
Introduction to algorithms, Big O notation

László Papp

BME

2023. 03. 03.

Course information

▶ Lecture: Room E302 at 12:15-13:45 on Fridays, all weeks
▶ Practice lecture: Room IB138 at 17:15-18:45 on Tuesdays,

only on even weeks
▶ All official information will be announced on the

Homepage, its location is www.cs.bme.hu/~lazsa/
combopt2023/combopt2023.html Please follow it.

▶ Slides will be uploaded to the homepage.
▶ There will be no slides for practice sessions.

www.cs.bme.hu/~lazsa/combopt2023/combopt2023.html
www.cs.bme.hu/~lazsa/combopt2023/combopt2023.html

Contact

▶ You can send me a message on Teams.
▶ My email address: lazsa88@gmail.com
▶ You can meet me at my office IE217.3 at 10:00-11:30 on

Fridays.
▶ You can ask me after the lectures/practice sessions

Requirements

There will be two midterms during the semester:
▶ 19th of April, 18:00-20:00 Location: TBA
▶ 18th of May, 18:00-20:00 ?? Location: TBA

▶ To complete the course you have to receive at least 40%
of the points at each midterm.

▶ If you fail them or want to improve your grade, there will be
two occasions at the end of the semester where you can
retake a midterm.

▶ More details (location for example) will be announced later
in homepage.

What is an optimization problem?

A set A and an objective function f : A → R is given. A contains
the possible solutions of a problem and for any x ∈ A f (x) is a
real number.
We are looking for an element y in A which satisfies that f (y) is
the smallest/biggest possible.

Example: A = [−1,4], f (x) = 2 − x2 + 3x . Find an element of
A where f attains its maximum value (if such an element exists)!

We can find such an element
by using calculus:
f ′(x) = −2x + 3, f ′(3

2) = 0 and
f ′′(x) = −2. Therefore 3

2 is a
maximum point and the
maximum value is f (3

2) =
17
4 .

What is an optimization problem?

A set A and an objective function f : A → R is given. A contains
the possible solutions of a problem and for any x ∈ A f (x) is a
real number.
We are looking for an element y in A which satisfies that f (y) is
the smallest/biggest possible.

Example: A = [−1,4], f (x) = 2 − x2 + 3x . Find an element of
A where f attains its maximum value (if such an element exists)!

We can find such an element
by using calculus:
f ′(x) = −2x + 3, f ′(3

2) = 0 and
f ′′(x) = −2. Therefore 3

2 is a
maximum point and the
maximum value is f (3

2) =
17
4 .

What is combinatorial optimization?

Now the set of possible solutions A is finite and contains
combinatorial objects. We are looking for a solution x which
maximizes (or minimizes) the objective function.
Example:

Find the fastest route from Budapest to Venice!

What is the difference between continuous and combinatorial
(discrete) optimization?

Optimization Continuous Combinatorial
Search space
Number of elements infinit finite
Topology continuous discrete
Tools to solve
Calculus important less useful
Linear algebra useful useful
Algorithmic theory useful very important
Graph theory useless important

During the semester we are going to focus on three mayor
areas: Algorithmic theory, Graph theory and Linear algebra.

What is an algorithm?

We do not give a formal definition for what an algorithm is. We
usually say the following:
An algorithm is a method which can be implemented as a
computer program and can be executed on a computer.

Input Algorithm Output

Numbers

a and b

Addition

algorithm

Number

a+b

Example:

An algorithm usually has an input and an output. The algorithm
receives its input, works with it, then it gives us its output.

Example: An algorithm for addition

Input: Integers a and b.
The algorithm is what we have learnt in elementary school:

We add multi digit numbers by digits starting from the ones
column at the right and if the sum of the two digits is bigger
than one then we carry the “extra” digit to the next column.

147
+105

252

10010011
+1101001
11111100

There are several algorithms for addition, but most of us have
learnt this one. Why?
Because it is simple and “fast”, but what does “ fast” mean?

How to measure the efficiency of an algorithm?

Problem: We have a problem and we found two or more
algorithms which solve it. Which one should we use?

There are several metrics which measure how good an
algorithm is. For example: How much memory does it need,
how many processor cores does it utilize, how much time does
a computer need to execute it on a specified input, etc.

In this course we are focusing only at the running time of an
algorithm. The running time of an algorithm depends on several
things, for example the type of the computer which we use. To
get rid of the differences between computers, instead of
measuring time, we count the number of elementary operations
which the algorithm makes before it gives back its output.

The obtained number still depends on the input. For example
multiplying big numbers requires more time than multiplying
small ones.

