
Approximation algorithms, Linear
programming

László Papp

BME

2nd of May, 2023

First Fit Decreasing (FFD) Algorithm

First we sort the items according to their sizes to descending
order, then we run the First Fit algorithm.
Example: If the input is 4 Bins of sizes 0.4, 0.4, 0.6, 0.6, then
the decreasing order is 0.6, 0.6, 0.4, 0.4 and the First Fit
algorithm finds the optimal solution:

0.6

However FFD also does not find the optimum in all the cases:
Example: The input is 6 Bins of size 0.4, 0.4, 0.3, 0.3, 0.3,
0.3. Then the FFD gives:

0.3

0.3

0.3 0.3

0.4

0.4

But the optimal solution uses only 2 bins.

First Fit Decreasing (FFD) Algorithm

First we sort the items according to their sizes to descending
order, then we run the First Fit algorithm.
Example: If the input is 4 Bins of sizes 0.4, 0.4, 0.6, 0.6, then
the decreasing order is 0.6, 0.6, 0.4, 0.4 and the First Fit
algorithm finds the optimal solution:

0.6 0.6

However FFD also does not find the optimum in all the cases:
Example: The input is 6 Bins of size 0.4, 0.4, 0.3, 0.3, 0.3,
0.3. Then the FFD gives:

0.3

0.3

0.3 0.3

0.4

0.4

But the optimal solution uses only 2 bins.

First Fit Decreasing (FFD) Algorithm

First we sort the items according to their sizes to descending
order, then we run the First Fit algorithm.
Example: If the input is 4 Bins of sizes 0.4, 0.4, 0.6, 0.6, then
the decreasing order is 0.6, 0.6, 0.4, 0.4 and the First Fit
algorithm finds the optimal solution:

0.6 0.6

0.4

However FFD also does not find the optimum in all the cases:
Example: The input is 6 Bins of size 0.4, 0.4, 0.3, 0.3, 0.3,
0.3. Then the FFD gives:

0.3

0.3

0.3 0.3

0.4

0.4

But the optimal solution uses only 2 bins.

First Fit Decreasing (FFD) Algorithm

First we sort the items according to their sizes to descending
order, then we run the First Fit algorithm.
Example: If the input is 4 Bins of sizes 0.4, 0.4, 0.6, 0.6, then
the decreasing order is 0.6, 0.6, 0.4, 0.4 and the First Fit
algorithm finds the optimal solution:

0.6 0.6

0.4 0.4

However FFD also does not find the optimum in all the cases:
Example: The input is 6 Bins of size 0.4, 0.4, 0.3, 0.3, 0.3,
0.3. Then the FFD gives:

0.3

0.3

0.3 0.3

0.4

0.4

But the optimal solution uses only 2 bins.

First Fit Decreasing (FFD) Algorithm

First we sort the items according to their sizes to descending
order, then we run the First Fit algorithm.
Example: If the input is 4 Bins of sizes 0.4, 0.4, 0.6, 0.6, then
the decreasing order is 0.6, 0.6, 0.4, 0.4 and the First Fit
algorithm finds the optimal solution:

0.6 0.6

0.4 0.4

However FFD also does not find the optimum in all the cases:
Example: The input is 6 Bins of size 0.4, 0.4, 0.3, 0.3, 0.3,
0.3. Then the FFD gives:

0.3

0.3

0.3 0.3

0.4

0.4

But the optimal solution uses only 2 bins.

Why FF and FFD are good?

Claim
If OPT (I) denotes the number of bins used in an optimal
packing of an input I and FF (I) denotes the number of bins
used in the solution given by the FF algorithm, then:
FF (I) ≤ 2OPT (I)

Proof: Denote the sum of the sizes with S, so S =
∑n

i=1 ai . 2
bins which are at least half empty cannot appear during the run
of the FF algorithm, because it would not create the later one.
In a packing which the FF
produces all but one bin is
more than half full. Thus:

0.3

0.3

0.3 0.3

0.4

0.4

1
2(FF (I)− 1) < S =⇒ FF (I) < 2S + 1 =⇒ FF (I) ≤ ⌈2S⌉
The ceiling of the sum of the sizes is a lower bound on the
number of required bins, therefore ⌈S⌉ ≤ OPT (I).

