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Abstract—The coloring of random graphs has been the subject almost all graphs are uncolorable (overconstrained case).
of intensive research in the last decades. As a result, thethe underconstrained case, coloring is easy: even the esnpl
asymptotic behaviour of both the chromatic number and the heuristics usually find a proper coloring [19], [5]. In the
complexity of the colorability problem are quite well understood. . o . ) .
However, the asymptotic results give limited help in prediting overconstrained ca.s.e, it is easy for chktracklng algg)lsth
the behaviour in specific finite cases. to prove uncolorability because they quickly reach contrad

In this paper, we consider the application of the usual back- tion [17]. The hardest instances lie in the critical regirig [
track algorithm to random graphs, and analyze the expectedige  Summarizing these results, one can state that we have a
of the search tree as a machine-independent measure of aldgghm goodquantitativeunderstanding of graph coloririg the limit

complexity. With a combination of combinatorial, probabilistic . s
and analytical methods, we derive upper and lower bounds for (When the size of the graph tends to infinity) and a good

the expected size of the search tree. Our bounds are much tiggr ~ qualitativeunderstanding of it in the finite case. Our aim in this
than previous results and thus enable accurate prediction fo paper is to study the hardness of graph cologogntitatively

algorithm runtime. with accurate results fdinite graphs.
Specifically, we consider the application of the usual back-
|. INTRODUCTION AND PREVIOUS WORK track search to the coloring of random graphs. We restrict

Graph coloring is one of the most fundamental problenmirselves to the non-colorable case; extension of our model
in algorithmic graph theory, with many practical applicai$ to the colorable case remains as future work. We use the size
such as register allocation, frequency assignment, pattef the search tree as a measure of complexity and analyze its
matching, and scheduling [16], [6], [15]. Unfortunatelyagh expected value as a function of input parameters.
coloring is N P-complete [9]. Lower and upper bounds for the expected size of the search

Although graph coloring is hard in the worst case, it ifree in a similar model have been presented by Bender and
easier in the average case [19]. The probabilistic analy$iélf [3]. Their main focus was on the study of the asymptotic
of the coloring of random graphs was first suggested behavior of the search tree. In finite cases, the difference
[8]. Subsequent work [10], [4], [12] uncovered the ordebetween their lower and upper bounds can be quite large
of magnitude of the expected chromatic number of randofseveral orders of magnitude), as shown in Table I.
graphs. Through more recent work [2], [1], we can determine
almost exactly the expected chromatic number of a random
graph in the limit: with probability tending to 1 when the siz
of the graph tends t_o infinity, the expe_cted chromatic number 0 R o I
of a random graph is one of two possible values. p=05 p=05 p=04 p=07

Empirical _study of the behgwour of see_lrch algorithms and, T 641 10° 645 10° 396.10°° 491100

the complexity of graph coloring problem instances [148][1 ypper bound 1.81-10'2 1.83-10'2 1.84.10'% 5.27.10%
has lead to the discovery of a phase transition phenomenorm
with an accompanying easy-hard-easy pattern [7], [11].
Briefly, this means that for small values of the edges/vestic Therefore, our aim is to significantly improve these bounds,
ratio (underconstrained case), almost all random grapés ar order to enable accurate prediction of the runtime of the
colorable. When the connectivity of the graph is increasealgorithm on specific graphs. This is beneficial for example
the ratio of colorable graphs abruptly drops from almo$br random restart algorithms to decide when to perform the
1 to almost 0 (phase transition). After this critical regimerestart. Also, runtime prediction can be used to decide mdret

TABLE |
EXAMPLES OF THE BOUNDS BYBENDER AND WILF (k = 7)