How to measure the efficiency of an algorithm?

Problem: We have a problem and we found two or more
algorithms which solve it. Which one should we use?

There are several metrics which measure how good an
algorithm is. For example: How much memory does it need,
how many processor cores does it utilize, how much time does
a computer need to execute it on a specified input, etc.

In this course we are focusing only at the running time of an
algorithm. The running time of an algorithm depends on several
things, for example the type of the computer which we use. To
get rid of the differences between computers, instead of
measuring time, we count the number of elementary operations
which the algorithm makes before it gives back its output.

The obtained number still depends on the input. For example
multiplying big numbers requires more time than multiplying
small ones.

How to measure the efficiency of an algorithm?

Problem: We have a problem and we found two or more
algorithms which solve it. Which one should we use?

There are several metrics which measure how good an
algorithm is. For example: How much memory does it need,
how many processor cores does it utilize, how much time does
a computer need to execute it on a specified input, etc.

In this course we are focusing only at the running time of an
algorithm. The running time of an algorithm depends on several
things, for example the type of the computer which we use. To
get rid of the differences between computers, instead of
measuring time, we count the number of elementary operations
which the algorithm makes before it gives back its output.

The obtained number still depends on the input. For example
multiplying big numbers requires more time than multiplying
small ones.

The size of the input

Definition
Fix an alphabet. The size of the input over this alphabet is the
number of symbols (contained in the alphabet) needed to
encode the input.

Example
The lenght of an integer:
▶ Input: An integer a
▶ Alphabet: {1,2,3,4,5,6,7,8,9,0} (we use the decimal

number system now)
▶ If the input is 168, then its size is 3.
▶ If the input is an integer a, then its size is ⌈log10(a + 1)⌉.

In the computer’s memory everything is a binary number.
Therefore the input is encoded as a binary number.
If the input is a natural number a, then its size is ⌈log2(a + 1)⌉.

We will write log2(a) in the later slides for simplicity.

The size of the input

Definition
Fix an alphabet. The size of the input over this alphabet is the
number of symbols (contained in the alphabet) needed to
encode the input.

Example
The lenght of an integer:
▶ Input: An integer a
▶ Alphabet: {1,2,3,4,5,6,7,8,9,0} (we use the decimal

number system now)
▶ If the input is 168, then its size is 3.
▶ If the input is an integer a, then its size is ⌈log10(a + 1)⌉.

In the computer’s memory everything is a binary number.
Therefore the input is encoded as a binary number.
If the input is a natural number a, then its size is ⌈log2(a + 1)⌉.

We will write log2(a) in the later slides for simplicity.

The size of the input

Question: What is the size of 168 if we encode it as a binary
number?

Answer: ⌈log2(169)⌉ = 8. 168 in binary form is 10101000 and

the number of digits is 8.

Remark: The logarithmic identity logk (x) =
log2(x)
log2(k)

guarantees
that using binary encoding instead of an alphabet containing k
symbols results in an log2 k increase of the size of the input.
For example the size of a number in the binary number system
is approximately log2 10 ≈ 3.2 times its size in the decimal
system.
Therefore the size of the alphabet is not important.

From now, log(n) denotes the base 2 logarithm of n.

The size of the input

Question: What is the size of 168 if we encode it as a binary
number?
Answer: ⌈log2(169)⌉ = 8. 168 in binary form is 10101000 and

the number of digits is 8.

Remark: The logarithmic identity logk (x) =
log2(x)
log2(k)

guarantees
that using binary encoding instead of an alphabet containing k
symbols results in an log2 k increase of the size of the input.
For example the size of a number in the binary number system
is approximately log2 10 ≈ 3.2 times its size in the decimal
system.
Therefore the size of the alphabet is not important.

From now, log(n) denotes the base 2 logarithm of n.

Estimating the running time

The running time depends on the size of the input, but it also
depensd on the structure of the input.
For example calculating 10000 · 1 is much easier than
calculating 432 ·167, but the sizes of these inputs are the same.

For safety reasons, (think about mission critical applications like
airplanes, self-driving cars, powerplants, etc.) we are generally
interested in the worst case scenario.

Definition
The time complexity of an algorithm A is an integer-valued
function f whose value at n tells us the maximum number of
steps (elementary operations) which need to be executed on
any input of size n.

Usually it is hard to calculate the time complexity of an
algorithm, but a close upper bound is good enough for us. For
example if the time complexity is 3n2 − 2n + 1 then 3n2 is an
upper bound and it is much easier to work with.

