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These statements are equivalent

1. cT x is bounded above on the set of solutions of Ax ≤ b.
2. The system Az ≤ 0, cT z > 0 does not have a solution.
3. The system yT A = cT , y ≥ 0 has a solution.

Proof: 1.→ 2.: Indirectly assume that there is a solution z0 of
Az ≤ 0, cz > 0. Consider a solution x0 of Ax ≤ b.

Then x0 + λz0 is also a solution of Ax ≤ b if λ > 0:
A(x0 + λz0) = Ax0 + λAz0 ≤ b + λ0 = b.
cT (x0 + λz0) = cT x0 + λcT z0 so it is a linear function in λ which
can be arbitrary large if we choose λ big enough.
2.→ 3.: If Az ≤ 0, cT z > 0 does not have a solution, then the
system Az ≥ 0, cT z < 0 also does not have. Then by the 2nd
version of Farkas’ Lemma yT A = cT , y ≥ 0 has a solution.
3.→ 1.: Let x0 be any solution of Ax ≤ b and let y0 be a
solution of yT A = cT , y ≥ 0. Then:
cT x0 = yT

0 Ax0 ≤ yT
0 b = s, where s is a number and it is an

upper bound on the objective function cT x , because the value
of s does not depend on the choice of x0.
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Duality

Corollary of the proof:
The objective function of the linear program max{cT x | Ax ≤ b}
is bounded above by yT b, where y is a solution of the system
yT A = cT , y ≥ 0. (Or equivalently written: AT y = c, y ≥ 0).

If we want the best upper bound on the objective function cT x ,
then we are looking for the vector y which minimizes bT y
respect to AT y = c, y ≥ 0. This is another linear program.

This linear program is called as the dual, while the original
linear program is called as the primal program.



Duality

Corollary of the proof:
The objective function of the linear program max{cT x | Ax ≤ b}
is bounded above by yT b, where y is a solution of the system
yT A = cT , y ≥ 0. (Or equivalently written: AT y = c, y ≥ 0).

If we want the best upper bound on the objective function cT x ,
then we are looking for the vector y which minimizes bT y
respect to AT y = c, y ≥ 0. This is another linear program.

This linear program is called as the dual, while the original
linear program is called as the primal program.



Dual of the soft drink problem:
Primal problem:

2x1 + 3x2 ≤ 18
4x1 + 1x2 ≤ 16

x1 ≥ 0
x2 ≥ 0

max x1 + x2

Matrix representation:
2 3
4 1
-1 0
0 -1

 ·
[

x1
x2

]
≤


18
16
0
0


max

[
1 1

]
·
[

x1
x2

]
Dual Problem:[
2 4 -1 0
3 1 0 -1

]
·


y1
y2
y3
y4

 =

[
1
1

]
y ≥ 0

min
[

18 16 0 0
]
·


y1
y2
y3
y4



2y1 + 4y2 − y3 = 1
3y1 + y2 − y4 = 1

y1 ≥ 0
y2 ≥ 0
y3 ≥ 0
y4 ≥ 0

min 18y1+16y2



Equivalent form of this problem:

Each of the variables y3 and y4 appear in exactly one equality,
they are non-negative and they do not appear in the objective
function. They are called “slack” variables in the terminology
and their addition is a method to convert inequalities to
equalities by keeping solvability and the optimum value.

2y1 + 4y2 − y3 = 1
3y1 + y2 − y4 = 1

y1, y2, y3, y4 ≥ 0
min 18y1+16y2

2y1 + 4y2 ≥ 1
3y1 + y2 ≥ 1

y1, y2 ≥ 0
min 18y1+16y2

If we omit the slack variables, then we obtain two inequalities
instead of equalities and the obtained linear program has the
same optimum value.
Furthermore a solution of the obtained problem can be easily
converted to the solution of the original problem and vice versa.



Solving the dual by the graphical method

2y1 + 4y2 ≥ 1
3y1 + y2 ≥ 1

y1 ≥ 0
y2 ≥ 0

min 18y1+16y2
(0.3,0.1)

y2 = 7
16 −

9
8y1

y2 = 1
4 −

1
2y1

1
3

1
2 y1

y2 = 1 − 3y1

1
y2

The lines which correspond to the objective function is
y2 = s

16 − 9
8y1. The smallest s which gives intersection with the

solution set is s = 7.
So the optimal solution is y1 = 3

10 , y2 = 1
10 and the value of this

solution is 7.

