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Distance in a graph
Definition: The length of a path or a cycle is the number of its
edges.

Example: The lenght of the path below is 3 and the lenght of
the cycle below is 4.
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Definition: The distance between vertices u and v in a
(directed) graph is the length of the shortest (directed) path
which starts from u and ends at v . If there is no (directed) path
between u and v , then we say that the distance between u and
v is infinite. We denote this value by dist(u, v).
Remark: If the graph is directed, then the values dist(u, v) and
dist(v ,u) can be different!



Distance in graph: Examples
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Distance in graph: Examples
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Breadth-first search:
To calculate dist(v ,w), we traverse the graph by an algorithm
called Breadth-first search (BFS). We start it from a vertex v .
A naive description of the algoirthm:

“After we visit the starting vertex we visit its neighbors, then we
visit the neighbors of the neighbors, etc.. . . ”

The BFS algorithm uses a queue (FIFO list: first in first out)
which has two operations:
▶ Enqueue(x): Add element x to the end of the list.
▶ Dequeue(): Remove and return the first element of the list.

The algorithm uses an array or a labelling to store wether a
vertex has been explored or not.
The algorithm also builds up a traversal tree, which is a directed
cycleless graph and it shows that what edges were used to visit
new vertices. An alternative is to store parent labels for vertices
instead. If a vertex u is explored by crossing edge v ,u, then we
say that v is the parent of u.



Breadth-first search, BFS

Input: A graph G (or a directed graph G⃗) and a start vertex v0
which is usually called as the root.

1. Add v0 to queue Q (Enqueue(v0)) and label v0 as explored.
2. Let v be the first element of Q and remove it from Q

(v :=Dequeue()).
3. If v has a not explored (out-)neighbor u, then label u as

explored, add u to the end of Q (Enqueue(u)), add ⃗{v ,u}
to the traversal tree, set p(u) = v and go to step 3.

4. If the traversal que Q is nonempty, then go to step 2,
otherwise STOP.
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The root is A. The blue edges
form the traversal tree.
Q: [A ]

p(B) = A, p(C) = A, p(E) = B,
p(F ) = C, p(D) = C,
p(G) = D.
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Breadth-first search, BFS

Input: A graph G (or a directed graph G⃗) and a start vertex v0
which is usually called as the root.

1. Add v0 to queue Q (Enqueue(v0)) and label v0 as explored.
2. Let v be the first element of Q and remove it from Q

(v :=Dequeue()).
3. If v has a not explored (out-)neighbor u, then label u as

explored, add u to the end of Q (Enqueue(u)), add ⃗{v ,u}
to the traversal tree, set p(u) = v and go to step 3.

4. If the traversal que Q is nonempty, then go to step 2,
otherwise STOP.
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Breadth-first search, BFS

Input: A graph G (or a directed graph G⃗) and a start vertex v0
which is usually called as the root.

1. Add v0 to queue Q (Enqueue(v0)) and label v0 as explored.
2. Let v be the first element of Q and remove it from Q

(v :=Dequeue()).
3. If v has a not explored (out-)neighbor u, then label u as

explored, add u to the end of Q (Enqueue(u)), add ⃗{v ,u}
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otherwise STOP.
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Breadth-first search, BFS

Input: A graph G (or a directed graph G⃗) and a start vertex v0
which is usually called as the root.

1. Add v0 to queue Q (Enqueue(v0)) and label v0 as explored.
2. Let v be the first element of Q and remove it from Q

(v :=Dequeue()).
3. If v has a not explored (out-)neighbor u, then label u as

explored, add u to the end of Q (Enqueue(u)), add ⃗{v ,u}
to the traversal tree, set p(u) = v and go to step 3.

4. If the traversal que Q is nonempty, then go to step 2,
otherwise STOP.
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,
p(G) = D.



Breadth-first search, BFS

Input: A graph G (or a directed graph G⃗) and a start vertex v0
which is usually called as the root.

1. Add v0 to queue Q (Enqueue(v0)) and label v0 as explored.
2. Let v be the first element of Q and remove it from Q

(v :=Dequeue()).
3. If v has a not explored (out-)neighbor u, then label u as

explored, add u to the end of Q (Enqueue(u)), add ⃗{v ,u}
to the traversal tree, set p(u) = v and go to step 3.

4. If the traversal que Q is nonempty, then go to step 2,
otherwise STOP.
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Breadth-first search, BFS

Input: A graph G (or a directed graph G⃗) and a start vertex v0
which is usually called as the root.

1. Add v0 to queue Q (Enqueue(v0)) and label v0 as explored.
2. Let v be the first element of Q and remove it from Q

(v :=Dequeue()).
3. If v has a not explored (out-)neighbor u, then label u as

explored, add u to the end of Q (Enqueue(u)), add ⃗{v ,u}
to the traversal tree, set p(u) = v and go to step 3.

4. If the traversal que Q is nonempty, then go to step 2,
otherwise STOP.
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The root is A. The blue edges
form the traversal tree.
Q: [ ]
p(B) = A, p(C) = A, p(E) = B,
p(F ) = C, p(D) = C,
p(G) = D.



The BFS tree

The directed path contained in
the BFS tree between A and G
can be obtained by the reversal
of G,p(G) = D,p(p(G)) =
C,p(p(p(G))) = A.
Let’s say that the level of a
vertex v is the number of times
that p() need to be called to v
to obatin the root vertex A,
which is equals to the length of
the path connecting A nad v in
the BFS tree.
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Claim: The level of v equals to dist(A, v).
Corollary: The vertices contained at level k are the set of
vertices whose distance from the root is exactly k .
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Analyzing the BFS

Question: What is the time complexity of the BFS?

