
NP, Karp reduction

László Papp

BME

18th of April, 2023

Perfect matching

Definition: A matching M is a perfect matching of graph G if it
covers all the vertices of G.

M

Problem PERFECT MATCHING
Input: A graph G.
Question: Does G have a perfect matching?

Claim
PERFECT MATCHING is in P.
Proof: We can run the augmenting algorithm to find a
maximum matching. If it covers all the vertices then the answer
is yes, otherwise it is no. The algorithm runs in polyonimal time.

The NP complexity class
Definition: Let π be a decision problem. We say that π is in
class NP if the following criteria hold:

1. For each input I, if the answer for I is YES, then there is a
witness WI .

2. The size of WI is polynomial in the size of I.
3. We can verify the YES answer for I by a polynomial time

algorithm, whose input is I and WI .

Example: PERFECT MATCHING ∈ NP.
I The witness WG is an encoding of a perfect matching.
I Since a matching is a subgraph of G, the size of WG is not

bigger than the size of G. So |WG| is polynomial in |G|.
I The verification algorithm reads the edges of WG one by

one, mark the endpoints of each of them and check
whether the two endpoints are adjacent in G. If each
vertex of G is marked exactly once, then WG is a perfect
matching, otherwise it is not. This can be done in
O(|V (G)|) time, so this is a polynomial algorithm.

HAMILTONIAN is in NP

Problem HAMILTONIAN
Input: A graph G
Question: Does G have
a Hamiltonian cycle?

C

A B

D

WG =A,B,D,C

The witness WG is an encoding of the Hamiltonian cycle. It is a
list of the vertices in a proper order: Vertices which are
adjacent in the list are adjacent in G. The first and the last
vertices of the list are also adjacent in G.
The verification algorithm checks these adjacency conditions
and whether each vertex of G is contained exactly once in WG.
The verification can be done in O(n2) time, where n is the
number of vertices of G.

Remark: Most mathematicians and computer scientist believe
that HAMILTONIAN is not in P.

Transforming optimization problems into decision problems

If we have an optimization problem, where we want to minimize
(or maximize) the objective function f over the set of solutions
A, then we can transform it into the following decision problem:

Input: The input of the optimization problem and a number k .
Question: Is there an element x ∈ A such that f (x) ≤ k (in
case of maximization: f (x) ≥ k)?

Examples:
Maximum matching problem
Input: A graph G.
Task: Find a maximum matching.

Decision version of Maximum matching problem
Input: A graph G and a number k .
Question: Does G contain a matching of size at least k?

Decision version vs the optimization version

Solving the decision problem can not be harder than solving the
optimization problem. For example if we can find a maximum
matching in a graph, then we can easily decide whether its size
is at least a given k .

optimization version decision version
easy =⇒ easy
solvable in polynomial time =⇒ contained in P
hard ⇐= hard

An algorithm designed for the decision version usually can be
used to solve the optimization version as well by using
binary-search.

The decision version of the TSP is in NP

Decision version of the TSP:
Input: A complete graph, a weight
function w over its edge set and a
number k .
Question: Is there a Hamiltonian
cycle whose weight is at most k?

A

19

2

3

3

2

B

C D

This problem is in NP, because if the answer is YES, then a
proper witness is a proper transcription (what we used for
HAMILTONIAN) of the Hamiltonian cycle whose weight is not
more than k . The verification algorithm checks whether it is a
Hamiltonian cycle and it sum the edge weights of the
Hamiltonian cycle and compare the result with k .

Example: If the input is the graph above and k = 11, then the
answer is yes and the witness is A,B,C,D which encodes the
blue Hamiltonian cycle.

The decision version of an optimization problem is usually in NP

Remainder: An optimization problem is the following: A is the
set of solutions, f : A→ R is the objective function. Find an
x ∈ A which minimizes (or maximizes) f (x)!

Decision version:
Input: A transcription of A, f and a number k .
Question: Is there a solution x ∈ A which satisfies that
f (x) ≤ k (f (x) ≥ k in case of maximization)?

Claim
If the function f (x) can be calculated in polynomial time for any
x ∈ A, the size of x is polynomial in the size of the input and
x ∈ A can be verified in polynomial time, then the decision
version of the optimization problem is in NP.
Proof: The withness is a solution x which satisfies that f (x) ≤ k
(f (x) ≥ k in case of maximization). The verification algorithm
checks that x ∈ A, then it calculates f (x) and compare it with k .

