
Decision problems, Matching theory

László Papp

BME

4th of April, 2023

Decision problems

There is a special part of problems which are well investigated:

Definition:
A problem is a decision problem if the solution is either a Yes
or a No.

Examples:
Problem PRIME:
Input: Integer n
Question: Is n a prime number?

Problem HAMILTONIAN:
Input: An undirected graph G
Question: Does G contain a Hamiltonian cycle?

Poblem CONNECTED
Input: An undirected graph G.
Question: Is G a connected graph?

The complexity class P
In the area of computing we create and use algorithms to solve
problems. If a problem can be solved by an algorithm, then
usually it can be solved by many different algorithms. Usually
we are interested in the fastest algorithms.

Definition:
We say that a problem π is polynomial time solvable if there
is an algorithm A which solves π and the time complexity of A is
polynomial (∈ O(nk) for some fixed k).

Definition:
The complexity class P contains all polynomial time solvable
decision problems.

Example
CONNECTED is in P, because we can decide whether a given
graph is connected by runing the BFS algorithm (previous
lecture). The BFS algorithm is a polynomial time algorithm,
because its time complexity is in O(n + e).

Bipartate graphs
Definition: A graph G is bipartate, if the vertex set V (G) can
be divided into two subsets A and B such that any two vertices
contained in A are non-adjacent and similarly any two vertices
contained in B are non-adjacent. Sometimes we denote such a
graph by G = (A,B;E).

Example: Dating: The blue vertices are the men, the red ones
are the women and an edge means that a man and a woman
likes each other.

A

B

Example: University application: The blue vertices are the
universities, the red vertices are people. An edge means an
application.

How to decide if a given graph G is bipartite?

Problem BIPARTITE
Input: A graph G.
Question: Is G bipartite?
To decide this decision problem we are going to use the
following claim, which is not hard to prove.

Claim
A graph G is bipartite if and
only if G does not contain an
odd cycle (a cycle whose
number of edges is odd).

We use this claim to show that BIPARTITE can be decided in
polynomial time.

Deciding BIPARTITE by BFS in a connected graph

▶ Lets start the BFS from an
arbitrary vertex v .

▶ If there are two vertices at
the same level in the
traversal tree which are
adjacent in the graph, then
the graph contains an odd
cycle, therefore it is not
bipartite.

▶ Otherwise it is bipartite, for
example let A be the set of
vertices of the the odd
levels and B be the rest of
the vertices, which are at
the even levels.

v 0th level

1st level

2nd level

3rd level

Deciding BIPARTITE by BFS in a connected graph

▶ Lets start the BFS from an
arbitrary vertex v .

▶ If there are two vertices at
the same level in the
traversal tree which are
adjacent in the graph, then
the graph contains an odd
cycle, therefore it is not
bipartite.

▶ Otherwise it is bipartite, for
example let A be the set of
vertices of the the odd
levels and B be the rest of
the vertices, which are at
the even levels.

v 0th level

1st level

2nd level

3rd level

Deciding BIPARTITE by BFS in a connected graph

▶ Lets start the BFS from an
arbitrary vertex v .

▶ If there are two vertices at
the same level in the
traversal tree which are
adjacent in the graph, then
the graph contains an odd
cycle, therefore it is not
bipartite.

▶ Otherwise it is bipartite, for
example let A be the set of
vertices of the the odd
levels and B be the rest of
the vertices, which are at
the even levels.

v 0th level

1st level

2nd level

3rd level

Decideing BIPARTATE by multiple runs of the BFS

1. Let v be an arbitrary vertex.
2. Start the BFS from v . Mark all the explored vertices.
3. If there is an edge between two vertices at the same level,

then STOP and output Not Biparite.
4. If there is a marked vertex, then let v be such a vertex and

move to step 2.
5. STOP and Output Bipartite.

We can extend the BFS algorithm to label each vertex with its
level number by using that d(v ,u) = d(v ,p(u)) + 1 and it runs
in O(n + e). Deciding wether there are no two adjacent vertices
at the same level can be done in O(n+e) by reading the
adjacency list.
We may need to run this for different starting vertices, therefore
its time complexity is in O(n(n + e)). n(n + e) ≤ (n + e)2 which
is polyinomial in n+e. (Remark: its time complexity is also in
O(n + e)).
Corollary: BIPARTITE is in P.

Matching
Definition: In a graph G a matching M is a subset of the edge
set E(G) which does not contain adjacent edges. So two edges
of M do not share an endpoint.

An example when G is bipartite:

A

B

M

Note that a not bipartite graph also have matchings:
Example:

M

Optimal assignement problem (basic version)

In a company there are tasks and employees. Each task
requires one day work of an employee and two or more
employees cannot work on the same task. The vertices of set A
repsresents the tasks which can be done today and the vertices
of B represents the employees. An employee has the
competencies to execute a task if and only if they are adjacent.