Estimating the running time

The running time depends on the size of the input, but it also
depensd on the structure of the input.
For example calculating 10000 · 1 is much easier than
calculating 432 ·167, but the sizes of these inputs are the same.
For safety reasons, (think about mission critical applications like
airplanes, self-driving cars, powerplants, etc.) we are generally
interested in the worst case scenario.

Definition
The time complexity of an algorithm A is an integer-valued
function f whose value at n tells us the maximum number of
steps (elementary operations) which need to be executed on
any input of size n.

Usually it is hard to calculate the time complexity of an
algorithm, but a close upper bound is good enough for us. For
example if the time complexity is 3n2 − 2n + 1 then 3n2 is an
upper bound and it is much easier to work with.

Estimating the running time

The running time depends on the size of the input, but it also
depensd on the structure of the input.
For example calculating 10000 · 1 is much easier than
calculating 432 ·167, but the sizes of these inputs are the same.
For safety reasons, (think about mission critical applications like
airplanes, self-driving cars, powerplants, etc.) we are generally
interested in the worst case scenario.

Definition
The time complexity of an algorithm A is an integer-valued
function f whose value at n tells us the maximum number of
steps (elementary operations) which need to be executed on
any input of size n.

Usually it is hard to calculate the time complexity of an
algorithm, but a close upper bound is good enough for us. For
example if the time complexity is 3n2 − 2n + 1 then 3n2 is an
upper bound and it is much easier to work with.

Estimating the running time

The running time depends on the size of the input, but it also
depensd on the structure of the input.
For example calculating 10000 · 1 is much easier than
calculating 432 ·167, but the sizes of these inputs are the same.
For safety reasons, (think about mission critical applications like
airplanes, self-driving cars, powerplants, etc.) we are generally
interested in the worst case scenario.

Definition
The time complexity of an algorithm A is an integer-valued
function f whose value at n tells us the maximum number of
steps (elementary operations) which need to be executed on
any input of size n.

Usually it is hard to calculate the time complexity of an
algorithm, but a close upper bound is good enough for us. For
example if the time complexity is 3n2 − 2n + 1 then 3n2 is an
upper bound and it is much easier to work with.

The big O notation

Definition
Let f (n) and g(n) be real functions. Then f (n) ∈ O(g(n))
means that there exists a natural number N and a positive
constant c, such that for every n ≥ N, |f (n)| ≤ cg(n).
Example: 2n3 − 8n2 + 25 ∈ O(n3) because
|2n3 − 8n2 + 25| ≤ 2n3 for all n > 2 = N. This requires some
reasoning!

The meaning of the big O notation
▶ 2n3 − 8n2 + 25 ∈ O(n3) means that after a while (the

absolute value of) 2n3 − 8n2 + 25 does not grow faster
than a constant multiple of n3.

▶ 2n3 − 8n2 + 25 /∈ O(n2) means that 2n3 − 8n2 + 25 grows
faster than any quadratic function.

▶ If you are good at calculus, then you can think about the
following equivalent definition: f (n) ∈ O(g(n)) if and only if
lim supn→∞

∣∣∣ f (n)
g(n)

∣∣∣ < ∞.

Using the big O notation for time complexities

The time complexity of an algorithm is function whose domain
and codomain are both nonnegative. (The lenght of the input is
nonnegative and a computer cannot make −2 steps.) So if we
talk about time complexities we can ommit the absolut vale
from the definition of the big O notation.

Definition (Big O for time complexities)
Let f (n) be an R+ → R+ ∪ {0} (nonnegative) funcion and g(n)
be a real function. Then f (n) ∈ O(g(n)) means that there exists
a natural number N and a positive constant c, such that for
every n ≥ N, f (n) ≤ cg(n).
Since in this course we are talking about algorithms we will use
this defintion for big O from now.

Examples for O notation

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n3)?

Answer: Yes, because there is a pair of c,N which satisfies the
definition:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 if n ≥ 2, so f (n) ≤ cn3 for all
n ≥ N if c = 5, N = 2.
Note that the pair c = 6, N = 3 is also good.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n4)?
Answer: Yes, we can verify the definition again:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 ≤ 5n4 if n ≥ 2, so
f (n) ≤ cn4 for all n ≥ B if c = 5, N = 2.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n2)?
Answer: No.
Homework: Prove it!

Examples for O notation

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n3)?
Answer: Yes, because there is a pair of c,N which satisfies the
definition:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 if n ≥ 2, so f (n) ≤ cn3 for all
n ≥ N if c = 5, N = 2.
Note that the pair c = 6, N = 3 is also good.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n4)?
Answer: Yes, we can verify the definition again:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 ≤ 5n4 if n ≥ 2, so
f (n) ≤ cn4 for all n ≥ B if c = 5, N = 2.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n2)?
Answer: No.
Homework: Prove it!

