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Minimum vertex cover

Remainder: In a graph G,
T ⊆ V (G) is a vertex cover if
for every edge u, v , either
u ∈ T or v ∈ T or both. The
size of the minimum vertex
cover is denoted by τ(G).

T

Optimization version of VERTEX COVER
Input: Graph G.
Task: Find a minimum vertex cover.

Decision version of VERTEX COVER
Input: Graph G and a number k .
Question: Does G have a vertex cover of size at most k?

Claim
(The decision version of) VERTEX COVER is in NP.



The decision version of VERTEX COVER is in NP.

Input: Graph G and a number k .
Question: Does G have a vertex cover of size at most k?

W is a witness for the YES answer if W is subset of V (G), W
covers E(G) and |W | ≤ k .
The verification algorithm checks these three properties:
▶ Checks that each element of W is a vertex of G and no

element of W appears twice or more. It requires at most
O(n2) time.

▶ For each edge of G it checks that one if its endpoints is
contained in W . It requires at most O(en) time.

▶ Counts the size of W and compare it to k . It require at
most O(n) time.

The size of the input is Θ(n + e + log(k)). The size of the
witness is O(n). The time complexity of the verification
algorithm is in O(en). Both of them are polinomial in the size of
the input. Therefore VERTEX COVER is in NP.



Cliques

Definition: A clique in a graph is a complete subgraph. The
clique number ω(G) of graph G is the number of vertices of
the biggest clique of G.

$\omega(G)=3$

In chemistry, bioinformatics and social sciences, finding a
maximum clique is an important task. We can define the
following optimization problem:

Optimization version of CLIQUE
Input: Graph G.
Task: Find a maximum clique of G.



Cliques

Definition: A clique in a graph is a complete subgraph. The
clique number ω(G) of graph G is the number of vertices of
the biggest clique of G.

ω(G) = 3

In chemistry, bioinformatics and social sciences, finding a
maximum clique is an important task. We can define the
following optimization problem:

Optimization version of CLIQUE
Input: Graph G.
Task: Find a maximum clique of G.



Decision version of CLIQUE

Problem CLIQUE
Input: Simple graph G and a number k .
Question: Is ω(G) ≥ k?

CLIQUE is in NP: If G is an input graph and the answer is YES,
then the witness WG is a subset of V (G), which spans a clique
of size k .
So the verification algorithm checks that WG contains k
different vertices and they are pairwise adjacent.
This can be done in O(k2) time.
The answer cannot be YES if k > n. Thus O(k2) ⊆ O(n2), and
therefore this verification algorithm runs in polynomial time.



Complement graph
Definition: Let G be a simple graph. The complement graph
of G, denoted by G, is the simple graph over the same vertex
set which contains edge {u, v} if and only if G does not.

KnG G

Claim
A T ⊆ V (G) is a vertex cover of G if and only if V (G) \ T spans
a clique of G.

Corollary
A T ⊆ V (G) is a minimum vertex cover of G if and only if
V (G) \ T spans a maximum clique of G.
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CLIQUE ≺ VERTEX COVER
The input is a simple graph G and a number k for CLIQUE.
The Karp-reduction F maps the (G, k) pair to (G, |V (G)| − k).
According to the last Claim G has a clique of size k if and only if
G has a vertex cover of size |V (G)| − k . So if the answer of an
input I of CLIQUE is YES (NO), then the answer for F (I), which
is an input of VERTEX COVER, is also YES (NO).
F can be calculated in O(|V (G)|2) time, so this is a polynomial
time reduction.

F

G, |V (G)| − kG, k

Note that F−1 is a VERTEX COVER ≺ CLIQUE Karp-reduction.
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Transitivity of the Karp reduction
Claim: Let α, β and γ be decision problems. If α ≺ β and
β ≺ γ, then α ≺ γ.

Proof: Let F be a Karp-reduction from α to β and let G be a
Karp-reduction from β to γ. Then the mapping G ◦ F is a
Karp-reduction from α to γ.

Yes answer

No answer

Yes answer

No answer

Yes answer

No answer

F G

Inputs of α Inputs of β Inputs of γ

IγIα

The size of F (Iα) is polynomial in the size of Iα, beacuse F can
be calculated in polynomial time. The composition of two
polynomials is a polynomial. Thus G ◦ F can be calculated in
polynomial time. The answer for Iα is YES if and only if the
answer for Iγ = G ◦ F (Iα) is YES.



An interpretation of Karp reduction

▶ A Karp-reduction from α to β is a method which can be
used to solve α efficiently if we can solve β efficiently. So
α ≺ β intuitively means that α is not harder than β.

▶ α ≺ β ≺ γ =⇒ α ≺ γ matches our intiution: If α is not
harder than β and β is not harder than γ then α is not
harder than γ.

▶ We have seen that CLIQUE≺ VERTEX COVER and
CLIQUE≺ VERTEX COVER. This can be interpreted as
that the VERTEX COVER problem is as hard as the
CLIQUE problem in some sense.

