adaptation rule to be applicable, and the changes to be carried out.
If an adaptation rule is applicable, the adaptation (i.e., an instance
of the adaptation rule – box 2.3) can be applied by performing the
changes described by the rule.

Problematic configuration identification:Apattern-matching
algorithm (box 2.1) is used to detect PCP instances in the run-time
model. A subset of objects in the run-time model matches a PCP, if
objects, attribute values, and relations described in the PCP match

a respective counterpart in the run-time model, also accounting
for any prohibition of nodes, relations, or attribute values by the
PCP. The pattern-matching algorithm extends basic graph pattern
matching by supporting object types, inheritance, attributes, and
named relations.

Reconfiguration: If at least one PCP instance is detected in
the run-time model, RADAR searches for a way to reconfigure the
system so as to mitigate the PCP instance(s) (box 2.4). RADAR uses
an adaptation planning algorithm to identify the best adaptation.
The algorithm needs to take into account that there may be mul-
tiple PCP instances in the run-time model, there may be multiple
adaptations to mitigate a given PCP instance, and an adaptation
to mitigate a PCP instance may also mitigate or create other PCP
instances. A sequence of adaptations may be needed to mitigate all
PCP instances. In this sequence, the order of the adaptations may
be important because an adaptation may become applicable only
after another adaptation was carried out.

The algorithm implements a bounded backtrack search in the
space of possible run-time models reachable from the current run-
time model via sequences of adaptations. A search tree is con-
structed to reason about possible adaptation sequences. Each node
in the tree represents a possible run-time model, starting with the
current run-time model as the root node. A child node represents
the run-time model obtained from the run-time model of the parent
node through an adaptation. The search tree is built during the
search, by iteratively adding unexplored child nodes of the nodes
already visited. Different strategies for selecting the next node to
explore were evaluated [10]. Selecting the node with the lowest
number of PCP instances led to the best results. Thus, this strategy
is used in this work. The search stops if either the search tree has
been exhausted or a predefined termination criterion (time limit) is
met. Throughout the search, the algorithm keeps track of the best
solution (i.e., the one with the lowest number of PCP instances)
found so far and the path from the root node to the respective
solution. At the end, the sequence of adaptations leading to the best
found solution is carried out. PCP instances that could not be miti-
gated will be taken into account in the next adaptation cycle again,
together with any new PCP instances that arise in the meantime.

Searching for the best adaptation sequence can be time-consuming.
While RADAR is searching, an attacker could already exploit the
PCP instances. Therefore, the search is only allowed for a limited
time (10 seconds in [10]). RADAR tries to mitigate as many PCP
instances as possible in the given time frame. However, RADAR
is lacking the intelligence to know which PCP instances are more
important or more urgent than others. The aim of the present paper
is exactly to provide this intelligence.

3 PROPOSED APPROACH
The aim of our approach is to quantify the risk associated with data
protection vulnerabilities in a system. A data protection vulnerability
is a configuration of the system and its environment, in which an
attacker may gain unauthorized access to some confidential data.
Some examples for data protection vulnerabilities [16]:

• A database containing personal data is hosted in a virtual ma-
chine on a cloud platform, and the administrative interface
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Figure 1: Overview of the RADAR approach. The numbers in the boxes are used in the text to refer to the boxes

of the cloud platform uses a protocol vulnerable to known at-
tacks, potentially allowing an attacker to gain unauthorized
access to the data in the database.
• A database containing personal data is hosted in a virtual
machine on a cloud platform, and the settings of the sched-
uler used by the underlying infrastructure are vulnerable
to side-channel attacks, potentially allowing an attacker to
gain unauthorized access to the data in the database.
• A database containing personal data is accessible to an un-
trusted application, potentially allowing an attacker to gain
unauthorized access to the data in the database.

In the following, we formalize our attack model and present a
mathematical model to reason about potential attacks.

3.1 Attack model
A data protection vulnerability is a special kind of security vul-
nerability, with some typical properties. First, the damage caused
by an attack depends on the type of data (e.g., in a hospital, pa-
tients’ health data is more sensitive than inventory data) and on
the amount of data (the more data is stolen, the higher the damage).
Second, exploiting a data protection vulnerability takes time. This
includes time to detect the existence of the vulnerability, time to
prepare an attack, and time to steal each data item. The time for
stealing the whole data set depends on the size of the data set. Third,
once the attacker has stolen the data, the damage cannot be undone.

To account for these properties, Fig. 2 sketches our model of how
the caused damage changes with time. The model can be seen as
the impact of the cyber kill chain [29] on data protection. From the
moment that a vulnerability appears, it takes the attacker some time
to detect the vulnerability and then to prepare an exploit. The time
to detect the vulnerability and to prepare the exploit may be very
short if the vulnerability is easily detected / exploited, but it may
also be long for more intricate vulnerabilities. These preparatory
steps of the attacker do not cause damage. During the exploit, the
damage increases linearly with time, as proportionately more and
more data is stolen. When all data is stolen, the damage reaches its
maximum, and it stays at that level.