Examples for O notation

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n3)?
Answer: Yes, because there is a pair of c,N which satisfies the
definition:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 if n ≥ 2, so f (n) ≤ cn3 for all
n ≥ N if c = 5, N = 2.
Note that the pair c = 6, N = 3 is also good.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n4)?

Answer: Yes, we can verify the definition again:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 ≤ 5n4 if n ≥ 2, so
f (n) ≤ cn4 for all n ≥ B if c = 5, N = 2.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n2)?
Answer: No.
Homework: Prove it!

Examples for O notation

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n3)?
Answer: Yes, because there is a pair of c,N which satisfies the
definition:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 if n ≥ 2, so f (n) ≤ cn3 for all
n ≥ N if c = 5, N = 2.
Note that the pair c = 6, N = 3 is also good.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n4)?
Answer: Yes, we can verify the definition again:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 ≤ 5n4 if n ≥ 2, so
f (n) ≤ cn4 for all n ≥ B if c = 5, N = 2.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n2)?
Answer: No.
Homework: Prove it!

Examples for O notation

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n3)?
Answer: Yes, because there is a pair of c,N which satisfies the
definition:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 if n ≥ 2, so f (n) ≤ cn3 for all
n ≥ N if c = 5, N = 2.
Note that the pair c = 6, N = 3 is also good.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n4)?
Answer: Yes, we can verify the definition again:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 ≤ 5n4 if n ≥ 2, so
f (n) ≤ cn4 for all n ≥ B if c = 5, N = 2.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n2)?

Answer: No.
Homework: Prove it!

Examples for O notation

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n3)?
Answer: Yes, because there is a pair of c,N which satisfies the
definition:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 if n ≥ 2, so f (n) ≤ cn3 for all
n ≥ N if c = 5, N = 2.
Note that the pair c = 6, N = 3 is also good.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n4)?
Answer: Yes, we can verify the definition again:
3n3 + 2n log(n) ≤ 3n3 + 2n2 ≤ 5n3 ≤ 5n4 if n ≥ 2, so
f (n) ≤ cn4 for all n ≥ B if c = 5, N = 2.

Question: Is f (n) = 3n3 + 2n log(n) ∈ O(n2)?
Answer: No.
Homework: Prove it!

Proof that n3 /∈ O(n2):

We prove it by contradiction.

Assume the contrary, so suppose that n3 ∈ O(n2).
According to the definition of big O notation, there is a natural
number N and a positive constant c such that n3 ≤ cn2 for all
n ≥ N.

After dividing by n2 we get that n ≤ c for all n ≥ N.

On the other hand, we know that limn→∞ n = ∞, so the function
f (n) = n can not be bounded by a positive constant.

Therefore we obtained a contradiction, which means that our
initial assumption was false.

Remark: The same reasoning shows that f (n) = nk /∈ O(nl) if
l < k for all k , l ∈ R.

Proof that n3 /∈ O(n2):

We prove it by contradiction.

Assume the contrary, so suppose that n3 ∈ O(n2).
According to the definition of big O notation, there is a natural
number N and a positive constant c such that n3 ≤ cn2 for all
n ≥ N.

After dividing by n2 we get that n ≤ c for all n ≥ N.

On the other hand, we know that limn→∞ n = ∞, so the function
f (n) = n can not be bounded by a positive constant.

Therefore we obtained a contradiction, which means that our
initial assumption was false.

Remark: The same reasoning shows that f (n) = nk /∈ O(nl) if
l < k for all k , l ∈ R.

Proof that n3 /∈ O(n2):

We prove it by contradiction.

Assume the contrary, so suppose that n3 ∈ O(n2).
According to the definition of big O notation, there is a natural
number N and a positive constant c such that n3 ≤ cn2 for all
n ≥ N.

After dividing by n2 we get that n ≤ c for all n ≥ N.

On the other hand, we know that limn→∞ n = ∞, so the function
f (n) = n can not be bounded by a positive constant.

Therefore we obtained a contradiction, which means that our
initial assumption was false.

Remark: The same reasoning shows that f (n) = nk /∈ O(nl) if
l < k for all k , l ∈ R.

Proof that n3 /∈ O(n2):

We prove it by contradiction.

Assume the contrary, so suppose that n3 ∈ O(n2).
According to the definition of big O notation, there is a natural
number N and a positive constant c such that n3 ≤ cn2 for all
n ≥ N.