▶ We can use this kind of hardness to define a hierarchy of
decision problems.



NP-hard, NP-complete

Definition: If for every problem α ∈ NP α ≺ β holds, then we
say that β is NP-hard.

Note that if we have a polynomial time algorithm for an NP-hard
problem, then P = NP.

Defintion: A decision problem π is NP-complete if it is in NP
and it is NP-hard.

So NP-complete problems are the hardest ones among the
problems contained in NP. But it is not obvious that such a
problem exists.

Cook-Levin Theorem
SAT is NP-Complete.
We are not going to prove this theorem.



CNF-SAT

Definition: In a Boolean formula a literal is a variable xi or its
negated version ¬xi . A clause is a disjunction of literals. A
Boolen formula is CNF (in conjunctive normal form) if it is a
conjunction of several clauses.

Example: (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x4 ∨ x2) ∧ (x1 ∨ x3) ∧ ¬x4 is
CNF but (x1 ∧ x2) ∨ (¬x2 ∧ x3) ∨ (¬x3 ∨ x4) is not.

PROBLEM CNF-SAT
Input: A CNF Boolean formula ϕ
Question: Can we assign values 0 and 1 to the variables of ϕ
such a way that ϕ evaluates to 1?

Claim
CNF-SAT is in NP and CNF-SAT is NP-complete.
The witness is a proper assignment of the variables
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3-SAT

Definition: A Boolean formula is 3-CNF if it is CNF and each
clause contains exactly three literals.
Example: (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x4 ∨ x2) ∧ (x1 ∨ x3 ∨ ¬x4) is
3-CNF but (x1 ∨ x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x4) is not.

Problem 3-SAT
Input: A 3-CNF Boolean formula Φ
Question: Can we assign values 0 and 1 to the variables of Φ
such a way that Φ evaluates to 1?

Claim
There is a polinomial algorithm which converts any Boolen
formula Φ into an equisatisfiable 3 − CNF Boolean formula Φ′,
so Φ is satisfiable ⇐⇒ Φ′ is satisfiable.

Corollary:
3-SAT is NP-complete.



How to prove that problem π is NP-complete?

Reformulation of the definition: π is NP-complete if it is in NP
and for each α ∈ NP α ≺ π.

There are infinitely many problems in the NP class. Therefore
showing for each α ∈NP that there is a Karp reduction from α
to π, is hopeless.

If β ≺ π and β is NP-hard, then for every α ∈ NP α ≺ β and the
transitivity of the Karp reduction implies that α ≺ π. This means
that π is NP-hard.

To prove that π is NP-complete:
▶ Show that π is in NP.
▶ Find an NP-complete problem β and show that β ≺ π.
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CLIQUE is NP-complete

Problem CLIQUE
Input: Simple graph G and a number k .
Question: Is ω(G) ≥ k?

CLIQUE is in NP: If G is an input graph and the answer is YES,
then the witness WG is a subset of V (G), which spans a clique
of size k .
So the verification algorithm checks that WG contains k
different vertices and they are pairwise adjacent.
This can be done in O(k2) time.
The answer cannot be YES if k > n. Thus O(k2) ⊆ O(n2), and
therefore this verification algorithm runs in polynomial time.

CLIQUE is NP-hard: We will give a 3-SAT≺CLIQUE Karp
reduction. Since 3-SAT is NP-hard, the existence of this Karp
reduction proves that CLIQUE is NP-hard as well.

Corollary: CLIQUE is NP-complete.



3-SAT ≺ CLIQUE
For the input ϕ = (l11 ∨ l12 ∨ l13 ) ∧ (l21 ∨ l22 ∨ l23 ) ∧ . . . ∧ (lk1 ∨ lk2 ∨ lk3 )
the reduction creates the following graph:
The vertices of the graph are l ij (the j th literal of the i th clause).
l ij and lmn are adjacent if and only if i ̸= m and l ij ̸= ¬lmn .
(The corresponding literals are not in the same close and they
are not the negate of each other.)
We search for a clique of size ≥ k (the number of clauses).

¬x1 ¬x2 x3

x2 ¬x3x1

x1

¬x2

x3

F
(x1 ∨ x2 ∨ ¬x3)∧
∧(¬x1 ∨ ¬x2 ∨ x3)∧
∧(x1 ∨ ¬x2 ∨ x3)

F can be calculated in O(|ϕ|2) time, so in polynomial time.



Correctness of the reduction
Consider an assignment which satisfies ϕ. In each clause there
is a literal which is true. These literals span a clique of size k .

¬x1 ¬x2 x3

x2 ¬x3x1

x1

¬x2

x3

F
(x1 ∨ x2 ∨ ¬x3)∧
∧(¬x1 ∨ ¬x2 ∨ x3)∧
∧(x1 ∨ ¬x2 ∨ x3)∧

A clique does not contain two literals from the same clause.
Therefore if the size of a clique is the number of the clauses,
then this clique contains one literal from each clause. Setting
these literals to true satisfy ϕ. We can set all of these literals
true because none of them is a negate of another one
contained in the clique.