Hand-shaking lemma
In any finite graph the sum of the degrees equals twice the
number of the edges:

∑
v∈V (G) d(v) = 2e(G).

During the BFS we explore each vertex at most once and for
each explored vertex we look for all of its (out-)neighbors. If the
graph is given by an adjacency list, then looking for all the
neighbors of a vertex v takes d(v) operations. So these
requires at most n +

∑
v∈V (G) d(v) = n + 2e ∈ O(n + e)

operations.
Adding an element to the end of the traversal queue Q and
removing the first element of Q can be done in constant steps.
Each vertex is added and deleted at most once, therefore the
usage of the traversal queue requires O(n) steps. Setting the
labeling of all vertices can be done in O(n) as well.
All in all the time complexity of the BFS algorithm is in O(n + e).



Another application of BFS:
We can decide algorihmically whether a given undirected graph
is connected by running the BFS algorithm. If BFS visits all the
vertices, then the graph is connected, otherwise it is not.

Corollary
We can decide whether a graph is connected in polynomial
time.

The BFS is a kind of building-block of many algorithms. Next
week we will see an algorithm which uses the BFS algorithm
several times.



Shortest path in real world applications

The distance is not the number of edges, each edge has its
own length, which can be any real number. In this course we
are speaking about non-negative lengths.

So a length function l : E(G) → R+ is given, which tells the
length of each edge.



Distance given by a length function

Definition
The length (given by the function l) of a path containing
edges e1,e2, . . . ,ek is

∑k
i=1 l(ei). So it is the sum of the length

of its edges.
The distance between vertices u and v in a graph (in a
directed graph) is the length of a shortest (directed) path
between u and v .
Example:
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Distance given by a length function

Definition
The length (given by the function l) of a path containing
edges e1,e2, . . . ,ek is

∑k
i=1 l(ei). So it is the sum of the length

of its edges.
The distance between vertices u and v in a graph (in a
directed graph) is the length of a shortest (directed) path
between u and v .
Example:
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Calculating the shortest path

There are many different algorithms which find the shortest
path between a given pair of vertices. Most of them use the
concept of improving an upper bound by an edge:

Assume that we have an upper bound on each distance in the
graph, so we have a function b which satisfies that
b(u, v) ≥ dist(u, v) for any u, v pair of vertices.

u

b(u,w)=8 w

vb(u,v)=10

u

b(u,v)=12

b(u,w)=8 w

v

l(w,v)=2 l(w,v)=2

If {w , v} is an edge and b(u,w) + l({w , v}) < b(u, v), then we
replace b(u, v) with b(u,w) + l({w , v}) and we obtain a smaller
upper bound function.



Dijkstra’s algorithm

Input: Let G be an undirected (or directed) graph and l be a
non-negative length function over the edge set of G, so
l : E(G) → R+ ∪ 0 and let s ∈ V (G) be a given vertex.

The algorithm determines the dist(s, v) distance for any vertex
v . During the algorithm we update the d(v) value which is an
upper bound on dist(s, v). We place the vertices one by one to
a set called FINISHED. If vertex v is in FINISHED it means that
d(v) = dist(s, v). During this procedure we also calculate a
mapping V (G) → V (G) ∪ ∅. The semantics of this F is the
following: If dist(s, v) < ∞, then there is a shortest s, v
(directed) path whose last edge is {F (v), v}. (F() works like the
parent function p() in BFS.)

At the end of the algorithm d(v) = dist(s, v) for all the vertices.
The algorithm also gives a tree which, for each vertex v ,
contains a shortest path between s and v .



Dijkstra’s algorithm

Input: Undirected or directed graph G, non-negative length
function l : E(G) → R+ ∪ 0 and a vertex s.

0. FINISHED= {s}, d(s) := 0, d(v) = ∞ for any vertex v
which is not s and let u := s.

1. Try to improve the d() upper bound by all the edges ⃗{u, v}
(directed edges {u,v} in case of a directed graph) where v
is not in FINISHED: If d(u) + l({u, v}) < d(v), then set
d(v) to d(u) + l({u, v}) and F (v) := u.

2. Set u to be the vertex whose d() is minimal among the
vertices which are not contained in FINISHED. Add u to
FINISHED and mark the edge {F (u),u}.

3. If FINISHED does not contain all the vertices, then go to
step 1.

Output: The functions d(v), F (v) and the set of marked edges.



Example for Dijkstra’s algorithm
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Example for Dijkstra’s algorithm
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How fast is Dijkstra’s algorithm?

Let n be the number of vertices. After a vertex has been put to
FINISHED we try to improve among some edges which are
incident to it, therefore their number is less than n. We add all
the n vertices to the FINISHED set, so all the improvement of
d() can be done in O(n2).
When we choose that which vertex should be added to
FINISHED, we have to find a vertex whose current d() value is
minimal. We can do it in O(n) steps. We do this n times,
therefore this part of the algorithm can be done in O(n2) time.
Marking the edges of the tree containing the shortest paths can
be done in O(n2) steps.
All the steps can be done in O(n2) time.

Corollary: We can calculate the shortest paths starting from a
vertex in polinomial time if there are no negative edge lengths.
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FINISHED we try to improve among some edges which are
incident to it, therefore their number is less than n. We add all
the n vertices to the FINISHED set, so all the improvement of
d() can be done in O(n2).
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Finding shortest paths in case of negative edge length

We can calculate the distance between any two vertex in
polynomial time if negative edge lengths are allowed but there
is no directed cycle of negative length. Dijkstra does not work
for that case. If you are interested, then google for
Bellman-Ford algorithm or Floyd’s algorithm.

1

B C

A

−3

1

There is no known polynomial-time algorithm which find a
shortest path between two vertices in a graph which contains a
directed cycle of negative length.