Our attack model is primarily aimed at modeling attacks against
the confidentiality of data. Other types of attacks, for example
against the availability of data (e.g., ransomware attacks) could

time

damage

vulnerability 
appears (t0)

exploit
starts

exploit 
complete

vulnerability 
is found

𝐷 = 𝑛 ∙ 𝛿X

𝑛 ∙ 𝑌

Figure 2: Damage caused by an attack

also follow a similar pattern, and could thus be amenable to similar
reasoning, but we leave this for future research.

Our approach is not to wait until an attack actually happens. As
soon as the vulnerability appears, the defender can start reasoning
about possible attacks to exploit the vulnerability, making it possible
to proactively mitigate the risk of such an attack. The defender can
use the general model of Fig. 2, but without knowing the exact
parameters (e.g., how long the attacker will need to detect the
vulnerability). Rather, the defender can perform a probabilistic
analysis, as described next, to reason about the risks.

3.2 Expected damage
Traditionally, risk is quantified in terms of probability and caused
damage [30]. For a vulnerability 𝑣 , let 𝑝𝑣 denote the probability with
which 𝑣 is exploited, leading to a security breach. Let 𝑑𝑣 denote
the damage that the security breach would cause. The risk value
of vulnerability 𝑣 is calculated as 𝑟𝑣 = 𝑝𝑣 · 𝑑𝑣 . We observe that,
in this traditional model of risk, 𝑟𝑣 is exactly the expected value of
the damage. This is because the damage is 𝑑𝑣 with probability 𝑝𝑣
and 0 with probability 1 − 𝑝𝑣 . Using this insight, we now devise
a mathematical model to quantify data protection risks. The used
notation is summarized in Table 1.

Let us consider a data protection vulnerability, i.e., a vulnerability
that potentially allows an attacker to gain access to a confidential
dataset containing 𝑛 items. The maximum damage that an attacker
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Table 1: Notation overview

Symbol Description

𝑣 A vulnerability
𝑛 Number of data items in the dataset
𝛿 Damage per leaked data item
𝐷 Maximum damage
𝑡0 Time when vulnerability appears
𝑋 Time to detect and start exploiting a vulnerability
𝑌 Time to steal one data item
𝑡 Time since a vulnerability appeared
𝑑𝑛 (𝑡) Damage caused after time 𝑡
𝑟𝑣 Expected damage in the next 𝑇 time
𝑛1, 𝑛2 Nearest 𝑛 values for which 𝑑𝑛 (𝑡) is known
𝛼 Weight of 𝑛1 in expressing 𝑛 as affine combination
𝑡1, 𝑡2 Nearest 𝑡 values for which 𝑑𝑛 (𝑡) is known
𝛽 Weight of 𝑡1 in expressing 𝑡 as affine combination
𝑓𝑋,𝑌 Joint probability distribution function of (𝑋,𝑌 )
𝑛min Lower limit of 𝑛 in preprocessing
𝑛max Upper limit of 𝑛 in preprocessing
Δ𝑛 Increment of 𝑛 in preprocessing
𝑇 Look-ahead time horizon
𝑡max Upper limit of 𝑡 in preprocessing
Δ𝑡 Increment of 𝑡 in preprocessing
𝑀 Number of samples for estimating expected value

can cause is 𝐷 = 𝑛 · 𝛿 , corresponding to the case when the attacker
manages to steal the whole dataset. Here, 𝛿 > 0 is a given constant,
corresponding to the damage caused by stealing one data item, and
thus defining how valuable the data in the given dataset is.

Let 𝑡0 denote the point in time when the vulnerability appears.
Let the random variable 𝑋 denote the time it takes an attacker
to start exploiting the vulnerability. (In Fig. 2, 𝑋 is the total time
for noticing the vulnerability and preparing the exploit.) Let the
random variable 𝑌 denote the time it takes the attacker, after the
exploit started, to steal one data item. Let 𝑡 denote the time that
elapsed since 𝑡0. The damage caused by the attacker during this
time is, as can be seen from Fig. 2:

𝑑𝑛 (𝑡) =


0 if 𝑡 < 𝑋
𝑡−𝑋
𝑌
· 𝛿 if 𝑋 ≤ 𝑡 < 𝑋 + 𝑛 · 𝑌

𝐷 if 𝑡 ≥ 𝑋 + 𝑛 · 𝑌
(1)

Note that, since 𝑋 and 𝑌 are random variables, so is 𝑑𝑛 (𝑡). The risk
value associated with the given vulnerability 𝑣 is computed as the
expected additional damage in the next period of time of length 𝑇 :

𝑟𝑣 = E[𝑑𝑛 (𝑡 +𝑇 ) − 𝑑𝑛 (𝑡)] = E[𝑑𝑛 (𝑡 +𝑇 )] − E[𝑑𝑛 (𝑡)] . (2)

By focusing on the expected damage in the next period of time,
we obtain the right metric for risk prioritization. In particular, we
disregard the already incurred damage, which is a sunken cost, and
thus should not influence the decision-making. We also disregard
damage that will be incurred in the far future because that damage
can be avoided regardless of how current risks are prioritized.