Corollaries

3-SAT ∈ NP-Complete
3-SAT ≺ CLIQUE
CLIQUE ∈ NP

 =⇒ CLIQUE ∈ NP-Complete

CLIQUE ∈ NP-Complete
CLIQUE ≺ VERTEX COVER
VERTEX COVER ∈ NP

 =⇒ VERTEX COVER
∈ NP-Complete



VERTEX COVER ≺ HAMILTONIAN

A Karp-reduction from VERTEX COVER to HAMILTONIAN is a
bit harder than the reductions which we have seen, but it exists.
If you are interested, you can read it in the book Cormen,
Leiserson, Rivest, Stein: Introduction to Algorithms.

Corollary: HAMILTONIAN and the decision version of the TSP
are NP-complete.



All of these decision problems are NP-complete:

▶ SAT
▶ 3-SAT
▶ CLIQUE
▶ VERTEX COVER
▶ HAMILTONIAN
▶ TSP
▶ Many other decision problems.

If any of them is in P, then all of them are. Many people tried to
give a polynomial time algorithm for them, but no one has been
successful so far. Therefore most people believe that P ̸= NP.



Relations between the classes which we have learnt

If we assume that P ̸= NP, then the classes look like this:

P

NP−Complete

NP−Hard

NP



What to do if our task is to solve an instance of a problem which is
NP-hard?

There are many options:
▶ If its size is small then we can use some exponential time

algorithms.
▶ If the problem is an optimization problem, then we can use

heuristics or approximation algorithms.
▶ Check whether the given instance belongs to a special

version of the problem which is not NP-complete.
Example: CNF-SAT is in NP-Complete, but 2-SAT is in P.
Definition: A Boolean formula is 2-CNF if it is CNF and each
clause contains exactly two literals.

Problem 2-SAT
Input: A 2-CNF boolean formula ϕ.
Question: Can ϕ be satisfied?



Bin packing

Problem: We have boxes (bins) of the same size and many
objects of different sizes. We want to put all the objects in the
boxes. The boxes, their transportation and the storage space
which they require cost money. Therefore we want to use as
few boxes as possible.



Bin packing as an optimization problem

A list of rational numbers between 0 and 1 is given:
a1,a2,a3 . . . an, ∀i 0 ≤ ai ≤ 1. These are the sizes of the
objects. The size of each bin is 1. We can put a set of objects
in a bin only if the sum of their sizes is at most 1. Determine the
least number of bins which are required to pack all the objects!

Example: We have six objects of sizes 0.8, 0.6, 0.6, 0.3, 0.3,
0.3.

We can pack them in 4 bins:

0.8
0.6

0.3

0.6

0.3

0.3

However the sum of the sizes is only 2.9 we cannot pack the
objects in 3 bins, because the object of size 0.8 has to be
packed alone, therefore 0.2 space is wasted in its bin.
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Bin packing as a decision problem

Problem BIN PACKING
Input: A list of rational numbers between 0 and 1 are given:
a1,a2,a3 . . . an, ∀i 0 ≤ ai ≤ 1 and an integer k .
Question: Can we pack all the items of given sizes in k bins of
size one?
Equivalently: Are there disjoint sets B1,B2, . . . ,Bk , such that
∪k

i=1Bi = {1,2, . . .n} and ∀i
∑

j∈Bi
aj ≤ 1?

Claim
BIN PACKING is NP-complete.
It can be shown that BIN PACKING is in NP. A SAT3≺BIN
PACKING exists, but we do not discuss it now.



Trying to solve the optimization version of Bin packing

OK Bin packing is hard, it is unlikely that there is a fast
algorithm which can find an optimal packing if we have more
than 50 items. What to do?

Use an algorithm which does not use much more bins than the
optimal packing (which uses the least amount of bins)!

That is what we call an approximation algorithm. We write the
formal definition later.
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First Fit (FF) Algorithm

We pack the items incrementally. We create a bin B1 and put
the first item in B1. Assume that, we have packed the first i − 1
items and we want to put the i th item in a bin. We do it in the
following way:
We go through the bins in the order of their creation time and
we try to put the i th item in each of them. At the first occurrence
when the item fits in a bin we put it there. If no bin has enough
free space to store the i th item, then we create a new bin and
place the i th item there.
Example: We have six objects of sizes 0.8, 0.6, 0.6, 0.3, 0.3,
0.3.

0.8
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Does First Fit always find an optimal solution?

Of course not, usually it does not find an optimal solution. Last
time we were lucky.
Consider the following input: 4 Bins of sizes 0.4, 0.4, 0.6, 0.6:

0.4

But the optimal solution is:

0.6 0.6

0.4 0.4

Idea: What if we try to pack bigger items first?
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