
Minimum weight spanning tree, TSP

László Papp

BME

17th of March, 2023

A combinatorial optimization problem:

We have six towns and we want to build a telecommunication
network such that we can send a message between any two
cities over the network. Due to some reasons, we do not want
to connect cables outside of the towns. We know in advance
that which towns can be connected by a direct wire and how
much is the cost of such a wire.
Task: Find the cheapest connected network!

E

F

C
A

8

1

1
2

3

3
5

3

1

3

B

D

A not optimal solution

An optimal solution does not contain a cycle, because if we
delete an edge contained in the cycle the network remains
connected and the cost of the network decreases (the cost of
each edge is positive).

E

F

C
A

8

1

1
2

3

3
5

3

1

3

B

D

So we are looking for a spanning tree, but not all spanning
trees are good enough.
The price of this network is 1 + 8 + 3 + 3 + 1 = 16.

A not optimal solution

An optimal solution does not contain a cycle, because if we
delete an edge contained in the cycle the network remains
connected and the cost of the network decreases (the cost of
each edge is positive).

E

F

C
A

8

1

1
2

3

3
5

3

1

3

B

D

So we are looking for a spanning tree, but not all spanning
trees are good enough.
The price of this network is 1 + 8 + 3 + 3 + 1 = 16.

Finding an optimal solution

E

F

C
A

8

1

1
2

3

3
5

3

1

3

B

D

Each step we choose the cheapest edge which does not makes
a cycle with the edges chosen earlier. This is a greedy
algorithm, since at each step we choose the locally best option.

So the price of a cheapest network is 8 and we also have
obtained such a network.

Finding an optimal solution

E

F

C
A

8

1

1
2

3

3
5

3

1

3

B

D

Each step we choose the cheapest edge which does not makes
a cycle with the edges chosen earlier. This is a greedy
algorithm, since at each step we choose the locally best option.

So the price of a cheapest network is 8 and we also have
obtained such a network.

Finding an optimal solution

E

F

C
A

8

1

1
2

3

3
5

3

1

3

B

D

Each step we choose the cheapest edge which does not makes
a cycle with the edges chosen earlier. This is a greedy
algorithm, since at each step we choose the locally best option.

So the price of a cheapest network is 8 and we also have
obtained such a network.

Finding an optimal solution

E

F

C
A

8

1

1
2

3

3
5

3

1

3

B

D

Each step we choose the cheapest edge which does not makes
a cycle with the edges chosen earlier. This is a greedy
algorithm, since at each step we choose the locally best option.

So the price of a cheapest network is 8 and we also have
obtained such a network.

Finding an optimal solution

E

F

C
A

8

1

1
2

3

3
5

3

1

3

B

D

Each step we choose the cheapest edge which does not makes
a cycle with the edges chosen earlier. This is a greedy
algorithm, since at each step we choose the locally best option.

So the price of a cheapest network is 8 and we also have
obtained such a network.

Finding an optimal solution

E

F

C
A

8

1

1
2

3

3
5

3

1

3

B

D

Each step we choose the cheapest edge which does not makes
a cycle with the edges chosen earlier. This is a greedy
algorithm, since at each step we choose the locally best option.
So the price of a cheapest network is 8 and we also have
obtained such a network.

Minimum weight spanning tree problem
Let G be a graph and w : E(G) → R be a real-valued function
over the edge set of G. This function w tells us the weight (or
cost) of the edges. If we take a subgraph H of G, then the
weight (cost) of H is

∑
e∈E(H) w(e).

E

F

C
A

8

1

1
2

3

3
5

3

1

3

B

D

Task: Find a spanning tree of G, whose weight is the smallest
possible!

During our example problem, we have solved this task in a
greedy way.

Minimum weight spanning tree problem
Let G be a graph and w : E(G) → R be a real-valued function
over the edge set of G. This function w tells us the weight (or
cost) of the edges. If we take a subgraph H of G, then the
weight (cost) of H is

∑
e∈E(H) w(e).

E

F

C
A

8

1

1
2

3

3
5

3

1

3

B

D

Task: Find a spanning tree of G, whose weight is the smallest
possible!