FF (I) ≤ ⌈2S⌉ ≤ 2 ⌈S⌉ ≤ 2OPT (I)

Why FF and FFD are good?

Claim
If OPT (I) denotes the number of bins used in an optimal
packing of an input I and FF (I) denotes the number of bins
used in the solution given by the FF algorithm, then:
FF (I) ≤ 2OPT (I)
Proof: Denote the sum of the sizes with S, so S =

∑n
i=1 ai . 2

bins which are at least half empty cannot appear during the run
of the FF algorithm, because it would not create the later one.
In a packing which the FF
produces all but one bin is
more than half full. Thus:

0.3

0.3

0.3 0.3

0.4

0.4

1
2(FF (I)− 1) < S =⇒ FF (I) < 2S + 1 =⇒ FF (I) ≤ ⌈2S⌉
The ceiling of the sum of the sizes is a lower bound on the
number of required bins, therefore ⌈S⌉ ≤ OPT (I).

FF (I) ≤ ⌈2S⌉ ≤ 2 ⌈S⌉ ≤ 2OPT (I)

Approximation algorithms

We have an optimization problem, so we have an objective
function f over the set of solutions A and we are looking for an
optimal solution which is minimal (or maximal) among the
possible solutions.
Denote an optimal solution by xopt , and denote the optimum
objective function value by OPT . So OPT = f (xopt).
Instead we searching for an optimal solution which takes so
much time, we search for a solution x which is quite good.

Definition: An algorithm for an optimization problem π is a
c-approximation algorithm if for any input of π it finds a
solution x such that f (x) ≤ c · OPT if it is a minimization
problem or f (x) ≥ 1

c OPT if it is a maximization problem.

Polynomial time c-approximation algorithms

We are interested in efficient, so polynomial time
c-approximation algorithms.
Note that we have proved that First Fit is a 2-approximation
algorithm for Bin packing. Furthermore FF and FFD are
polynomial time algorithms.

We do not give a proof for the following results:

Claim
▶ FF (I) ≤

⌈17
10OPT (I)

⌉
and there are infinitely many ipnuts

which satisfies that FF (I) ≥ 17
10OPT (I)

▶ FFD(I) ≤ 11
9 OPT (I) + 4 and there are infinitely many

inputs which satisfies that FFD(I) ≥ 11
9 OPT (I). Where

FFD(I) denotes the number of bins used by the First Fit
decreasing algorithm for input I.

Question: Are there fast (polynomial time) approximation
algorithms for all optimization problems which we have learnt?
If P ̸=NP, then the answer is NO. :(

Polynomial time c-approximation algorithms

We are interested in efficient, so polynomial time
c-approximation algorithms.
Note that we have proved that First Fit is a 2-approximation
algorithm for Bin packing. Furthermore FF and FFD are
polynomial time algorithms.
We do not give a proof for the following results:

Claim
▶ FF (I) ≤

⌈17
10OPT (I)

⌉
and there are infinitely many ipnuts

which satisfies that FF (I) ≥ 17
10OPT (I)

▶ FFD(I) ≤ 11
9 OPT (I) + 4 and there are infinitely many

inputs which satisfies that FFD(I) ≥ 11
9 OPT (I). Where

FFD(I) denotes the number of bins used by the First Fit
decreasing algorithm for input I.

Question: Are there fast (polynomial time) approximation
algorithms for all optimization problems which we have learnt?
If P ̸=NP, then the answer is NO. :(

Polynomial time c-approximation algorithms

We are interested in efficient, so polynomial time
c-approximation algorithms.
Note that we have proved that First Fit is a 2-approximation
algorithm for Bin packing. Furthermore FF and FFD are
polynomial time algorithms.
We do not give a proof for the following results:

Claim
▶ FF (I) ≤

⌈17
10OPT (I)

⌉
and there are infinitely many ipnuts

which satisfies that FF (I) ≥ 17
10OPT (I)

▶ FFD(I) ≤ 11
9 OPT (I) + 4 and there are infinitely many

inputs which satisfies that FFD(I) ≥ 11
9 OPT (I). Where

FFD(I) denotes the number of bins used by the First Fit
decreasing algorithm for input I.

Question: Are there fast (polynomial time) approximation
algorithms for all optimization problems which we have learnt?