Algorithm 1: Preprocessing
1 for 𝑡 ← 0 to 𝑡max by Δ𝑡 do
2 for 𝑛 ← 𝑛min to 𝑛max by Δ𝑛 do
3 𝑆 ← 0
4 for𝑀 times do
5 pick random 𝑋,𝑌 values
6 calculate 𝑑𝑛 (𝑡) using (1)
7 𝑆 ← 𝑆 + 𝑑𝑛 (𝑡)
8 𝑑𝑛 (𝑡) ← 𝑆/𝑀

t0 200 400 600 800 1000

n 200
400

600
800

dn(t)

0

200

400

600

800

Figure 3: Example for the 𝑑𝑛 (𝑡) function

3.3 Numerical risk computation
Depending on the joint distribution of𝑋 and𝑌 , calculatingE[𝑑𝑛 (𝑡)]
can be difficult. To overcome this difficulty, we propose a numerical
approximation, using the average from a sufficiently large random
sample as an estimate of the expected value.

We approximate E[𝑑𝑛 (𝑡)] using Monte Carlo sampling for differ-
ent 𝑛 and 𝑡 values in a preprocessing step, as shown in Algorithm
1. For each considered pair of 𝑡 (line 1) and 𝑛 (line 2), 𝑀 random
values for 𝑋 and 𝑌 are sampled using the given distribution of
(𝑋,𝑌 ) (lines 4-5). For these values of 𝑋 and 𝑌 , 𝑑𝑛 (𝑡) is calculated
according to (1) (line 6). The average of the 𝑀 values for 𝑑𝑛 (𝑡) is
stored in 𝑑𝑛 (𝑡), as an estimate of E[𝑑𝑛 (𝑡)] (lines 3, 7, 8).

Fig. 3 shows an example. Here, 𝑋 and 𝑌 are independent, 𝑋 ∼
𝑈 (10, 100), and 𝑌 ∼ 𝑈 (0, 1). Further, 𝛿 = 1, 𝑡max = 1000, Δ𝑡 = 10,
𝑛min = 100, 𝑛max = 1000, Δ𝑛 = 100, and𝑀 = 5000.

After this preprocessing step,E[𝑑𝑛 (𝑡)] can be estimated for given
values of 𝑛 and 𝑡 as follows. The two nearest values of 𝑛 for which
𝑑𝑛 (𝑡) has been pre-calculated are:

𝑛1 =


𝑛min if 𝑛 ≤ 𝑛min
𝑛max − Δ𝑛 if 𝑛 ≥ 𝑛max
𝑛min +

⌊𝑛−𝑛min
Δ𝑛

⌋
Δ𝑛 otherwise

(3)

𝑛2 = 𝑛1 + Δ𝑛 (4)
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Algorithm 2: Quantifying a risk
1 Calculate 𝑛1 and 𝑛2 using (3)-(4)
2 Calculate 𝛼 using (7)
3 Calculate 𝑡1 and 𝑡2 using (5)-(6)
4 Calculate 𝛽 using (8)
5 Approximate E[𝑑𝑛 (𝑡)] using (9)
6 Repeat steps 3-5 for 𝑡 +𝑇 instead of 𝑡 to get E[𝑑𝑛 (𝑡 +𝑇 )]
7 Calculate 𝑟𝑣 using (2)

Similarly, the two nearest values of 𝑡 for which 𝑑𝑛 (𝑡) has been
pre-calculated are:

𝑡1 =


0 if 𝑡 ≤ 0
𝑡max − Δ𝑡 if 𝑡 ≥ 𝑡max⌊

𝑡
Δ𝑡

⌋
Δ𝑡 otherwise

(5)

𝑡2 = 𝑡1 + Δ𝑡 (6)

In addition, we choose

𝛼 =
𝑛2 − 𝑛
𝑛2 − 𝑛1

(7)

𝛽 =
𝑡2 − 𝑡
𝑡2 − 𝑡1

(8)

Since 𝑛2 > 𝑛1 and 𝑡2 > 𝑡1, 𝛼 and 𝛽 are well-defined, and we have
𝑛 = 𝛼 · 𝑛1 + (1 − 𝛼) · 𝑛2 and 𝑡 = 𝛽 · 𝑡1 + (1 − 𝛽) · 𝑡2. Using 𝛼 and 𝛽 ,
the following estimate can be computed:

E[𝑑𝑛 (𝑡)] ≈ 𝛼 ·
(
𝛽 · 𝑑𝑛1 (𝑡1) + (1 − 𝛽) · 𝑑𝑛1 (𝑡2)

)
+(1 − 𝛼)·

(
𝛽 · 𝑑𝑛2 (𝑡1) + (1 − 𝛽) · 𝑑𝑛2 (𝑡2)

) (9)

Algorithm 2 summarizes how the risk value 𝑟𝑣 can be computed
for a vulnerability 𝑣 . This procedure is carried out for each currently
existing vulnerability. Finally, vulnerabilities with larger 𝑟𝑣 values
are prioritized for mitigation.