After dividing by n2 we get that n ≤ c for all n ≥ N.

On the other hand, we know that limn→∞ n = ∞, so the function
f (n) = n can not be bounded by a positive constant.

Therefore we obtained a contradiction, which means that our
initial assumption was false.

Remark: The same reasoning shows that f (n) = nk /∈ O(nl) if
l < k for all k , l ∈ R.

Proof that n3 /∈ O(n2):

We prove it by contradiction.

Assume the contrary, so suppose that n3 ∈ O(n2).
According to the definition of big O notation, there is a natural
number N and a positive constant c such that n3 ≤ cn2 for all
n ≥ N.

After dividing by n2 we get that n ≤ c for all n ≥ N.

On the other hand, we know that limn→∞ n = ∞, so the function
f (n) = n can not be bounded by a positive constant.

Therefore we obtained a contradiction, which means that our
initial assumption was false.

Remark: The same reasoning shows that f (n) = nk /∈ O(nl) if
l < k for all k , l ∈ R.

A property of big O notation:

Claim
If f (n) ∈ O(g(n)) and g(n) ∈ O(h(n)), then f (n) ∈ O(h(n)).

Proof: f (n) ∈ O(g(n)) means that there is a c1 > 0, N1 pair
such that f (n) ≤ c1g(n) for all n ≥ N1.
Similary g(n) ∈ O(h(n)) means that there is a c2 > 0, N2 pair
such that g(n) ≤ c2h(n) for all n ≥ N2.
Combining these we obtain that:
f (n) ≤ c1g(n) ≤ c1c2h(n) for all n ≥ max(N1,N2).
So f (n) ∈ O(h(n)), because c1c2 > 0 so c1c2, max(N1,N2) is a
good pair which satisfies the defintion of O(h(n)).

The hierarchy of functions

Let f (n) << g(n) denote that f (n) ∈ O(g(n)) but
g(n) /∈ O(f (n)).

Claim
▶ log(n) << nk for any positive k
▶ nk << 2n for any k

log(n) <<
√

n << n << n2 << n3 << n1000 << 2n << en.

The hierarchy of functions

Let f (n) << g(n) denote that f (n) ∈ O(g(n)) but
g(n) /∈ O(f (n)).

Claim
▶ log(n) << nk for any positive k
▶ nk << 2n for any k

log(n) <<
√

n << n << n2 << n3 << n1000 << 2n << en.

The time complexity of addition
Input: Integers a and b. The length of the input is
log a + log b = n. An elementary step is the addition of two bits.

147
+105

252

10010011
+1101001
11111100

Since we make at most two additions at each column (one is
comming from the carry bit), the number of operations is at
most 2(max(log a, log b)) ≤ 2(log a + log b) = 2n ∈ O(n).

So the running time is linear in the size of the input. Note that
we can not have much faster algorithm for addition since to add
two numbers we have to read them and reading require n steps.

Question: We know that we can add any two integers of lenght
8 in 1 minute. How much time do we need to add two integers
of lenght 40?
Answer: Since the time complexity is linear and 40 = 5 · 8 we
can do this task approximately in 5 · 1 = 5 minutes.

The time complexity of addition
Input: Integers a and b. The length of the input is
log a + log b = n. An elementary step is the addition of two bits.

147
+105

252

10010011
+1101001
11111100

Since we make at most two additions at each column (one is
comming from the carry bit), the number of operations is at
most 2(max(log a, log b)) ≤ 2(log a + log b) = 2n ∈ O(n).

So the running time is linear in the size of the input. Note that
we can not have much faster algorithm for addition since to add
two numbers we have to read them and reading require n steps.
Question: We know that we can add any two integers of lenght
8 in 1 minute. How much time do we need to add two integers
of lenght 40?

Answer: Since the time complexity is linear and 40 = 5 · 8 we
can do this task approximately in 5 · 1 = 5 minutes.

The time complexity of addition
Input: Integers a and b. The length of the input is
log a + log b = n. An elementary step is the addition of two bits.

147
+105

252

10010011
+1101001
11111100

Since we make at most two additions at each column (one is
comming from the carry bit), the number of operations is at
most 2(max(log a, log b)) ≤ 2(log a + log b) = 2n ∈ O(n).

So the running time is linear in the size of the input. Note that
we can not have much faster algorithm for addition since to add
two numbers we have to read them and reading require n steps.
Question: We know that we can add any two integers of lenght
8 in 1 minute. How much time do we need to add two integers
of lenght 40?
Answer: Since the time complexity is linear and 40 = 5 · 8 we
can do this task approximately in 5 · 1 = 5 minutes.