This was the optimum value of the primal linear program!
It is not a coincidence!
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Duality Theorem

Theorem
Let A be an m × n matrix, b ∈ Rn and c ∈ Rm If the objective
function cT x on the solutions of Ax ≤ b is bounded above, then:

1. The dual program min{bT y | AT y = c, y ≥ 0} has a
solution and it is is bounded below.

2. cT x has a maximum on the set {x | Ax ≤ b} and similarly
bT y has a minimum on the set {y | AT y = c, y ≥ 0}.

3. max{cT x | Ax ≤ b} = min{bT y | AT y = c, y ≥ 0}

We have proved (1). We are going to prove (2) and (3) by a
lemma stated in the next slide.
The statement of (3) is called the Duality Theorem.
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Lemma
If Ax ≤ b has a solution, t is a real number and the system
Ax ≤ b, cT x ≥ t does not have a solution, then the system
yT A = c, y ≥ 0, yT b < t has a solution.
Proof:
We can write the system Ax ≤ b, cT x ≥ t in the following
matrix form:[

A
−cT

]
· x ≤

[
b
−t

]
Since it does not have a solution, by the 1st version of Farkas’
Lemma the following system does have a solution:[

y
λ

]T

·
[

A
−cT

]
= 0,

[
y
λ

]T

≥ 0,
[

y
λ

]T

·
[

b
−t

]
< 0

Which is equivalent to: yT A = λcT , y ≥ 0, λ ≥ 0, yT b < λt .
If λ = 0, then yT A = 0, y ≥ 0, yT b < 0 has a solution and the
1st version of Farkas’ Lemma implies that Ax ≤ b does not
have a solution, which is is a contradiction, so λ ̸= 0.
Therefore for y ′ = y/λ we have that y ′T A = c, y ′ ≥ 0, y ′T b < t .



Proof of the Theorem

Claim: The existence of the optimum solution
If sup{cT x |Ax ≤ b} exists, so the objective function is bounded
by above, then sup{cT x |Ax ≤ b} = max{cT x |Ax ≤ b}.
Proof: Let t = sup{cT x |Ax ≤ b}. Indirectly assume that there
is no x0 such that Ax0 ≤ b and cT x0 = t . Then we apply the
previous lemma, so we have an y0 which satisfies that y0 ≥ 0,
yT

0 A = cT and yT
0 b < t . Therefore: t = sup{cT x |Ax ≤ b} =

sup{yT
0 Ax |Ax ≤ b} ≤ sup{yT

0 b|Ax ≤ b} = yT
0 b < t , which is a

contradiction.

We can use this result to show that min{bT y | AT y = c, y ≥ 0}
has an optimum solution. It can be written as:

min

bT y

∣∣∣∣∣∣
 AT

−AT

-I

 y ≤

 c
-c
0

 = min{bT y |By ≤ d} =

−max{−bT y |By ≤ d} and this has an optimal solution, which
is an optimal solution of min{bT y | AT y = c, y ≥ 0}.



Proof of the Duality theorem:

Claim: The optimal values are the same
If max{cT x |Ax ≤ b} exists, then
max{cT x | Ax ≤ b} = min{bT y | AT y = c, y ≥ 0}.
Proof: Let t = min{bT y | AT y = c, y ≥ 0}, so t is the optimum
value of the dual program. We have seen that t exists.
Indirectly assume that t > max{cT x | Ax ≤ b}. This means that
the system Ax ≤ b, cT x ≥ t does not have a solution. The
lemma implies that the system y ≥ 0, yT A = c and yT b < t has
a solution. Let y0 be such a solution. y0 is also a solution of the
dual, and yT

0 b is less than the optimaum value of the dual,
which is a contradiction.



Other forms of duality

In many problems, the variables must be non-negative. The
dual of these problems have the same non-negativity criteria.

Primal Program:

Ax ≤ b
x ≥ 0

max cT x

Dual Program:

AT y ≥ c
y ≥ 0

min bT y

For these programs the duality theorem gives that
max{cT x | Ax ≤ b, x ≥ 0} = min{bT y | AT y ≥ c, y ≥ 0}

Remark: The dual of the dual program is the primal program.



Recall: Softdrink problem with 3 drinks:

Assume that we also sell a third drink for 1eand it contains 2
deciliter of juice and 2 deciliter of water.
The variables x1, x2, x3 encodes that how many euros do we
earn from selling each drink. We obtain the following set of
inequalities:

2x1 + 3x2 + 2x3 ≤ 18
4x1 + x2 + 2x3 ≤ 16

x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

The feasible region is a polyhedron. The objective function
s = x1 + x2 + x3 is a plane. Therefore we are looking for a
plane, which intersects this polyhedron and where s is maximal.