it is at all feasible to solve a problem instance with such an Since the algorithm visits exactly the valid partial color-
exact algorithm. ings, it follows thatY = > _,Y,, and thusE(Y) =
We use a combination of combinatorial, probabilistic an{ .. E(Y,). Moreover, it is clear thatE(Y,) = py. It
analytical methods. We show that a simple probabilistic eiodfollows that the expected number of visited nodesTinis:
and some combinatorial considerations yield a first pair &(Y) = cr Pw-
non-trivial upper and lower bounds. As a by-product of our Let Q(w) := {{x,y} € V? : 2 # y, color(z) = color(y)},
first upper bound, we also obtain a short proof for a theorewhere V2 is the set of unordered pairs of elements 16f
of Wilf [20]. We then use Jensen’s inequality to significgntlLet ¢(w) := |Q(w)|. Clearly, w is valid if and only if, for
improve our lower bound. In the second half of the papesll {z,y} € Q(w), x andy are not adjacent. It follows that
we perform a detailed — and quite technical — case analysis = (1 — p)9®) and thus the expected number of visited
to obtain a series of ever sharper (but also increasingipdes ofT is:
complicated) lower and upper bounds. At the end we show a(w)
empirically how the bounds are getting closer to each other E(Y) = Z(l — )"
and how much they improve the bounds of Bender and Wilf. wel
Note that computingE(Y) through this formula is not
tractable sinceT'| is exponentially large im.
We consider the decision version of the graph coloring
problem, in which the input consists of an undirected graph IV. SIMPLE LOWER AND UPPER BOUNDS
G = (V, E) and a numbek, and the task is to decide whether In the following, we denote by(w,) (or simply s; if it
the vertices ofG can be colored withk colors such that is clear which partial coloring is considered) the number of
adjacent vertices are not assigned the same color. The inpertices ofG that are assigned colarin partial coloringw.
graph is a random graph taken fro&, ,, meaning that it - ¢
hasn vertices and each pair of verticeg is connected by {%opomﬂon L Forall w e Ti, q(w) < (3).
edge with probabilityp independently from each other. The Proof:
vertices of the graph will be denoted by, ..., v,, the colors

k k k
by1,..., k. A coloringassigns a color to each vertexpartial q(w) = Z <5 ) i <Z s? — Z Si) <

Il. PRELIMINARIES

coloring assigns a color to some of the vertices. A (partial) —\2 2\ = =1

coloring isinvalid if there is a pair of adjacent vertices with 1 k 2k .

the same color, otherwise the (partial) coloring/aid. < = (Z $1> > si| =5 -t)= ( )
The backtrack algorithm considers partial colorings.attst 2 i=1 i=1 2

with the empty partial coloring, in which no vertex has a ¢olo
This is the root — that is, the single node on level 0 — of the
search tree. Level of the search tree contains thé possible
partial colorings ofuy, ..., v;. The search tree, denoted By

|
As aconsequencgwen(l—p)q(“’) > EweTt(l—p)(;) =
(1 - p)(;), and thus we obtain the following — easily

hasn levels, with the last level containing the colorings of th§oMPutable —lower bound:

graph. LetT; denote the set of partial colorings on levelf w n .

t < n andw € T}, thenw hask children in the search tree: E(Y)= Z (1—p)1) > Zkt (1-pk). @)
those partial colorings ofy, ..., v,y that assign to the first weT =0

2

roposition 2. For all w € T;, q(w) > 4 (t— - t)_

t vertices the same colors as p
k

In each partial coloring, the backtrack algorithm considers
the children ofw and visits only those that are valid. Note that  Proof: Since
T depends only om and &, not on the specific input graph.

k k 2
However, the algorithm visits only a subset of the node¥' of > 5} > D i1 Si _ ﬁ
depending on which vertices 6f are actually connected. The k - k k2’
number of actually visited nodes &f will be used to measure it foll that
the complexity of the given problem instance. It Toflows tha
k 2
[1l. THE EXPECTED NUMBER OF VISITED NODES O’ q(w) = % (Z 52 — Zsl> > % (% — t) _
For eachw € T', we define the following random variable i=1 i=1
(the value of which depends on the choice®f [ ]
U i wis valid As a consequenceZweth(l —p)i < Y (1 -
) 1(t2 1= .
o= {0 else. p*(F7) — g1 - )50 and thus we obtain the

following — easily computable — upper bound:
Let p, = Pr(Y, = 1). Moreover, we define one more n ,
random variable (whose value also depends on the choice of g (y) = Z (1—p)i) < Z K- (1— p)% (%*t)' )
G): Y = the number of visited nodes df. wel =0



As a by-product, we obtain a simple proof for a theorem dividing this by |T;| = k* leads to the stated formula fqt
Wilf [20]: [ |

Corollary 3 (Wilf, 1984). The average-case complexity offheorem 5. E(Y) = > (1 — p)a®™) > Y0 k(1 —
coloring a random graph with a constant number of colorg) i;f.

is O(1).
) . . Proof: Sincex — (1 — p)* is convex, thus Jensen’s
Proof: According to (2), the complexity of the tz)acktrackjnequamy gives