A data protection vulnerability is characterized by a vulnerability
type and an involved dataset. The vulnerability type determines
how quickly an attacker might gain access to the data, i.e., the
distribution of 𝑋 and 𝑌 . The involved dataset determines the value
of the data, i.e., 𝛿 . These pieces of information (distribution of 𝑋
and 𝑌 , as well as 𝛿) are determined at design time by the involved
experts. On this basis, the 𝑑𝑛 (𝑡) functions can be computed for
all potential vulnerability types and datasets at design time using
Algorithm 1. At run time, the values of 𝑛 and 𝑡 become available1.
Thus, the specific values of 𝑑𝑛 (𝑡) can be computed, and risks can
be quantified using Algorithm 2. Note that run-time changes of 𝑛
or 𝑡 may lead to a new risk value for the same vulnerability.

4 EMBEDDING INTO RADAR
Our approach presented in the previous section is a generic tech-
nique for assessing data protection vulnerabilities in a system and
for deciding which ones to mitigate first to reduce the caused dam-
age. The mathematical model in combination with the presented
algorithms can be applied in different systems for data protection.
1At design time, Algorithm 1 only needs an estimate of the range from which 𝑛 and 𝑡
can take values (𝑡𝑚𝑎𝑥 , 𝑛𝑚𝑖𝑛 , 𝑛𝑚𝑎𝑥 )
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Figure 4: Design-time interaction between RADAR and our
approach

To evaluate our approach, we integrated it into RADAR, enabling
RADAR to prioritize data protection vulnerabilities based on the
associated risks. Yet, the approach remains independent of RADAR.

In RADAR, a data protection vulnerability is a PCP instance that
affects a “StoredDataSet” object of the run-time model (see also
Section 2). We extend RADAR’s meta-model with new attributes in
the class “StoredDataSet” to store the values of 𝑛 and 𝛿 . At design
time, the activities in Figure 4 are executed. After the design of
an initial run-time model, the values of 𝛿 and 𝑛 for each “Stored-
DataSet” object are defined. (The value of 𝑛 can change at run-time.)
Based on these values, preprocessing according to Algorithm 1 is
executed and the resulting values are stored for later use. At the
transition from design-time to the run-time phase the run-time
model is instantiated.

At run-time, an adaptation cycle is started if PCP instances are
detected. Whenever a PCP instance is found, its risk value is cal-
culated using Algorithm 2 and the tracked parameters 𝑛, 𝛿 , and 𝑡 ,
based on preprocessing (see Fig. 5).

In the Adaptation Planing Algorithm, RADAR searches for the
best adaptation, i.e., the adaptation that leads to the best system
configuration according to a given ordering relation. By default,
RADAR prefers system configurations with fewer vulnerabilities.
Let 𝑅 and 𝑅′ be two possible system configurations, where 𝑅 con-
tains vulnerabilities 𝑣1, 𝑣2, . . . , 𝑣𝑁 , and 𝑅′ contains vulnerabilities
𝑣 ′1, 𝑣

′
2, . . . , 𝑣

′
𝑁 ′ . RADAR considers 𝑅 better than 𝑅′ if and only if

𝑁 < 𝑁 ′. We call this ordering no prioritization, or NoPrio for short,
since all vulnerabilities are considered equal. The risk values allow
us to introduce two alternative risk-based prioritization methods.

The idea of local prioritization (LocalPrio) is to eliminate the
vulnerabilities with the highest risk value first, and then continuing
in descending order of risk value. Assume that 𝑟 (𝑣1) ≥ 𝑟 (𝑣2) ≥
. . . ≥ 𝑟 (𝑣𝑁 ) and 𝑟 (𝑣 ′1) ≥ 𝑟 (𝑣 ′2) ≥ . . . ≥ 𝑟 (𝑣 ′

𝑁 ′ ). If there is an index
1 ≤ 𝑗 ≤ min(𝑁, 𝑁 ′) such that 𝑟 (𝑣 𝑗 ) ≠ 𝑟 (𝑣 ′

𝑗
), then let 𝑗 be the

smallest such index. 𝑅 is better than 𝑅′ if and only if 𝑟 (𝑣 𝑗 ) < 𝑟 (𝑣 ′
𝑗
).