A

B

Question: How to assign the tasks to the employees in such a
way that they finish the maximum number of tasks
(equivalently: the most of the employees receive a task)?

Answer: According to a maximum matching.

Optimal assignement problem (basic version)

In a company there are tasks and employees. Each task
requires one day work of an employee and two or more
employees cannot work on the same task. The vertices of set A
repsresents the tasks which can be done today and the vertices
of B represents the employees. An employee has the
competencies to execute a task if and only if they are adjacent.

A

B

Question: How to assign the tasks to the employees in such a
way that they finish the maximum number of tasks
(equivalently: the most of the employees receive a task)?
Answer: According to a maximum matching.

Maximal vs Maximum (Minimal vs Minimum)

Maximal and maximum have different meanings!
▶ A matching is maximum if its size is the biggest possible.
▶ A matching is maximal if it can not be extended to a bigger

one.
Example: Matching M is maximal but not maximum. On the
other hand N is a maximum matching.

M N

Remark: Greedy algorithms usually find a maximal solution but
not the maximum one which we are seeking!
Definition: A maximum matching of graph G is a matching
containing the largest possible number of edges.

Augmenting paths
Definition: A matching M covers a vertex v if M contains an
edge which is incident to v .
Definition: If M is a matching, then a path P is called as an
augmenting path if it starts and ends at vertices which are not
covered by M and its edges alternately belong to M and do not
belong to M, more precisely: if
P = v0,e1, v1,e2, v2 . . . vk−1,ek , vk , then:
▶ v0 and vk are not covered by M.
▶ ei /∈ M if i is odd.
▶ ei ∈ M if i is even.

Example:

The green edges are the matching M and the red path is an
augmenting path.

The use of augmenting paths

If M is a matching and P is an augmenting path, then
M ′ = M \ (E(P) ∩ M) ∪ (E(P) \ M) is also a matching. Since
|E(P) \ M| = |E(P) ∩ M|+ 1 we have that
|M ′| = |M| − |M ∩ E(P)|+ |E(P) \ M| = |M|+ 1 so M ′ is a
bigger matching.

M M ′

P

So if we have an augmenting path then we can find a bigger
matching.
Question: What if there is no augmenting path?

Then the matching is maximum.

The use of augmenting paths

If M is a matching and P is an augmenting path, then
M ′ = M \ (E(P) ∩ M) ∪ (E(P) \ M) is also a matching. Since
|E(P) \ M| = |E(P) ∩ M|+ 1 we have that
|M ′| = |M| − |M ∩ E(P)|+ |E(P) \ M| = |M|+ 1 so M ′ is a
bigger matching.

M M ′

P

So if we have an augmenting path then we can find a bigger
matching.
Question: What if there is no augmenting path?
Then the matching is maximum.

Claim
If M is not a maximum matching, then an augmenting path
exists.
Proof: Let N be a maximum matching. |N| > |M|.

Consider the
graph with the same vertex set and edge set M ∪ N.

M

N augmenting
an

path

The degree of each vertex is at most two. Therefore each of its
connected components is a path or a cycle. Since |N| > |M|,
there is a component which contains more edges of N than M.
That component must be a path whose endpoints are not
covered by M and it contains the edges of M and N alternately.
Therefore it is an augmenting path for M.

Claim
If M is not a maximum matching, then an augmenting path
exists.
Proof: Let N be a maximum matching. |N| > |M|. Consider the
graph with the same vertex set and edge set M ∪ N.

M

N
an

augmenting
path

The degree of each vertex is at most two. Therefore each of its
connected components is a path or a cycle.

Since |N| > |M|,
there is a component which contains more edges of N than M.
That component must be a path whose endpoints are not
covered by M and it contains the edges of M and N alternately.
Therefore it is an augmenting path for M.

Claim
If M is not a maximum matching, then an augmenting path
exists.
Proof: Let N be a maximum matching. |N| > |M|. Consider the
graph with the same vertex set and edge set M ∪ N.

M

N
an

augmenting
path

The degree of each vertex is at most two. Therefore each of its
connected components is a path or a cycle. Since |N| > |M|,
there is a component which contains more edges of N than M.
That component must be a path whose endpoints are not
covered by M and it contains the edges of M and N alternately.
Therefore it is an augmenting path for M.

Claim
If M is not a maximum matching, then an augmenting path
exists.
Proof: Let N be a maximum matching. |N| > |M|. Consider the
graph with the same vertex set and edge set M ∪ N.