Not all decision problems are in NP

There are many decision problems for which we know (it is
proved) that they are not contained in NP. Unfortunately they
are complicated. Therefore we consider a problem which is
probably not contained in NP, but nobody has proved it yet.

Complement problem of TSP
Input: A complete graph, a weight
function w over its edge set and a
number k .
Question: Is it true that there is no
Hamiltonian cycle in the graph whose
weight is at most k?

A
2

2

1

3

3

9

B

C D

The conjecture that this problem is not in NP is widely believed
by Computer Scientists and Mathematicians.

SAT is in NP

Problem SAT:
Input: A Boolean formula Φ
Question: Can we assign values 0 and 1 to the variables of Φ
in such a way that Φ evaluates to 1?

Example:
Φ(x1, x2, x3, x4) = (x1∨x2∨¬x3∨x4)∧(¬x1∨x4)∧(x1∨x3)∧¬x3
Φ(1,1,0,1) = 1. So for this input the answer is YES.

1 and 0 are usually interpreted as TRUE and FALSE,
respectively. We say that φ is satisfiable if there is an
assignment which gives TRUE.

SAT is in NP, the witness is an assignment of the variables
which makes Φ be True (1). The verification algorithm
evaluates this assignment. It can be done in polynomial time.

Relation between P and NP

Claim
P⊆NP
Proof: If π is in P, then the witness WI can be anything. We can
verify the YES answer in polynomial time for input I simply by
calculating the answer for I by the polynomial time algorithm
which solves π.

There are many problems which are known to be contained in
NP but we believe that they are not in P. However no one could
prove that P 6= NP. The holy grail of the area is the following
open question:

Open question:
Does P 6=NP?
There is a bounty of one million dollars on this problem. So if
you solve it, you will be rich. Furthermore you receive a PhD in
computer science immediately.

Using the same tool to handle different problems

In real life, if a tool works well in an area then we usually try to
use it somewhere else. Sometimes we found pretty good
applications elsewhere. For example Teflon
(Polytetrafluoroethylene), the material which coats pans is first
used to make gaskets.

In the area of algorithms and optimization methods, we do the
same. If an algorithm works well for a problem α, then we try to
use it for problem β.

Polynomial-time reduction
A polynomial-time reduction (Karp reduction) is a method how
to transform a (decision) problem to another one.
Definition: We say that the mapping F is a Karp reduction
from decision problem α to decision problem β, if:
I F maps each input of α to an input of β.
I F can be calculated in polynomial time, so there is a k ,

such that F (I) can be calculated in O(|I|k) for any input I.
I The answer for I is YES if and only if the answer for F (I)

is YES.
Yes answerYes answer

No answer No answer

F

Inputs of βInputs of α

A Karp reduction from HAMILTONIAN to TSP

F maps an n vertex input graph G to Kn with a weight function
w : E(Kn)→ R given below and set k to n.

w(e) =

{
1 if e is an edge of G
n + 1 if e is not an edge of G

G 1

1

1
1

5
5

F
Input of TSP

Input of
HAMILTONIAN

Correctness of the reduction: If G has a hamiltonian cycle,
then its weight in the created Kn is n, so the answer for the TSP
is YES. If G does not have a hamiltonian cycle, then every
hamiltonian cycle in the created graph contains an edge of
weight n + 1, therefore the answer for TSP is NO.
F (G) can be calculated in O(n3) time, so in polynomial time.

Karp reductions and class P

Notation: If we have have a Karp reduction from α to β, then
we write, that α ≺ β.

Claim
If α ≺ β and β ∈ P, then α ∈ P.
Proof: We have an algorithm B which solves β in polynomial
time, so there is a number kB such that any input IB of β is
solved in O(|IB|kb) time.
Let F be the mapping of the Karp reduction. F can be
calculated in polynomial time. Therefore there is a kF such that
for any input IA of α F (IA) can be calculated in in O(|IA|kF) time.
Hence |F (IA)| ∈ O(|IA|kF).
Let A be the following algorithm: It calculates F (IA),then it runs
algorithm B. A solves problem α correctly.
The running time of A is O(

(
|iA|kF

)kB) = O(|iA|kF kB), hence it
runs in polynomial time.