If there is no such index, then the NoPrio ordering decides.
The idea of global prioritization (GlobalPrio) is to minimize the

sum of the risk values of the vulnerabilities in the system configu-
ration. 𝑅 is better than 𝑅′ if and only if

∑𝑁
𝑖=1 𝑟 (𝑣𝑖 ) <

∑𝑁 ′
𝑖=1 𝑟 (𝑣 ′𝑖 ).

Finally, the best adaptation resulting from the Adaptation Plan-
ning Algorithm is executed and the next adaptation cycle starts.

We extended RADAR to keep track of vulnerabilities (see vul-
nerability lifelines in Fig. 5). During an adaptation cycle, RADAR
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Figure 5: Run-time interaction between RADAR and our approach

compares the detected vulnerabilities to the list of vulnerabilities
found in prior cycles. An unknown vulnerability is then added to
the list. An initial risk value is calculated when RADAR first de-
tects a vulnerability. If RADAR is unable to mitigate a vulnerability
during an adaptation cycle, the vulnerability is found in the next
cycle again, and its risk value is updated. Since 𝑡 has increased for
the given vulnerability, its new risk value will be usually different.

In the new, extended version of RADAR, the search algorithm
can be run with any of the three prioritization methods (NoPrio,
LocalPrio, GlobalPrio). Our implementation is publicly available2.

5 EVALUATION
5.1 Experimental setup
We experimentally evaluate the integration of our method into
RADAR and compare the three prioritization methods. For this, we
use a run-time model comprising 337 nodes, including 16 “Stored-
DataSet” objects. This initial run-time model was based on a project
partner’s real cloud system, which was multiplied 21 times around
a central “DataSubject” object [10]. This initial run-time model does
not contain any vulnerabilities.

In a cloud system, a database containing personal data of EU
citizens may be accessed by a software component, which processes
the data. Due to a resource allocation decision of the cloud provider,
the software component may be migrated from a server in the
EU to a server outside the EU. This may lead to the processing of
data of EU citizens outside the EU which is in general not allowed
by the GDPR [7]. This scenario is modeled by the vulnerability
type “OutsideEU” [10], shown in Fig. 6. This example shows that
our approach can also be applied to data protection vulnerabilities
beyond mere confidentiality (in this case, geolocation constraints).
Here, too, our attack model can be applied: the longer the software
component is outside the EU, the higher the risk that an attacker
can exploit it to get personal data outside the EU. This vulnerability
can be mitigated, for example, by moving the software component
back to a server in the EU or by stopping the data access. We inject
30 vulnerabilities of this type into the run-time model by local
modifications (changing attributes, removing or adding relations
between nodes). We chose the number of vulnerabilities such that
RADAR cannot mitigate them all in one adaptation cycle. Note

2https://git.uni-due.de/spsazmie/radar_prio

DB
EU

Software 
Component

Outside EU

Stored
Data Set

Data
Subject

stored in accesses DB

GDPR

belongs to

Figure 6: Example data protection vulnerability

that our approach is independent of the details of the PCPs, so we
can expect that other data protection vulnerabilities (like the ones
presented in [16]) would lead to similar results.

In some experiments, all vulnerabilities are injected at once.
In others, the injection of vulnerabilities occurs in two phases to
simulate the coexistence of older and newer vulnerabilities. First,
some vulnerabilities are injected into the initial run-time model and
detected by RADAR, but not yet mitigated. These simulate older
vulnerabilities, unmitigated from a previous adaptation cycle. The
remaining vulnerabilities are injected after a pause of 𝜏 = 10 sec, in
the next adaptation cycle. We call this group newer vulnerabilities.

After these injections, the run-time model is in a vulnerable
state, and RADAR is applied to it for one adaptation cycle. If a
vulnerability is mitigated in this adaptation cycle, we calculate the
damage the vulnerability caused and store this value. Vulnerabilities
that are not mitigated in this adaptation cycle are considered to be
mitigated in the next adaptation cycle, i.e., after 𝜏 time.

The experiments were run on a Fujitsu Celsius w550 worksta-
tion with Intel Xeon E3-1275v5 3.6GHz CPU and 64GB DDR4 mem-
ory. The machine was running Ubuntu 16.04 and Open-JDK 64-Bit
Server VM (build 11.0.2+9) as Java Virtual Machine.

For Algorithm 1, the following values were used: 𝑛𝑚𝑖𝑛 = Δ𝑛 =

10, 000, 𝑛𝑚𝑎𝑥 = 100, 000, 𝑡𝑚𝑎𝑥 = 100, Δ𝑡 = 1, 𝑀 = 5, 000, 𝑋 ∼
𝑈 (1, 10), 𝑌 ∼ 𝑈 (0, 0.001), and 𝑋 and 𝑌 are independent.