An application of duality

We have seen that the graphical method works well when there
are only two variables. If our linear program contains at most
two inequalities, except the nonnegativity criteria, then the dual
program has an equivalent form which has at most two
variables!
Now we can handle our earlier problem which leaded to a 3
dimensional problem:

Primal:

2x1 + 3x2 + 2x3 ≤ 18
4x1 + x2 + 2x3 ≤ 16

x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

max x1 + x2 + x3

Dual:

2y1 + 4y2 ≥ 1
3y1 + y2 ≥ 1

2y1 + 2y2 ≥ 1
y1 ≥ 0
y2 ≥ 0

min 18y1 + 16y2



Solving the 3 drink softdrink problem’s dual

Dual:

2y1 + 4y2 ≥ 1
3y1 + y2 ≥ 1

2y1 + 2y2 ≥ 1
y1 ≥ 0
y2 ≥ 0

min 18y1 + 16y2

y2 = 1
4 −

1
2y1

1
3

1
2 y1

y2 = 1 − 3y1

1
y2

y2 = 1
2 − y1

(0.25, 0.25)

y2 = 17
32 −

9
8y1

So the optimal solution is y1 = 1/4, y2 = 1/4 with optimum
value 17

2 . This is also the optimum value for the Primal program,
but we do not know an optimal solution, yet.

If somebody give a solution of the primal whose value is this,
then it is optimal.
x1 = 0 x2 = 1 x3 = 7.5 is a solution and x1 + x2 + x3 = 8.5, so it
is an optimal solution of the Primal program.
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Complexity of Linear Programming

The classes P, NP and NP − Complete contain decision
problems. Therefore we define the decision version of Linear
Programming.

Decision version of LINEAR PROGRAMMING:
Input: A matrix A ∈ Rm×n, a vectors b ∈ Rm and c ∈ Rn and a
number k .
Question: Is there a vector x ∈ Rn which satisfies that Ax ≤ b
and cT x ≥ k?

Theorem
LINEAR PROGRAMMING is in P.
There are many polynomial time algorithms which solves a
linear program. However in the applications usually Simplex
method is used, which is not a polynomial time algorithm, but it
runs pretty well on inputs which come from the real world.
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A modification of the soft drink problem:

We have two kind of products which we serve in cups: Cup A
contains 2 deciliters of juice and 4 deciliters of water for 1e.
Cup B contains 3 deciliters of juice and 1 deciliter of water for
1e. We sell cups of drinks which can not be divided. Now we
have 20 deciliters of juice and 15 deciliters of water. How many
cups of A and B should be produced to maximize our profit?

2x + 3y ≤ 20
4x + 1y ≤ 15

x , y ≥ 0
x , y ∈ Z

max x + y

The optimal solution is
x = 2, y = 5, while the
optimal solution of the
corresponding LP is (2.5,5). 4

(2.5,5)

x

y = 15 − 4x

y = 20
3 − 2

3x

y

y = 7 − x
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Integer Programming

An integer programming problem is the following:
Input: A matrix A ∈ Rm×n and vectors b ∈ Rm and c ∈ Rn.
Task: Find an integer vector x ∈ Zn which satisfies Ax ≤ b and
maximizes cT x .

Some other forms of integer programming problems:
▶ Minimize cT x , respect to Ax ≤ b, x ∈ Zn.
▶ Maximize/minimize cT x , respect to Ax ≤ b,x ≥ 0, x ∈ Zn.
▶ Maximize/minimize cT x , respect to Ax = b, x ≥ 0, x ∈ Zn.



Do we have a duality theorem for integer programs?
Assume that an integer program max{cT x | Ax ≤ b, x ∈ Zn} is
given. We have four problems:

▶ The integer program max{cT x | Ax ≤ b, x ∈ Zn}, denote its
optimum value by maxIP .

▶ The dual integer prog. min{yT b | AT y = c, y ≥ 0, y ∈ Zm},
denote its optimum value by minDIP .

▶ The linear program max{cT x | Ax ≤ b}, denote its
optimum value by maxLP .

▶ The dual linear program, min{yT b | AT y = c, y ≥ 0}
denote its optimum value by minDLP .

If x is the solution of the IP, then it is also a solution of the
corresponding LP, but it is not true in the opposite direction.
Assume that all of these programs have optimal solutions. In
this case, we have that:

max
IP

≤ max
LP

= min
DLP

≤ min
DIP

Conclusion: maxIP ≤ minDIP . Equality usually does not hold.
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Complexity of the decision version of Integer Programming

Decision version of INTEGER PROGRAMMING (IP for short):
Input: A matrix A ∈ Rm×n, vectors b ∈ Rm and c ∈ Rn and a
real number k .
Question: Is there an integer vector x ∈ Zn which satisfies that
Ax ≤ b and cT x ≥ k?

Theorem
INTEGER PROGRAMMING is NP-Complete.