. . . 00 1 —4)

ing algorithm is not more thai_,” k" - (1 — p)2< k = 1 i w 2

Z?io At . BtZ’ where A — \/% and B = 2k/1 —p. Since W Z (1 —p)q(’w) Z (1 —p)\Tt\ ZwETt q(w) — (1 _p) 2k,

0 < B < 1, the root test shows tha} ,~, A" - B is qf]ET' _

convergent. This upper bound is independent of m Vielding exactly the stated bound. (In the last equation, we
Numerical comparison of the lower bound (1) and the uppg€d Lemma 4.) u

bound (2) has shown that their difference is quite large jn Comparing the lower bound of Theorem 5 and the upper
practice (see Section X). This motivates the quest for betfePund (g)’ it can be seen that both have the forifi , & -
lower and upper bounds. (1- p)é—ﬁ@(t). Numerical comparison has shown that they

are indeed closer to each other than the bounds (1) and (2),
V. REFINED LOWER BOUND USINGJENSEN S INEQUALITY  but there is still room for improvement (see Section X).

— 1
Let ¢ := 177 Zwer, 9(w) denote the mean of the(w) VI. CALCULATING WITH (i TERM SEPARATELY

values inT;. . o
k ) In order to improve the bounds, we look at the distribution
t7—t

Lemma 4. g = 5~ of ¢(w) in more detail. Sincer — (1 — p)* is monotonously
decreasing, smaller values gfw) are more significant than
Kigher values. Moreover, the results of Proposition 1, Brop
sition 2 and Lemma 4 show that the mean of iie) values

Proof: Since the role of the colors is symmetric, it is eas
to see that

k s(w, i) is closer to the minimum than to the maximum, suggesting
Z q(w) = Z Z 9 = that small values ofy(w) have a high frequency. This is
weT; kaTt =1 also justified by empirical results, see Fig. 1 for an example
_ Z Z (S(w,i)) — Z (S(w, 1)) Therefore, we investigate the smallest valueg@?).
i=1 weT; 2 weETy 2 Proposition 6. Moving a vertex from a color class witd

In order to compute this sum, we should examine for hoff"tices to a color class witiB vertices decreaseg(w) by
A — B —1 (if this is negative, theq(w) is increased).

many w € T; we haves(w,1) = j. In other words, how
many colorings exist for the firgt vertices, in which exactly Proof: The change in q(w) is (g‘) + (g)
Jj vertices receive color 1. Since thievertices can be chosenin/ a—1 B+1 ) — Al (A_(A—9))+B(B—1—(B+1)) =
(;) ways and the remaining— j vertices must receive a colorg( 2 )+ (%) 7 (A=( N3 ( (B+1))

from the remaining: — 1 colors, there aré;)(k:— 1)*=7 such

—-1-B. [ |
colorings. Hence, the above sum can be written as follows;

We call such a move aorrection moveif A > B. During
a correction movey either decreases or remains constant.

Z (w) = kzt: J\ (1 (k — 1)t~ Proposition 7. If ¢g(w) is minimal in T3, then in the partial
q ~\2)\j ' coloring w each color class contains eithefL| or [%]
weTy 7=0 . k k
vertices.
The members of the sum correspondingjte- 0 andj = 1 Proof: Since the average size of a color classis
o - . i\ [t .
are 0, thus it is enough to start wifh= 2. Using that(;) (j) = the biggest color class hasg at ledst| vertices, and he
(4)(172), we have: 99 '
2/ \j-2/ ' smallest color class has at mdst | elements. Using proof
N L 9 by contradiction, we assume that the sizes of the biggest and
Z q(w) = k< ) Z (._ )(k — 1)f—-7' = smallest color classes differ by at least 2. Then, it folldtesn
weT, 2 == N 2 Proposition 6 that moving a vertex from the biggest colossla
N2 719 to the smallest color class decreagés) by at least 1. This
= k(,)> (k—1)"72" tradicts the minimalit
9 / contradicts the minimality of(w). [ |

£=0 As can be seen, an arbitrary partial coloringan be turned

Using the binomial theorem fof(k — 1) + 1)t~2, this can be iNto a partial coloringw’ with ¢(w') = gmin by using a

written as sequence of correction moves.
Lett = ck + d where0 < d < k — 1. Then, according
Z q(w) = k(t)th — k-1 <t) to Proposition 7, colorings with minimumy(w) haved color
wel, 2 2 classes of size+1 andk —d color classes of size Thus, the
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Fig. 1. The frequency of differenf(w) values fort = 20 andk = 4. Here,gmin = 40, § = 47.5 and gmaaz = 190. It can be seen that the distribution is
concentrated in the lower region of the possiblealues.