5.2 An exemplary scenario
In a first experiment, we show how RADAR prioritizes the miti-
gation of different vulnerabilities. We set 𝛿 = 1.0 for one half of
the datasets in the run-time model, and 𝛿 = 2.0 for the other half.
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(a) LocalPrio

(b) GlobalPrio

(c) NoPrio

Figure 7: Lifelines of vulnerabilities with different prioritiza-
tion methods

The assignment of the value to datasets is done randomly. We set
𝑛 = 20, 000 for all datasets. We then apply RADAR once with each
prioritization method. For each vulnerability, we record its 𝛿 , the
moment it is detected, and the moment it is mitigated.

The results are visualized in Fig. 7. Each plot displays a different
prioritization method. The horizontal axis displays the amount of
time the vulnerability existed. The bars starting further left belong
to older vulnerabilities, while those starting further right belong

to newer vulnerabilities. The vulnerabilities are grouped in the
diagrams according to the values of 𝛿 and 𝑡0.

Both LocalPrio (Fig. 7a) and GlobalPrio (Fig. 7b) lead to a quick
mitigation of all newer vulnerabilities with 𝛿 = 2.0. Obviously,
vulnerabilities with 𝛿 = 2.0 have a higher risk value and are thus
prioritized over vulnerabilities with 𝛿 = 1.0. Newer vulnerabilities
are prioritized over older ones. The older vulnerabilities are already
almost completely exploited, which results in lower potential dam-
age for the future and thus in a lower risk value than the newer
ones, which are associated with higher potential future damage3.

Both LocalPrio and GlobalPrio mitigate some newer vulnera-
bilities with 𝛿 = 1.0. Here, GlobalPrio is able to mitigate more
vulnerabilities than LocalPrio.

NoPrio (Fig. 7c) shows no pattern when mitigating the vulner-
abilities, as both newer and older vulnerabilities, as well as those
with higher and lower value of 𝛿 are equally selected for mitigation.

5.3 Statistical analysis
In the following experiments, we compare the amount of damage
for different methods of prioritization. We use the setup of the
previous experiment, but increase the higher 𝛿 to 100.0. We repeat
the experiment 100 times to convey more information about the
distribution of results.

Fig. 8 compares the results for the different prioritization meth-
ods in a boxplot. We group the vulnerabilities by 𝛿 and report the
total damage for these groups. In addition, the total damage for all
vulnerabilities is also shown. The jagged line between 5,000,000
and 20,000,000 shows a break in the values of the vertical axis, as
no damage values in this range were recorded and thus this range
was cut out to increase readability.

For vulnerabilities with 𝛿 = 100.0, both GlobalPrio and LocalPrio
lower the damage significantly compared to NoPrio. For vulnera-
bilities with 𝛿 = 1.0, it is not visible from the figure, but NoPrio
leads to lower damage than GlobalPrio and LocalPrio. However,
the total damage for all vulnerabilities is hardly influenced by the
vulnerabilities with 𝛿 = 1.0. The bottom line is that GlobalPrio and
LocalPrio lower the total damage significantly compared to NoPrio.
This is a direct consequence of prioritization: GlobalPrio and Local-
Prio focus on mitigating only vulnerabilities with 𝛿 = 100.0, while
NoPrio mitigates vulnerabilities with 𝛿 = 100.0 and 𝛿 = 1.0 alike.

There is no clear difference between the distributions of results
for LocalPrio and GlobalPrio. In general, the comparison criterion
for LocalPrio is more restricting than for GlobalPrio, since LocalPrio
requires to always mitigate the vulnerability with the highest risk
value first, whereas GlobalPrio allows a temporary relaxation of this
rule. This can lead to a larger search space for GlobalPrio, which
may be both advantageous (it is possible to find a better solution)
and disadvantageous (in a given amount of time, only a smaller
fraction of the search space can be searched). These two opposing
effects seem to be balanced.

3This holds true for the given values of the parameters. For other values, it is also
possible that older vulnerabilities are to be prioritized over newer ones. For example, if
the newer vulnerabilities are not yet expected to lead to damage in the next time period,
while older vulnerabilities already start to lead to damage, then older vulnerabilities
are prioritized.
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Figure 8: Results for 100 runs of the experiment

Figure 9: Effect of different values for 𝛿𝑏

5.4 Impact of 𝛿
To evaluate the impact of 𝛿 on the results, we fix the other pa-
rameters. All datasets have 𝑛 = 100,000, and all vulnerabilities are
injected at the same time. Half of the datasets are assigned 𝛿𝑠 = 1.0.
The other datasets are assigned 𝛿𝑏 , for which the values 1, 3, 10, 30,
100 are used. For each value of 𝛿𝑏 and each prioritization method,
the experiment is repeated 100 times and the median of the dam-
age is reported in Fig. 9. The results are normalized such that the
damage for NoPrio is 1. The horizontal axis uses logarithmic scale.

For 𝛿𝑏 = 𝛿𝑠 , the risk value of every vulnerability is equal. Thus,
the prioritization methods do not lead to notably different results.