M

N
path

augmenting
an

The degree of each vertex is at most two. Therefore each of its
connected components is a path or a cycle. Since |N| > |M|,
there is a component which contains more edges of N than M.
That component must be a path whose endpoints are not
covered by M and it contains the edges of M and N alternately.
Therefore it is an augmenting path for M.

Finding a maximum matching by augmenting paths
0. Let M = ∅.
1. Greedely add edges to M: If an edge does not have a

common endpoint with any element of M, then add it to M.
(It is an augmenting path.) Try this for all the edges.

2. Search for an augmenting path. If there is none, then
STOP, and Output M. Otherwise continue with step 3.

3. We swap the edges of the augmenting path: Let X be the
set of edges of the augmenting path which are contained in
M and let Y bet the set of the remaining ones. Remove the
edges contained in X from M and add the edges contained
in Y to M. (So M := M \ X ∪ Y .) Continue with step 2.

Finding a maximum matching by augmenting paths
0. Let M = ∅.
1. Greedely add edges to M: If an edge does not have a

common endpoint with any element of M, then add it to M.
(It is an augmenting path.) Try this for all the edges.

2. Search for an augmenting path. If there is none, then
STOP, and Output M. Otherwise continue with step 3.

3. We swap the edges of the augmenting path: Let X be the
set of edges of the augmenting path which are contained in
M and let Y bet the set of the remaining ones. Remove the
edges contained in X from M and add the edges contained
in Y to M. (So M := M \ X ∪ Y .) Continue with step 2.

Finding a maximum matching by augmenting paths
0. Let M = ∅.
1. Greedely add edges to M: If an edge does not have a

common endpoint with any element of M, then add it to M.
(It is an augmenting path.) Try this for all the edges.

2. Search for an augmenting path. If there is none, then
STOP, and Output M. Otherwise continue with step 3.

3. We swap the edges of the augmenting path: Let X be the
set of edges of the augmenting path which are contained in
M and let Y bet the set of the remaining ones. Remove the
edges contained in X from M and add the edges contained
in Y to M. (So M := M \ X ∪ Y .) Continue with step 2.

Finding a maximum matching by augmenting paths
0. Let M = ∅.
1. Greedely add edges to M: If an edge does not have a

common endpoint with any element of M, then add it to M.
(It is an augmenting path.) Try this for all the edges.

2. Search for an augmenting path. If there is none, then
STOP, and Output M. Otherwise continue with step 3.

3. We swap the edges of the augmenting path: Let X be the
set of edges of the augmenting path which are contained in
M and let Y bet the set of the remaining ones. Remove the
edges contained in X from M and add the edges contained
in Y to M. (So M := M \ X ∪ Y .) Continue with step 2.

Finding a maximum matching by augmenting paths
0. Let M = ∅.
1. Greedely add edges to M: If an edge does not have a

common endpoint with any element of M, then add it to M.
(It is an augmenting path.) Try this for all the edges.

2. Search for an augmenting path. If there is none, then
STOP, and Output M. Otherwise continue with step 3.

3. We swap the edges of the augmenting path: Let X be the
set of edges of the augmenting path which are contained in
M and let Y bet the set of the remaining ones. Remove the
edges contained in X from M and add the edges contained
in Y to M. (So M := M \ X ∪ Y .) Continue with step 2.

Finding a maximum matching by augmenting paths
0. Let M = ∅.
1. Greedely add edges to M: If an edge does not have a

common endpoint with any element of M, then add it to M.
(It is an augmenting path.) Try this for all the edges.

2. Search for an augmenting path. If there is none, then
STOP, and Output M. Otherwise continue with step 3.

3. We swap the edges of the augmenting path: Let X be the
set of edges of the augmenting path which are contained in
M and let Y bet the set of the remaining ones. Remove the
edges contained in X from M and add the edges contained
in Y to M. (So M := M \ X ∪ Y .) Continue with step 2.

How to find an augmenting path in a Bipartite graph?

We can do it by the BFS algorithm:
We direct the edges of M towards the vertices of A and direct
the rest of the edges towards B.

A

B

In this directed graph start a BFS from each vertex of A which
is not covered by the matching M.
If one of the traversal trees has a leaf which is not covered by
the matching M and it is not the root, then the unique path
between the root and this leaf is an augmenting path. If there is
no such leaf in any of the traversal trees, then an augmenting
path does not exist.

How to find an augmenting path in a Bipartite graph?

We can do it by the BFS algorithm:
We direct the edges of M towards the vertices of A and direct
the rest of the edges towards B.

A

B

In this directed graph start a BFS from each vertex of A which
is not covered by the matching M.
If one of the traversal trees has a leaf which is not covered by
the matching M and it is not the root, then the unique path
between the root and this leaf is an augmenting path. If there is
no such leaf in any of the traversal trees, then an augmenting
path does not exist.