During our example problem, we have solved this task in a
greedy way.

Kruskal’s algorithm

Input: Graph G and a weight function w : E(G) → R.
1. Sort the edges of the graph to ascending order according

to their weight: w(e1) ≤ w(e2),≤ . . . ≤ w(e|E(G)|).
2. Let F be the graph containing all the vertices of G but none

of its edges and let i := 1.
3. If E(F) ∪ ei does not contain a cycle then add ei to E(F).
4. If i < |E(G)|, then increase i by one and move to the 3rd

step.
Output: F .

Claim
If a graph G is connected, then Kruskal’s algorithm gives a
minimum weight spanning tree of G.
Remark: We have run this algorithm previously.

Greedy algorithms

Definition: An algorithm is called greedy if at each choice it
chooses the locally best option.

Kruskal’s algorithm is a greedy algorithm, because at each step
it tries to include the lightest (cheapest) edge.

Remark: Usually greedy steps and greedy algorithms do not
lead to optimal solutions. We are going to see examples for this
phenomenon later.

How fast is Kruskal’s algorithm?

The time complexity of Kruskal’s algorithm is O(e log(e)) where
e is the number of edges in the input graph. Sorting the edges
according to their weight requires Θ(e log(e)) operations in the
worst case. This is the main term here, but we will not give a
reasoning for that.

Questions regarding the effectiveness of Kruskal’s
algorithm:

▶ How can we encode a graph?
▶ Is it much better than the brute-force method?

The brute-force method: Consider each spanning-tree of the
graph, calculate its weight then choose the smallest one.

Note: This is not yet an algorithm because we have not
specified how to find all the spanning trees.

How to encode (simple) graphs
Reminder: A graph G = (V ,E) is an ordered pair of sets,
where V is the set of vertices and E is the set of edges
containing pairs of vertices.
There are two major (+some other) methods to encode a graph:
Adjacency list: For each vertex we write down the set of
adjacent vertices.

Example
For the given graph it is:
1 : 2, 3, 4;
2 : 1;
3 : 1, 4;
4 : 1, 3;
5 :

2

3 4

1 {1,2}

{3,4}

{1,3} {1,4}
5

If the alphabet contains more symbols than the number of
vertices (the lenght of the vertex labels are neglected), then the
size of an adjacency list is Θ(e + n), where e and n denote the
number of edges and the number of vertices, respectively.

How to encode graphs

Adjacency matrix: Each vertex has a corresponding column
and a row. Ai,j equals 1 if vertices i and j are adjacent and 0
otherwise. (If there are paralell edges then Ai,j equals to the
number of edges i {i , j})

Example

A =

0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
0 0 0 0 0

2

3 4

1 {1,2}

{3,4}

{1,3} {1,4}
5

The size of the adjacency matrix is n2.

Question: Which encoding requires less space?
Answer: Usually the adjacency list.

How to encode graphs

Adjacency matrix: Each vertex has a corresponding column
and a row. Ai,j equals 1 if vertices i and j are adjacent and 0
otherwise. (If there are paralell edges then Ai,j equals to the
number of edges i {i , j})

Example

A =

0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
0 0 0 0 0

2

3 4

1 {1,2}

{3,4}

{1,3} {1,4}
5

The size of the adjacency matrix is n2.

Question: Which encoding requires less space?

Answer: Usually the adjacency list.

How to encode graphs

Adjacency matrix: Each vertex has a corresponding column
and a row. Ai,j equals 1 if vertices i and j are adjacent and 0
otherwise. (If there are paralell edges then Ai,j equals to the
number of edges i {i , j})

Example

A =

0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
0 0 0 0 0

2

3 4

1 {1,2}

{3,4}

{1,3} {1,4}
5

The size of the adjacency matrix is n2.

Question: Which encoding requires less space?
Answer: Usually the adjacency list.

Complete graphs
Definition A complete graph is a
simple graph where any two
vertices are adjacent. The
complete graph having n vertices
is denoted by Kn.

Question: How many edges does
Kn have?