minimum value ofg(w) iS: gmin = d(“5") + (k—d)(5). This Proof: Let TV = {w € T} : q(w) = qmm} and
is sharp for eactt and &, and thus a slightly more accurateT(H) {w € Tt : q(w) > Gmin}. Clearly, |T | = Rumin
bound than the one of Proposition 2. and |T(1+)| ~ Rpin. Moreover, 3 ) q(w) =

Let R(q,t,k) := {w € Ty : g(w) = q}| denote the RoninGomin andz wer) g(w) = ktq_Rminqtmin- Using

frequency of valug; among theg(w) values of nodes ifT;. Jensen’s inequality

Proposition 8. R(gmin,t, k) = (ffl) : W

1
|Tt(1+) | ZweTt(IH a(w)

— _ p)a(w) 1+>‘ _ _
Proof: There are( ) possibilities to choose thé color Z (1-p) Z ‘ t ) -
classes whose size should be- 1. Given the size of each wer™) .

color class asy, sg, . . ., sk, there ares,s,— possibilities = (k' = Rpin)(1 _p)%m

to distribute thet vertices among the color classes. ]

Using Roin := R(gmin,t, k), this leads to a more accuraterggether withy> er (1 = p)?®) = Rypin(1 — p)@min, this
upper bound: yields the stated bound. (]
Z (1_p)q(w) < Ronin(1=p) 9" 4+ (k' — Rynin ) (1—p) dmint1
weTy VIl. FREQUENCY OF@min + 1
and thus

In order to further improve our bounds in an analogous way,
the frequency ofy,,,;, + 1 should be calculated.

Consider a partial coloring) with ¢(w) = gnin + 1. Since

(3) q(w) > gmin, We can perform a correction move: we move a

The lower bound can also be improved by separating thertex from the biggest color class (containidgvertices) to
term corresponding t9,,;: the smallest color class (containififyvertices). We thus obtain
a new partial coloringy” with ¢(w’) < ¢(w), see Fig. 2. It
follows thatq(w’) = ¢, and the decreasei$— B —1 =1,
hence inw’ the two color classes contain the same number
of vertices A — 1 = B + 1). Moreover, since;(w’) = ¢min,
all color classes inv’ containc or ¢ + 1 vertices. From these
whereq; = ’“5;3"17"‘1’"" facts, we can deduce the possible sizes of color classes in

t—Rmin

E(Y) < Rmzn(l - p)qmm + (kt - len)(l — p)qmi7l+1.
t=0

Theorem 9.

Z mzn 1 - qmm + (k Rmzn)(l _p)lﬁa
t=0



Fig. 2. Number of elements in different color classes.

A. Cased #0,d# 1 andd # k — 1:

In w’, there arek — d color classes witle elements and

C. Cased =1 andc¢ > 1:

In w:

« 1 color class contains — 1 elements
e k£ — 3 color classes contaia elements
¢ 2 color classes contain+ 1 elements

The frequency of this case is:

k—1 ¢!
k( 2 ) (c— D! ((c+ 1)) ()
D. Cased =k —1:

In w:

« 2 color classes contain elements
e k — 3 color classes contain+ 1 elements
o 1 color class contains + 2 elements

The frequency of this case is:

k—1 ¢!
k( 2 >(c+2)!((c+1)!)k_3(c!)2

As a consequence, the frequency @f;, + 1 can be

color classes withe + 1 elements. The new color classes witigalculated as a function @fandk (using the proper case).

A —1 and B + 1 elements inw’ contain eitherc or ¢ + 1

elements.
1) IfA—1=B+1=candc>1: In this case, inw:
o oOne color class contains— 1 elements
e k—d — 2 color classes contain elements
e d+ 1 color classes contain+ 1 elements
Hence, the frequency of this case is:

<k> <k — 1) t! B
LJ\d+1/) ((c+ )N (D2 (e — 1)
k't!

d+1)!(k—d—2)(c+ D" @ ((c— 1))
2)IfA—1=B+1=c+1andd > 2: Then inw:
e k—d+ 1 color classes contain elements
« d — 2 color classes contain+ 1 elements (thug > 2)
o 1 color class contains + 2 elements
The frequency of this case:

k k—1 1!
<1) <d B 2> (c+2)! ((c+ N2 (el ot -
klt!
T @-2) (k- d+ Dle+2) (c+ )T (@)F

B. Cased =0 andc > 1:

VIll. FREQUENCY OF¢@min + 2

The bounds can be further improved by calculating the
value and the frequency of the third smallgstSimilarly to
the previous section, we start from a partial coloringvith
q(w) = ¢min + 2, and we move to another partial coloring
with ¢(w') = gmin. There are two different ways: by using
either one or two correction moves.