If P ̸=NP, then the answer is NO. :(

Polynomial time c-approximation algorithms

We are interested in efficient, so polynomial time
c-approximation algorithms.
Note that we have proved that First Fit is a 2-approximation
algorithm for Bin packing. Furthermore FF and FFD are
polynomial time algorithms.
We do not give a proof for the following results:

Claim
▶ FF (I) ≤

⌈17
10OPT (I)

⌉
and there are infinitely many ipnuts

which satisfies that FF (I) ≥ 17
10OPT (I)

▶ FFD(I) ≤ 11
9 OPT (I) + 4 and there are infinitely many

inputs which satisfies that FFD(I) ≥ 11
9 OPT (I). Where

FFD(I) denotes the number of bins used by the First Fit
decreasing algorithm for input I.

Question: Are there fast (polynomial time) approximation
algorithms for all optimization problems which we have learnt?
If P ̸=NP, then the answer is NO. :(

If a poly. c-approximation algorithm for the TSP exists, then P=NP.
Proof: Assume that we have such an algorithm. Then we can
decide HAMILTONIAN in polynomial time:
If G is an input graph, then we construct an input of the TSP
where the length of an edge is 1 if it is contained in G and
c(|V (G)|+ 1) if it is not contained in G.

G 1

1

1
1

F
Input of TSP

Input of
HAMILTONIAN 5c

5c

If G contains a Ham(iltonian) cycle, then in F (G) there is a Ham
cycle of length |V (G)| and the c-approximation algorithm finds
one whose length is at most c|V (G)|. If G does not contain a
Ham cycle, then in F (G) each Ham cycle is longer than
c|V (G)|. So G contains a Ham cycle if and only if the algorithm
outputs a Hamiltonian cycle of length at most c|V (G)|. So this
approximation algorithm decides HAMILTONIAN, which is
NP-complete, in polynomial time. So P=NP.

If a poly. c-approximation algorithm for the TSP exists, then P=NP.
Proof: Assume that we have such an algorithm. Then we can
decide HAMILTONIAN in polynomial time:
If G is an input graph, then we construct an input of the TSP
where the length of an edge is 1 if it is contained in G and
c(|V (G)|+ 1) if it is not contained in G.

G 1

1

1
1

F
Input of TSP

Input of
HAMILTONIAN 5c

5c

If G contains a Ham(iltonian) cycle, then in F (G) there is a Ham
cycle of length |V (G)| and the c-approximation algorithm finds
one whose length is at most c|V (G)|. If G does not contain a
Ham cycle, then in F (G) each Ham cycle is longer than
c|V (G)|.

So G contains a Ham cycle if and only if the algorithm
outputs a Hamiltonian cycle of length at most c|V (G)|. So this
approximation algorithm decides HAMILTONIAN, which is
NP-complete, in polynomial time. So P=NP.

If a poly. c-approximation algorithm for the TSP exists, then P=NP.
Proof: Assume that we have such an algorithm. Then we can
decide HAMILTONIAN in polynomial time:
If G is an input graph, then we construct an input of the TSP
where the length of an edge is 1 if it is contained in G and
c(|V (G)|+ 1) if it is not contained in G.

G 1

1

1
1

F
Input of TSP

Input of
HAMILTONIAN 5c

5c

If G contains a Ham(iltonian) cycle, then in F (G) there is a Ham
cycle of length |V (G)| and the c-approximation algorithm finds
one whose length is at most c|V (G)|. If G does not contain a
Ham cycle, then in F (G) each Ham cycle is longer than
c|V (G)|. So G contains a Ham cycle if and only if the algorithm
outputs a Hamiltonian cycle of length at most c|V (G)|. So this
approximation algorithm decides HAMILTONIAN, which is
NP-complete, in polynomial time. So P=NP.

Task
We are making soft drinks from orange juice and sparkling
water. We offer two kind of products:
▶ Sparkling Juice: contains 2 deciliters of juice and 4

deciliters of water for 1e.
▶ Super Orange: contains 3 deciliters of juice and 1 deciliter

of water for 1e.
We can sell any amount of these (for example 1 liter of the first
kind) but the mixing ratios remain the same.

Question: How much money can we earn if we have 18
deciliters of juice and 16 deciliters of sparkling water in stock?