Answer: n(n−1)
2 , because: From each vertex n − 1 edges go to

the other vertices. If we sum it for all vertices, then we obtain
n(n − 1). We have counted each edge twice, at both of its
endpoints. To compensate this we divide this number by 2.

Remark: Any simple graph having n vertices is a subgraph of
Kn. Therefore it has at most n(n−1)

2 edges.

Corollary: The size of a simple graph’s adjacency list is in
O(n2).

Complete graphs
Definition A complete graph is a
simple graph where any two
vertices are adjacent. The
complete graph having n vertices
is denoted by Kn.

Question: How many edges does
Kn have?

Answer: n(n−1)
2 , because: From each vertex n − 1 edges go to

the other vertices. If we sum it for all vertices, then we obtain
n(n − 1). We have counted each edge twice, at both of its
endpoints. To compensate this we divide this number by 2.

Remark: Any simple graph having n vertices is a subgraph of
Kn. Therefore it has at most n(n−1)

2 edges.

Corollary: The size of a simple graph’s adjacency list is in
O(n2).

Time complexity of the the brute-force algorithm

The brute force algorithm checks each spanning tree.
In Kn there are nn−2 spanning trees. (If you are interested in the
proof, search for Cayley’s formula.)

That is so much. The function f (n) = nn−2 /∈ O(2n). It grows
faster than any exponential function.

So the brute-force algorithm runs so slow if the input graph is a
complete graph, but what if it is something else?

Answer: It is too slow for most of the possible input graphs. So
avoid it!

Remark: Checking all the possible solutions, evaluating the
objective function for each of them and picking the best one is
usually a bad idea. It can be done in finite time, but in most of
the cases it takes way to much time. This is the reason why we
are looking for smart algorithms!

Time complexity of the the brute-force algorithm

The brute force algorithm checks each spanning tree.
In Kn there are nn−2 spanning trees. (If you are interested in the
proof, search for Cayley’s formula.)

That is so much. The function f (n) = nn−2 /∈ O(2n). It grows
faster than any exponential function.

So the brute-force algorithm runs so slow if the input graph is a
complete graph, but what if it is something else?

Answer: It is too slow for most of the possible input graphs. So
avoid it!

Remark: Checking all the possible solutions, evaluating the
objective function for each of them and picking the best one is
usually a bad idea. It can be done in finite time, but in most of
the cases it takes way to much time. This is the reason why we
are looking for smart algorithms!

Time complexity of the the brute-force algorithm

The brute force algorithm checks each spanning tree.
In Kn there are nn−2 spanning trees. (If you are interested in the
proof, search for Cayley’s formula.)

That is so much. The function f (n) = nn−2 /∈ O(2n). It grows
faster than any exponential function.

So the brute-force algorithm runs so slow if the input graph is a
complete graph, but what if it is something else?

Answer: It is too slow for most of the possible input graphs. So
avoid it!

Remark: Checking all the possible solutions, evaluating the
objective function for each of them and picking the best one is
usually a bad idea. It can be done in finite time, but in most of
the cases it takes way to much time. This is the reason why we
are looking for smart algorithms!

Time complexity of the the brute-force algorithm

The brute force algorithm checks each spanning tree.
In Kn there are nn−2 spanning trees. (If you are interested in the
proof, search for Cayley’s formula.)

That is so much. The function f (n) = nn−2 /∈ O(2n). It grows
faster than any exponential function.

So the brute-force algorithm runs so slow if the input graph is a
complete graph, but what if it is something else?

Answer: It is too slow for most of the possible input graphs. So
avoid it!

Remark: Checking all the possible solutions, evaluating the
objective function for each of them and picking the best one is
usually a bad idea. It can be done in finite time, but in most of
the cases it takes way to much time. This is the reason why we
are looking for smart algorithms!

Summary for Kruskal’s algorithm

▶ It finds a minimum weight spanning tree.
▶ It runs in O(e log e) time, which is just a little bit more than

the O(e) steps which is required to read the adjacency list.
▶ It is much faster than the brute-force algorithm.
▶ It is a greedy algorithm.