A. Using one correction move

In this case, in accordance with Proposition w) —
gw') = A— B —1 = 2, and with Proposition 7, inv
Apaz = ¢+ 2 and By, = ¢ — 1. Therefore, inw:

« 1 color class containg — 1 elements (thug — 1 > 0)

e k—d—1 color classes contaia elements

« d—1 color classes contain+ 1 elements (thug > 1)

« 1 color class containg + 2 elements

The frequency of this case is:

k<k—1)<k—2> t!
1 d=1)(c—= DD ((e+ DY (e +2)!
B. Using two correction moves

After the first correction move(w”) = gmin + 1. In this
caseq(w) — q(w”) = q(w”) — ¢(w’) = 1. Hence, after each

/ 1 . .
In w', there are exactly elements in all color classes. Thugrection move, the color classes with the changed number

in w:
o 1 color class containg — 1 elements
e k — 2 color classes contain elements
« 1 color class containg + 1 elements
The frequency of this case:

G) <kI 1> (c— 1)!(c4tr!1)! ()2
k(k — 1!

((c— DN (c+1)ck—1

of elements contain equal number of elements.

Proposition 10. In w, there is no color class with more than
¢+ 2 elements.

Proof: Using contradiction we assume, that there is a
color class with at least + 3 elements. Hence in both
correction moves a vertex should be moved from this color
class to another. Meanwhile there should not arise a cadescl
with more thanc + 1 elements. Then in the first correction
move g(w) — g(w’”) > 1. [ |



k?tq_ RopinGmin _R7nin+l (Qmin +1)_Rmin+2 (‘hnin +2)

Proposition 11. In w, there are at most two color classes withwheregs = " R —" R,

c+ 2 elements.

P .I: S I I t I tth t | PI’OOf: Let Tt(l) = {’LU S Tt . q(w) = qmzn}n
roof: Similarly, at least three correction moves wou (h(z) — fw €T, ¢ qw) = guin + 1}, Tt(3) — fw €
be needed otherwise. (34)
We further split this case by the number of color cIasseT 2 g(w) = gmin + 2} and T, = {w € T
q%w) > g¢min + 2} on the analogy of Theorem 9. Hence,

containingc + 2 elements.
1) If there are two color classes witti-2 elements:In w:
e k—d+ 2 color classes contain elements
« d — 4 color classes contain+ lelements (thug > 4) Z q(w) =
o 2 color classes contain+ 2 elements

The frequency of this case is:

|Tt(1)| = Ruin, |Tt(2)| = Rumint1, |Tt(3)| = Rupint2 and
|Tt(3+)| = k' — Rimin — Rmint1 — Rmin+2. Clearly,

wGTt(])UTt(Z)UTt(S)
Rmianin + Rmin+1 (szn + 1) + Rmin+2 (QWzn + 2)

(k:) (k: — 2> t!
2)\d—4) ((c+ 202 ((c + N (el)F 472 and
2) If there is one color class with+2 elements:The same Z q(w) =
way as earlier, inwv: weT®H
« 1 color class containg — 1 elements (thug > 1) b
. - k'q — Rmzn min — Rmzn min + 1) - Rmin min + 2).
e k—d—1 color classes contain elements 1 1 +ild ) +2(g )
« d—1 color classes contain+ lelements (thug # 0) Using Jensen’s inequality,
« 1 color class containg + 2 elements

The frequency of this case is: > (1—py > ‘Tt(3+)‘ (1-p)

1
|T§3+) | ZwET§3+) q(w)

) (k — 1) (k — 2> ¢! wer
t
1 d=1) (c= DD ((c+ 1)) (e +2) (k" = Rimin — Rimint1 — Rmins2):
kt’j*aninqmin*Rmin+1(q7nin+1)*R7nin+2(q7nin+2)