Mathematical model

Lets denote the money which we obtain by selling the first and
the second drink by x and y , respectively.
Then we can write the following set of linear inequalities:

2x + 3y ≤ 18
4x + 1y ≤ 16

x ≥ 0
y ≥ 0

The first inequality corresponds to the juice usage, the second
one corresponds to the water usage. It is obvious that our
earnings is nonnegative. We want to maximize the total amount
of money which is x + y .

Solving the problem - Feasible region

The inequalities can be written
in the following equivalent form:

y≤ 6 − 2
3

x

y≤ 16 − 4x
x ≥ 0
y ≥ 0

The set of possible solutions
(feasible region) is the green
simple polygon.

6

4

(3,4)

x

y = 16 − 4xy

y = 6 − 2
3x

Solving the problem - Objective function as a geometric object

The objective function
s = x + y is a line and
can be written as
y = s − x .
Therefore we are
searching for a line
y = s − x where s is
maximal and it intersects
the feasible region.

6

4

(3,4)

x

y = 1 − x

y

y = 5 − x

y = 7 − x

y = 3 − x

So the maximum of the objective function is 7 and it can be
attained at the point x = 3, y = 4.
Note: This solution method is called as the graphical method.

What if we have a 3rd type of drink?
Assume that we also sell a third drink for 1e and it contains 2
deciliters of juice and 2 deciliters of sparkling water.
Then we need a third variable z, and we obtain the following set
of inequalities:

2x + 3y + 2z ≤ 18
4x + y + 2z ≤ 16

x ≥ 0
y ≥ 0
z ≥ 0

The feasible region is a
polyhedron.

The objective function s = x + y + z is a plane. Therefore we
are looking for a plane, which intersects this polyhedron and
where s is maximal.

What if there are even more type of drinks?

If we have n drinks then we end up with n variables. The
feasible region is an n dimensional polytope and the objective
function corresponds to an n − 1 dimensional hyperplane (a
subspace whose dimension is n-1). In this case we cannot
utilize geometry.

So if we have more than two variables, then we cannot use the
graphical method to solve the problem.

Question: What to do?

Answer: Use linear algebra!

Notations and conventions used in the slides

▶ We use upper case for matrices and lower case for vectors.
▶ In the beginning I underline each vector, but later I am

going to omit this notation.
▶ Each vector is a column vector, therefore if I want to write a

row vector v , then I write vT .
▶ If v is a vector, then v(i) or vi denotes its i th element, but I

do not use both simultaneously. If I write v(i) it means that
I use vi for something else! Sorry.

▶ vT u is the dot product of v and u.

Linear program

We can write the inequalities of the soft drink problem in the
following equivalent form:

2x + 3y ≤ 18
4x + 1y ≤ 16

x ≥ 0
y ≥ 0

max x + y


2 3
4 1
-1 0
0 -1

 ·
[

x
y

]
≤


18
16
0
0


max

[
1 1

]
·
[

x
y

]
Notation: Let a and b be vectors having n rows. a ≤ b means
that a(i) ≤ b(i) for each 1 ≤ i ≤ n.

So we have written the problem in the following form:
Maximize cT x subject to Ax ≤ b.

Linear programming

The basic problem of linear programming is the following task:
An m × n martix A, a vector b ∈ Rm and a vector c ∈ Rn are
given. Find a vector x ∈ Rn which satisfies Ax ≤ b and cT x is
the biggest possible. cT x is called as the objective function.

This is usually written for short in the following form:
Maximize cT x , respect to Ax ≤ b.

Some other forms of linear programming problems, which we
call as linear programs for short:
▶ Minimize cT x , respect to Ax ≤ b.
▶ Maximize/Minimize cT x , respect to Ax ≤ b and x ≥ 0.
▶ Maximize/Minimize cT x , respect to Ax = b and x ≥ 0.

We can solve all of these if we can solve the task that Maximize
cT x , respect to Ax ≤ b.

Is there a solution?

The first natural question when we obtain such a problem is the
following: Do we have a feasible solution? So is there an x
which satisfies Ax ≤ b?

There are algorithms which can determine this. For example
Fourier-Moltzkin elimination, which is an exponential time
algorithm. Due to the shortage of time we are not going to talk
about that. Instead of that we mention two theorems which
connects the solvability of two different systems. These
theorems will be useful later.