An application: Normal trees

Assume that we have an electric circuit with three type of
components: resistors, voltage sources and current sources.

I

V

V

V

I

We create a graph from the electrical circuit: The vertices are
the equipotential surfaces and the edges are the components.
A normal tree of the circuit is a spanning tree which contains
all the voltage sources but none of the current sources.

An application: Normal trees

Assume that we have an electric circuit with three type of
components: resistors, voltage sources and current sources.

I

V

I

V

V

We create a graph from the electrical circuit: The vertices are
the equipotential surfaces and the edges are the components.
A normal tree of the circuit is a spanning tree which contains
all the voltage sources but none of the current sources.

An application: Normal trees

Assume that we have an electric circuit with three type of
components: resistors, voltage sources and current sources.

I

V

I

V

V

We create a graph from the electrical circuit: The vertices are
the equipotential surfaces and the edges are the components.
A normal tree of the circuit is a spanning tree which contains
all the voltage sources but none of the current sources.

The use of normal trees

We know the properties of the electronic components:
resistence of resistors, supplied voltage of voltage sources and
supplied current of current sources. We want to determine the
voltage and current across each component by using Kirchoff’s
circuit laws. Sometimes this cannot be done, because there are
infinitely many solutions.

I

V

I

V

V

Claim:
If the circuit does not have a normal tree, then the Kirchoff’s
laws does not give a unique solution.

Finding a normal tree

We assign weight to the components by the following rule:
▶ Voltage source 1
▶ Resistor 3
▶ Current source 5

I

V

V

V

I

1 3

35 5

3 1

1

We search a minimum weight spanning tree by Kruskal’s
algorithm. If it contains all the voltage sources and none of the
current sources, then it is a normal tree. Otherwise the circuit
does not have a normal tree.

Finding a normal tree

We assign weight to the components by the following rule:
▶ Voltage source 1
▶ Resistor 3
▶ Current source 5

I

V

V

V

I

1 3

35 5

3 1

1

We search a minimum weight spanning tree by Kruskal’s
algorithm. If it contains all the voltage sources and none of the
current sources, then it is a normal tree. Otherwise the circuit
does not have a normal tree.

Finding a normal tree

We assign weight to the components by the following rule:
▶ Voltage source 1
▶ Resistor 3
▶ Current source 5

I

V

I

V

V

1 3

35 5

3 1

1

We search a minimum weight spanning tree by Kruskal’s
algorithm. If it contains all the voltage sources and none of the
current sources, then it is a normal tree. Otherwise the circuit
does not have a normal tree.

Hamiltonian cycle, Hamiltonian path

Definition: H is a Hamiltonian cycle of graph G if H is a cycle,
H ⊆ G and it contains all vertices of G.
Definition: P is a Hamiltonian path of graph G if P is a path,
H ⊆ G and it contains all vertices of G.

Examples:

Hamiltonian cycle Hamiltonian path

Traveling salesman problem (TSP)
Real-world problem:
We have n − 1 pubs in a town, a brewery and a truck. We want
to supply the pubs with beer by using the truck. We know the
pairwise distance between the n places. We want to distribute
the beer traveling the least distance. How to do it?
As a mathematical problem: A
complete graph with a weight function
on its edge set is given. We are
searching for a Hamiltonian cycle of
minimum weight in the graph (called
as an optimal tour or shortest tour).

B

P2 P3

P1
2

2

1

3

3

9

How to encode our real-world problem as the mathematical
problem?

The vertex set contains the pubs and the brewery
and the weight function over the edge set is their pairwise
distance.
TSP has application in many areas, for example: logistics, DNA
sequencing, etc.

Traveling salesman problem (TSP)
Real-world problem:
We have n − 1 pubs in a town, a brewery and a truck. We want
to supply the pubs with beer by using the truck. We know the
pairwise distance between the n places. We want to distribute
the beer traveling the least distance. How to do it?
As a mathematical problem: A
complete graph with a weight function
on its edge set is given. We are
searching for a Hamiltonian cycle of
minimum weight in the graph (called
as an optimal tour or shortest tour).