3) If there is no color class witla + 2 elements:In w: (1-p) K —Roin—Emint1—Rominta

« 2 color classes contain— 1 elements (thug > 1) )
« k—d—4 color classes containelements (thug < k—4) Together with the other terms, we get the stated bounda

« d+ 2 color classes contain-+ lelements Because of space constraints, we do not include the
calculation of the bounds determined lgy,;,, + 1 (with-
out the help ofg,..,» + 2) and for the inherentjs =

The frequency of this case is:

(k) (k — 2> t! k'§—RminGmin —Rmint1(gmin+1)
k?t_Rnlin_anin, )
2)\d+2/ ((c+ )N () (e —1)1)? Clearly, we couild continue the above procedure and further
Using the proper case, the value Bf,i,.» can always be improve the bounds by also (_:a!culating the termygf,, + 3,
calculated. Care needs to be taken though as two correctiBin ¢min + 4 €tc. However, it is also clear from the above

moves might be substituted with a single one. Specificalfj@t the calculation becomes significantly more complexwit
the case in Subsection VIII-A is equivalent to the case &ch step, and on the other hand, the gain is decreasing with

Subsubsection VIII-B2. Otherwise, the cases are disjoint. €Very step (see Section X).

|X PUTT|NG THE PIECES TOGETHER X NUMER|CAL COMPARISON OF THE BOUNDS
Let Rpint1 = R(@mins1,t,k) and Rpinis = In order to assess how good the different lower and upper
R(qmin+2,t, k). The best lower and upper bounds are: bounds are, we compared them numerically for different
n values of the control parametens k, p. Here, we show the
B(Y) < ZR (1 — p)dmin 4 comparison for fix values ofi and k, as a function ofp. In
— mn

order to enhance visibility, we include two figures (note the
exponential scale on thg axis in both cases): one for small
v values ofp (Fig. 3) and one for high values of (Fig. 4). As

+ (k' = Rimin — Rmint1 — Rmins2)(1 — p)?mint?, can be seen, both the upper bounds and the lower bounds are
and becoming better and better.

The shown bounds are as follows:
. o 1st upper bound: bounding,;,
E(Y) > ZRmin(l — p)tmin 4 o 2nd upper bound: calcuIa@ingm»n term separately
- « 3rd upper bound: calculating,,;,, + 1 term separately

o 4th upper bound: calculating,.;,, + 2 term separately
) R « 5th lower bound: calculating,,;, + 2 term separately
+ (k" = Rmin — Rmint1 — Rmint2)(1 — p)* « 4th lower bound: calculating,,;, + 1 term separately

t=0
+ RminJrl (1 - p)qmerl + Rmin+2(1 - p)qm"” +

Theorem 12.

t=0
+ RminJrl (1 - p)qmerl + Rmin+2(1 - p)qm"” +
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Fig. 3. Comparison of the presented lower and upper bourdsnfiall values ofp, with n = 30 andk = 5.
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Fig. 4. Comparison of the presented lower bounds and uppendsofor high values op, with n = 30 and k = 5.

« 3rd lower bound: calculating,,;, term separately
« 2nd lower bound: using Jensen’s inequality
« 1st lower bound: bounding,,.

bounds are much closer to each other than the original bounds
(The shape and relative position of the curves are similar fo
other values ofn and k£ as well.) The exact location of the

Fig. 5 presents only the best bounds, together with ti@le expected tree size is currently not known, but a method
bounds of Bender and Wilf [3]. As can be seen, the nef@r determining it is presented in [13].
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XI. CONCLUSION AND FUTURE WORK

(4

We have investigated the complexity of a typical backtracl;

search for coloring random graphs withcolors. Using the
expected size of the search tree as the measure of complexIfy

we derived lower and upper bounds for the complexity. We
showed empirical evidence that these bounds are much cloger peter Cheeseman, Bob Kanefsky, and Wiliam M. Taylor. ef¢nthe
to each other than previously known bounds.

In this paper, we only dealt with uncolorable problem in-

(8]

stances. Our future work will focus on extending the presgnt
results to colorable problem instances.
Bender and Wilf [3] also presented lower and upper bounds

on thejth moment of the number of visited nodes in the sear

tree. The variance is particularly interesting to betteigjel the
algorithm’s performance. It remains a future researchctiva

to investigate how the methods presented in this paper can

El

used to improve Bender and Wilf’s bounds on higher momentsg;)
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