Combinatorial optimization

László Papp lazsa@cs.bme.hu

2023. spring 3rd practice
2024. Are these matchings maximal? Are these matchings maximum? If none of them are maximum, then find a maximum matching by the algorithm which we have learnt to solve this problem.

2025. Find the distance between S and every other vertex by running Dijkstra's algorithm. Give a shortest path between S and T.

2026. Determine the distance between A and every other vertex. Also give a shortest path between A and B.

2027. Let G be a simple graph and l be a non-negative length function over the edge set $\left(l: E(G) \rightarrow R^{+}\right)$. Denote three different vertices of G by u, v, and w. Are these statements true or false?
(a) If P is a shortest path between u and v and it contains w, then its section between u and w is a shortest path between u and w.
(b) If P_{1} is a shortest path between u and w and similarly P_{2} is a shortest path between w and v, then the concatenation of P_{1} and P_{2} (gluing together P_{1} and P_{2} at w) is a shortest path between u and v.
2028. Is this matching maximal? Is it maximum? If it is not a maximum matching, then find one.

2029. Consider the following graph.

(a) Find a maximum matching in this graph. Give a reasoning why is that maximum.
(b) Does this graph contain a vertex cover set whose size is 5 ?
(c) Is $\{1,2,3,4,1,12\}$ a vertex cover set?
(d) Give a minimum vertex cover set of this graph. Give a reasoning why is that minimum.
2030. Let GRAPH DIAMETER be the following decision problem:

Input: A simple graph G, a non-negative length function $l: E(G) \rightarrow R^{+}$and a number k.

Question: Is it true that $\operatorname{dist}(u, v)$ (the distance between vertices u and v) is at most k for each u, v pair of the vertices?

Show that GRAPH DIAMETER is in P .
8. Consider the following decision problem:

Input: An undirected graph G and two of its vertices: u, v.
Question: Is there a vertex x such that $\operatorname{dist}(x, u) \leq 100$ and $\operatorname{dist}(x, v) \leq 100$? (dist denotes the graph theoretical distance)
Show that this decisision problem is in class P.