B

P2 P3

P1
2

2

1

3

3

9

How to encode our real-world problem as the mathematical
problem? The vertex set contains the pubs and the brewery
and the weight function over the edge set is their pairwise
distance.
TSP has application in many areas, for example: logistics, DNA
sequencing, etc.

Trying to solve TSP with a greedy algorithm (nearest neighbor)

The algorithm which we are going to use is the following:
1. Start from a random vertex v and a subgraph H containing

only vertex v . Remember this vertex, so let u := v .
2. Choose the lightest edge which is incident to v and its

other endpoint is not contained in H. Add this edge with its
endpoint to H and let v be the recently added vertex.

3. If H does not contain all the vertices of the input graph,
then repeat step 2. Otherwise add the edge whose
endpoints are v and u.

B

P2 P3

P1
2

2

1

3

3

9

Trying to solve TSP with a greedy algorithm (nearest neighbor)

The algorithm which we are going to use is the following:
1. Start from a random vertex v and a subgraph H containing

only vertex v . Remember this vertex, so let u := v .
2. Choose the lightest edge which is incident to v and its

other endpoint is not contained in H. Add this edge with its
endpoint to H and let v be the recently added vertex.

3. If H does not contain all the vertices of the input graph,
then repeat step 2. Otherwise add the edge whose
endpoints are v and u.

B

P2 P3

P1

2

1

3

3

9

2

Trying to solve TSP with a greedy algorithm (nearest neighbor)

The algorithm which we are going to use is the following:
1. Start from a random vertex v and a subgraph H containing

only vertex v . Remember this vertex, so let u := v .
2. Choose the lightest edge which is incident to v and its

other endpoint is not contained in H. Add this edge with its
endpoint to H and let v be the recently added vertex.

3. If H does not contain all the vertices of the input graph,
then repeat step 2. Otherwise add the edge whose
endpoints are v and u.

B

P2 P3

P1

2

1

3

3

9

2
B

P2 P3

P1

2

3

3

9

2

1

Trying to solve TSP with a greedy algorithm (nearest neighbor)

The algorithm which we are going to use is the following:
1. Start from a random vertex v and a subgraph H containing

only vertex v . Remember this vertex, so let u := v .
2. Choose the lightest edge which is incident to v and its

other endpoint is not contained in H. Add this edge with its
endpoint to H and let v be the recently added vertex.

3. If H does not contain all the vertices of the input graph,
then repeat step 2. Otherwise add the edge whose
endpoints are v and u.

B

P2 P3

P1

2

1

3

3

9

2
B

P2 P3

P1

2

3

3

9

2

1

B

P2 P3

P1

3

3

9

2

1

2

Trying to solve TSP with a greedy algorithm (nearest neighbor)

The algorithm which we are going to use is the following:
1. Start from a random vertex v and a subgraph H containing

only vertex v . Remember this vertex, so let u := v .
2. Choose the lightest edge which is incident to v and its

other endpoint is not contained in H. Add this edge with its
endpoint to H and let v be the recently added vertex.

3. If H does not contain all the vertices of the input graph,
then repeat step 2. Otherwise add the edge whose
endpoints are v and u.

B

P2 P3

P1

2

1

3

3

9

2
B

P2 P3

P1

2

3

3

9

2

1

B

P2 P3

P1

3

3

9

2

1

2

B

P2 P3

P1

3

3

2

1

2

9

Analyzing the algorithm

The weight of the solution given by this greedy algorithm is
2 + 1 + 2 + 9 = 14.

B

P2 P3

P1

3

3

2

1

2

9

B

P2 P3

P1

19

2

3

3

2

The weight of the optimal solution is 2 + 3 + 2 + 3 = 10.
So this greedy algorithm does not give us the optimal solution.

Conclusion: Greedy algorithms usually give bad results.

Analyzing the algorithm

The weight of the solution given by this greedy algorithm is
2 + 1 + 2 + 9 = 14.

B

P2 P3

P1

3

3

2

1

2

9

B

P2 P3

P1

19

2

3

3

2

The weight of the optimal solution is 2 + 3 + 2 + 3 = 10.
So this greedy algorithm does not give us the optimal solution.