For 𝛿𝑏 ≠ 𝛿𝑠 , prioritization leads to damage reduction. In this
case, different risk values occur and LocalPrio and GlobalPrio miti-
gate vulnerabilities with a high risk value first. Consequently, the
damage is lower than with NoPrio. As 𝛿𝑏 increases, the damage
reduction increases as well. This is because higher differences in 𝛿

make it increasingly important to prioritize vulnerabilities with a
high risk value, leading to a growing advantage for LocalPrio and
GlobalPrio over NoPrio. This advantage cannot grow beyond some
limit, since not all vulnerabilities with 𝛿𝑏 can be mitigated and even
the ones that are mitigated lead to some damage before mitigation.
Prioritization reduces the maximum damage up to 15.8%.

The results of LocalPrio and GlobalPrio are again nearly identical.

5.5 Impact of dataset size
In the next experiment, we set the size of half of the datasets to 𝑛𝑠 =
10,000 and the other half to𝑛𝑏 . We vary𝑛𝑏 from 10,000 to 100,000 by
steps of 10,000. We fix all other parameters uniformly: all datasets
have 𝛿 = 1.0, and all vulnerabilities are injected simultaneously.

For each value of 𝑛𝑏 and each prioritization method, we perform
the experiment 100 times. The median of the resulting damage is
reported in Fig. 10.

If 𝑛𝑏 = 𝑛𝑠 , the risk values of all vulnerabilities are equal, and
thus prioritization has no effect. As a result, all three prioritization
methods lead to the same amount of damage. In our setup, this
happens at 𝑛𝑏 = 10,000. When 𝑛𝑏 ≠ 𝑛𝑠 , the risk values of vulner-
abilities affecting datasets of different size are different, making
prioritization useful. Indeed, both LocalPrio and GlobalPrio lead to
better results than NoPrio. This difference in the results increases
with growing 𝑛𝑏 . This is because for relatively small values of 𝑛𝑏 ,
attackers can likely fully steal the datasets before the vulnerabilities
can be mitigated. However, as 𝑛𝑏 grows, it takes attackers longer
to fully steal the datasets, giving more possibilities to mitigation,
and thus making prioritization more important.

The damage increases for all three methods with an increasing
value of 𝑛𝑏 , since the datasets become more valuable. However,
the gradient of all three curves is decreasing. This is because of
our assumption that each vulnerability unmitigated in the current
adaptation cycle will be mitigated in the next adaptation cycle.
Thus, the probability that attackers can steal more data is limited
even if more data is available.

5.6 Impact of older vs. newer vulnerabilities
In the last experiment, we investigate the impact of the time for
which vulnerabilities exist. From the 30 vulnerabilities injected into
the run-time model, there are ⌊𝑞 · 30⌋ older vulnerabilities and
⌈(1 − 𝑞) · 30⌉ newer vulnerabilities for some 0 ≤ 𝑞 ≤ 1. We test
different values for 𝑞: 0, 0.25, 0.50, 0.75, 1. The other parameters are
set uniformly: we set 𝛿 = 1.0 and 𝑛 = 20,000 for all datasets.

For each value of 𝑞 and each prioritization method, we perform
the experiment 100 times. The median of the resulting damage is
reported in Fig. 11. For 𝑞 = 0 and 𝑞 = 1, all risk values are equal.
Thus, prioritization has no effect. But for 0 < 𝑞 < 1, there are older
and newer vulnerabilities, which have different risk values, making
prioritization useful. For the given parameters, older vulnerabilities
have lower risk value than newer vulnerabilities, because older vul-
nerabilities are already partially exploited before the mitigation can
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Figure 10: Effect of the value of 𝑛𝑏

Figure 11: Effect of the value of 𝑞

start, thus leaving less room for damage reduction. Consequently,
both LocalPrio and GlobalPrio mitigate newer vulnerabilities first,
which results in lower damage compared to NoPrio.

As the group of older vulnerabilities, which are already partially
exploited, gets larger, the damage increases. NoPrio does not differ-
entiate between older and newer vulnerabilities, and thus chooses
less newer vulnerabilities for mitigation. On the other hand, Local-
Prio and GlobalPrio give preference to newer vulnerabilities, thus
leading to a smaller increase in damage. Therefore, the advantage
of LocalPrio and GlobalPrio over NoPrio increases.

6 RELATEDWORK
In information security, risk assessment plays an important role.
[20] presents a taxonomy of such approaches, consisting of multiple
dimensions. However, specifics of data protection and automated
online risk assessment are not considered.

