Combinatorial optimization

László Papp lazsa@cs.bme.hu

2023. spring 1st practice

1. Determine whether these functions are in $O\left(n^{2}\right)$.
(a) $10 n^{2}+20 n+|\sin (n)|$
(b) $8 n^{2} \log (n)$
(c) $1.5 n+3 \sqrt{n}$
2. Show that:
(a) $8 n^{2} \log _{2} n \in O\left(n^{3}\right)$
(b) $2 n-\sqrt{n} \in O(n)$
(c) $(n+32)\left(2 n^{2}+12 n\right) \in O\left(n^{3}\right)$
(d) $\left(n \log _{2}\left(n^{2}+2\right)+n^{2}\right)\left(n^{3}+2\right) \in O\left(n^{5}\right)$
3. Show that $n!\notin O\left(n^{100}\right)$.
4. We have two algorithms which solve the same problem. The time complexity of algorithm A is the function $f_{A}(n)$ and similarly the time complexity of B is $f_{B}(n)$. We know that $f_{A}(n) \in O\left(f_{B}(n)\right)$. Are these statements true?
(a) Algorithm A is faster than algorithm B on all possible inputs?
(b) Algorithm A is faster than algorithm B on all sufficiently large inputs?
5. Consider the following algorithm. A step here is the writing of a *. Show that the time complexity of this algorithm is $O\left(n^{3}\right)$.
```
for i=0 to n-1:
    for j=i+1 to n:
    print j pieces of *
```

6. Sort these functions to increasing order according to their growing speed. So if f_{i} preceeds f_{j} that means that $f_{i} \in O\left(f_{j}\right)$ and $f_{j} \notin O\left(f_{i}\right)$.
$f_{1}(n)=8 n^{3} \quad f_{2}(n)=5 \sqrt{n}+1000 n \quad f_{3}(n)=2^{\left(\log _{2} n\right)^{2}} \quad f_{4}(n)=1514 n^{2} \log _{2}(n)$
7. Consider the functions $f(n)=1.5 n$! and $g(n)=200(n-1)$!. Prove or disprove the following statements:
(a) $f(n) \in O(g(n))$
(b) $g(n) \in O(f(n))$
8. Which $a, b>1$ integers satisfy the following?
(a) $\log _{a} n \in O\left(\log _{b} n\right)$
(b) $2^{a n} \in O\left(2^{b n}\right)$