Conclusion: Greedy algorithms usually give bad results.

Except when you are searching for a minimum weight spanning
tree...

How to solve the TSP?

Question: Is there an algorithm which gives us the optimal
solution?

Of course there are some. For example calculating the weight
of each Hamiltonian cycle and choosing the minimal works.
This is a brute force algorithm. However there are (n − 1)!/2
Hamiltonian cycles in a complete graph, therefore it takes so
much time.

Note that (n − 1)!/2 /∈ O(2n). It is increasing much faster than
the exponential function. For example (20 − 1)!/2 = 6 · 1016.

Unfortunately no polinomial time algorithm is known which
solves TSP.

Later we will see some methods which can be used to attack
the TSP.

How to solve the TSP?

Question: Is there an algorithm which gives us the optimal
solution?

Of course there are some. For example calculating the weight
of each Hamiltonian cycle and choosing the minimal works.
This is a brute force algorithm. However there are (n − 1)!/2
Hamiltonian cycles in a complete graph, therefore it takes so
much time.

Note that (n − 1)!/2 /∈ O(2n). It is increasing much faster than
the exponential function. For example (20 − 1)!/2 = 6 · 1016.

Unfortunately no polinomial time algorithm is known which
solves TSP.

Later we will see some methods which can be used to attack
the TSP.

How to solve the TSP?

Question: Is there an algorithm which gives us the optimal
solution?

Of course there are some. For example calculating the weight
of each Hamiltonian cycle and choosing the minimal works.
This is a brute force algorithm. However there are (n − 1)!/2
Hamiltonian cycles in a complete graph, therefore it takes so
much time.

Note that (n − 1)!/2 /∈ O(2n). It is increasing much faster than
the exponential function. For example (20 − 1)!/2 = 6 · 1016.

Unfortunately no polinomial time algorithm is known which
solves TSP.

Later we will see some methods which can be used to attack
the TSP.

How to solve the TSP?

Question: Is there an algorithm which gives us the optimal
solution?

Of course there are some. For example calculating the weight
of each Hamiltonian cycle and choosing the minimal works.
This is a brute force algorithm. However there are (n − 1)!/2
Hamiltonian cycles in a complete graph, therefore it takes so
much time.

Note that (n − 1)!/2 /∈ O(2n). It is increasing much faster than
the exponential function. For example (20 − 1)!/2 = 6 · 1016.

Unfortunately no polinomial time algorithm is known which
solves TSP.

Later we will see some methods which can be used to attack
the TSP.

Play with the TSP

If you want to play with the travelling salesman problem, then
visit https://algorithms.discrete.ma.tum.de/
graph-games/tsp-game/index_en.html.

https://algorithms.discrete.ma.tum.de/graph-games/tsp-game/index_en.html
https://algorithms.discrete.ma.tum.de/graph-games/tsp-game/index_en.html

Directed graphs or digraphs

In a directed graph each edge has an orientation, so the
corresponding pair has a fixed order. The first element is the
tail and the second element is the head of the edge.

V (G⃗) = {A,B,C,D}
E(G⃗) =
{(A,C), (A,B), (C,D),
(D,B) (D,E), (E ,C)}

BA

E

C D

So in ⃗(A,C) A is the tail and C is the head. If ⃗(A,C) is an edge,
then we say that C is an out-neighbor of A and A is an
in-neighbor of C.

In an undirected graph A is a neighbor of B if they are
adjacent, equivalently (A,B) is an edge.

Directed graphs, more definitions

Definition: A vertex u is a source if there is no edge whose
head is u. Similarly v is a sink if there is no edge whose tail is
v .

Example: In this digraph
A is a source and B is a
sink.

BA

E

C D

Definition: In a directed graph a
(v0, e⃗1, v1, e⃗2, v2, . . . , ck−1, e⃗k , vk) path (cycle) is a directed
path (directed cycle) if e⃗i = ⃗(vi−1, vi).

Example: (E , {E ,C},C, {C,D},D, {D,E},E) is a directed
cycle in the above digraph.