How to find an augmenting path in a Bipartite graph?

We can do it by the BFS algorithm:
We direct the edges of M towards the vertices of A and direct
the rest of the edges towards B.

A

B

In this directed graph start a BFS from each vertex of A which
is not covered by the matching M.
If one of the traversal trees has a leaf which is not covered by
the matching M and it is not the root, then the unique path
between the root and this leaf is an augmenting path. If there is
no such leaf in any of the traversal trees, then an augmenting
path does not exist.

How to find an augmenting path in a Bipartite graph?

We can do it by the BFS algorithm:
We direct the edges of M towards the vertices of A and direct
the rest of the edges towards B.

A

B

In this directed graph start a BFS from each vertex of A which
is not covered by the matching M.
If one of the traversal trees has a leaf which is not covered by
the matching M and it is not the root, then the unique path
between the root and this leaf is an augmenting path. If there is
no such leaf in any of the traversal trees, then an augmenting
path does not exist.

How to find an augmenting path in a Bipartite graph?

We can do it by the BFS algorithm:
We direct the edges of M towards the vertices of A and direct
the rest of the edges towards B.

A

B

In this directed graph start a BFS from each vertex of A which
is not covered by the matching M.
If one of the traversal trees has a leaf which is not covered by
the matching M and it is not the root, then the unique path
between the root and this leaf is an augmenting path. If there is
no such leaf in any of the traversal trees, then an augmenting
path does not exist.

How to find an augmenting path in a Bipartite graph?

We can do it by the BFS algorithm:
We direct the edges of M towards the vertices of A and direct
the rest of the edges towards B.

A

B

In this directed graph start a BFS from each vertex of A which
is not covered by the matching M.
If one of the traversal trees has a leaf which is not covered by
the matching M and it is not the root, then the unique path
between the root and this leaf is an augmenting path. If there is
no such leaf in any of the traversal trees, then an augmenting
path does not exist.

How to find an augmenting path in a Bipartite graph?

We can do it by the BFS algorithm:
We direct the edges of M towards the vertices of A and direct
the rest of the edges towards B.

A

B

In this directed graph start a BFS from each vertex of A which
is not covered by the matching M.
If one of the traversal trees has a leaf which is not covered by
the matching M and it is not the root, then the unique path
between the root and this leaf is an augmenting path. If there is
no such leaf in any of the traversal trees, then an augmenting
path does not exist.

How to find an augmenting path in a Bipartite graph?

We can do it by the BFS algorithm:
We direct the edges of M towards the vertices of A and direct
the rest of the edges towards B.

A

B

In this directed graph start a BFS from each vertex of A which
is not covered by the matching M.
If one of the traversal trees has a leaf which is not covered by
the matching M and it is not the root, then the unique path
between the root and this leaf is an augmenting path. If there is
no such leaf in any of the traversal trees, then an augmenting
path does not exist.

Vertex cover
Definition: In a graph G, T ⊆ V (G) is a vertex cover if for
every edge {u, v} ∈ E(G), either u ∈ T or v ∈ T (or both).

T

Notations: Let G be a graph. We use the following notations:
▶ ν(G) is the size of a maximum matching of G.
▶ τ(G) is the size of a minimum vertex cover of G.

Claim
In any graph G: ν(G) ≤ τ(G).
Proof: A vertex can cover only one edge of a matching.

Kőnig’s theorem
If G is a bipartite graph, then ν(G) = τ(G).

The use of vertex cover in matching theory

Assume that somebody give us a matching M of size k , and a
vertex cover C of size k . In this case we can conclude that M is
a maximum matching and C is a minimum vertex cover,
because |M| ≤ ν(G) ≤ τ(G) ≤ |C| = |M|.

In such a way we can prove that a matching is maximum
without using the augmenting algorithm. We just need a vertex
cover of the same size.

If the graph is bipartite, then by Kőnig’s theorem there is always
such a vertex cover if the matching is maximum.

What to do when the graph is not bipratite?

We have showed that in any graph if a matching is not
maximum, then there is an augmenting path. Therefore we can
use the augmenting algorithm to search a maximum matching
in any graph. Unfortunately finding an augmenting path is much
harder.

Edmonds’ Blossom algorithm can do it in polynomial time.

Perfect matching

Definition: A matching M is a perfect matching of graph G if it
covers all the vertices of G.

M

Problem PERFECT MATCHING
Input: A graph G.
Question: Does G have a perfect matching?

Claim
PERFECT MATCHING is in P.
Proof: We can run the augmenting algorithm to find a
maximum matching. If it covers all the vertices then the answer
is yes, otherwise it is no. The algorithm runs in polyonimal time.