The GDPR stipulates a risk-based approach to data protection
[6]. Accordingly, there has been increased interest in data protec-
tion risk assessment in recent years. For example, [2] proposes a
consolidated approach for data protection impact assessment. [27]
analyzes how the notion of “risks to the rights and freedoms of data
subjects” influences the appropriateness of existing risk assessment

processes. [12] investigates possibilities to include data protection
risk management in software and systems engineering processes.
Along similar lines, [24] proposes to capture risk management and
related data protection concerns in the system development process
using a dedicated architectural view. [5] proposes a semi-formal
model-based approach to data protection risk management. [9] in-
vestigates the appropriateness of different modeling languages for
modeling data protection concerns. These papers aim at supporting
human experts in manual risk management processes at design
time. They offer no direct support for automated risk assessment at
run time. Hence, they cannot be used for quick prioritization when
searching for the best reaction to vulnerabilities at run time.

Automatic risk assessment has been studied in the context of
intrusion detection and intrusion protection. [21] identifies three
groups of approaches to intrusion risk assessment: attack graph
based, service dependency graph based, and non graph based. This
categorization is limited to the assessment of potential responses
to an intrusion. [14] suggests an approach for an online assessment
of IT security risks stemming from an intrusion into the system. As
input, information from intrusion detection systems is used, includ-
ing alert severity and alert confidence. Dempster-Shafer theory is
applied to combine these data to an overall risk estimate. Compared
to our approach, there are several key differences: (1) the specific
characteristics of data protection are not taken into account; (2)
risk is calculated for an intrusion, not for a vulnerability; (3) not the
damage is estimated directly, but only an artificial score as a proxy.
[22] proposes an approach for online risk assessment in the context
of a cyberattack response system. Similarly to our approach, [22]
also uses a combination of offline and online computations. How-
ever, [22] estimates risks based on statistical data from intrusion
detection systems, such as the frequency of alerts, and uses fuzzy
logic for quantifying the risk. In contrast, we use information more
relevant for data protection risks, such as the size of the dataset,
and employ probability theory to calculate the risk values.

Automatic risk assessment has also been considered in the con-
text of access control. For example, [13] uses machine learning to
predict access control decisions and assesses the risk of a wrong
decision to decide whether to trust the prediction or to contact
the policy decision point. [17] uses attribute similarity to perform
attribute-based access control in cases where the exact attribute
values are not known, and takes into account the risk of a wrong
positive versus negative decision. These works address a different
type of risk, stemming from the system’s decision-making and not
from an attacker, resulting in different risk models from ours.

Few papers address automated risk management in a more gen-
eral setting. [15] proposes an Artificial Immune System algorithm
for selecting a set of countermeasures to given threats. A risk-based
method is used to quantify the effects of potential countermeasures
on the threats. Risk level is calculated based on several factors,
such as the probability of occurrence of a threat and the negative
impact that the threat may cause. These factors are combined to a
risk level through an arbitrary formula. In contrast, we provide a
probabilistic model from which we derive our way of estimating
risks. In addition, [15] does not consider how risks vary with time.
[23] proposes an approach for calculating the potential damage that
an attack may cause. Attack graphs are used to assess how far an
ongoing attack has reached towards the targeted asset, and service
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dependency graphs to determine the potential impact of the attack.
However, it is not taken into account that in a data breach, stealing
each further data item may take additional time.

Some approaches to quantify privacy are also related to our work.
As shown in [28], some privacy metrics are specific to information
leakage (“Amount of Leaked Information”, “Maximum Information
Leakage”), but do not account for the sensitivity of the data. Other
metrics are time-related (“Time until Adversary’s Sucess”), but do
not account for how damage increases over time. Our approach
combines characteristics of multiple existing metrics to reflect the
expected damage from a data breach, considering the amount and
sensitivity of the data, as well as the time it takes to exploit the
vulnerability and the time since the vulnerability arose.

Previous work leading to the development of RADAR focused
on capturing data protection vulnerabilities as PCPs [19], defining
the necessary concepts for modeling data protection [11], and the
efficient implementation using patternmatching [8]. In addition, the
approach of modeling data protection vulnerabilities was validated
using a varied set of real-world vulnerabilities [16]. None of these
papers addressed the problem of quantifying data protection risks.

7 CONCLUSIONS AND FUTUREWORK
This paper presented a new approach for quantifying data pro-
tection risks. Our approach considers specific aspects of data pro-
tection risks, including the typical temporal development of the
damage caused by a data breach. Using a probabilistic model, we
calculate the risk as the expected value of the future damage. We
also showed how our approach can be incorporated into RADAR, a
state-of-the-art solution for automated mitigation of data protec-
tion risks. Our approach allows the prioritization of risks, resulting
in up to 15.8% reduction in damage.

Future research could aim at automating those parts of our ap-
proach that are currently done manually. For example, an analysis
of known vulnerabilities, possibly combined with machine learning,
could be used to estimate the distribution of the random variables
𝑋 and 𝑌 . Graph-based approaches could be used to derive PCPs
(semi-)automatically. Moreover, the effects of different probabil-
ity distributions for 𝑋 and 𝑌 could be analysed. The attack model
could be extended by taking, e.g., the effectiveness and the costs of
implementing an adaptation into account.
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