Farkas’ Lemma

Farkas’ Lemma (1st version)
Let A be an m × n matrix and let b ∈ Rm. Exactly one of the
following two systems has a solution:

1. Ax ≤ b
2. yT A = 0, y ≥ 0, yT b < 0

Note: (yT A)T = AT y

Sketch of the proof: These systems cannot have solutions at
the same time:
Assume the contrary, so let x and y be solutions of the first and
the second system, respectively. Then
0 = 0T x = yT Ax ≤ yT b < 0 which is a contradiction.
To prove that one of the two systems is solvable it is enough to
show that if the first one does not have a solution, then the
second one does. We skip the proof of this.

Farkas’ Lemma

Farkas’ Lemma (1st version)
Let A be an m × n matrix and let b ∈ Rm. Exactly one of the
following two systems has a solution:

1. Ax ≤ b
2. yT A = 0, y ≥ 0, yT b < 0

Note: (yT A)T = AT y
Sketch of the proof: These systems cannot have solutions at
the same time:
Assume the contrary, so let x and y be solutions of the first and
the second system, respectively. Then
0 = 0T x = yT Ax ≤ yT b < 0 which is a contradiction.
To prove that one of the two systems is solvable it is enough to
show that if the first one does not have a solution, then the
second one does. We skip the proof of this.

Equivalent form of Farkas’ Lemma

Farkas’ Lemma (2nd version)
Let A be an m × n matrix and let b ∈ Rm. Exactly one of the
following two systems has a solution:

1. Ax = b, x ≥ 0
2. yT A ≥ 0, yT b < 0

Sketch of the proof: These systems cannot have solutions at
the same time:
Assume the contrary, so let x and y be solutions of the first and
the second system, respectively. Then 0 > yT b = yT Ax ≥ 0,
because the dot product of two non-negative vectors (does not
have negative elements) is non-negative. This is a
contradiction.
To prove that one of the two systems is solvable it is enough to
show that if the second one does not have a solution, then the
first one does.

This can be done by using the 1st version of
Farkas’ Lemma, but we skip it.

Equivalent form of Farkas’ Lemma

Farkas’ Lemma (2nd version)
Let A be an m × n matrix and let b ∈ Rm. Exactly one of the
following two systems has a solution:

1. Ax = b, x ≥ 0
2. yT A ≥ 0, yT b < 0

Sketch of the proof: These systems cannot have solutions at
the same time:
Assume the contrary, so let x and y be solutions of the first and
the second system, respectively. Then 0 > yT b = yT Ax ≥ 0,
because the dot product of two non-negative vectors (does not
have negative elements) is non-negative. This is a
contradiction.
To prove that one of the two systems is solvable it is enough to
show that if the second one does not have a solution, then the
first one does. This can be done by using the 1st version of
Farkas’ Lemma, but we skip it.

Does the objective function have an upper bound on the solution
set?

If we are looking for a solution x which maximizes the objective
function, then it is possible that no such x exists, because cT x
can be arbitrary large on the set of feasible solutions.
Example:

x + y ≥ 4
−2x + 3y ≥ 1

x ≥ 0
y ≥ 0

max x + 2y

Solutions where x + 2y = s:
y = s−x

2

6

4 x

y

6 = 2y + x

These statements are equivalent

1. cT x is bounded above on the set of solutions of Ax ≤ b.
2. The system Az ≤ 0, cT z > 0 does not have a solution.
3. The system yT A = cT , y ≥ 0 has a solution.

Proof: 1.→ 2.: Indirectly assume that there is a solution z0 of
Az ≤ 0, cz > 0. Consider a solution x0 of Ax ≤ b.

Then x0 + λz0 is also a solution of Ax ≤ b if λ > 0:
A(x0 + λz0) = Ax0 + λAz0 ≤ b + λ0 = b.
cT (x0 + λz0) = cT x0 + λcT z0 so it is a linear function in λ which
can be arbitrary large if we choose λ big enough.
2.→ 3.: If Az ≤ 0, cT z > 0 does not have a solution, then the
system Az ≥ 0, cT z < 0 also does not have. Then by the 2nd
version of Farkas’ Lemma yT A = cT , y ≥ 0 has a solution.
3.→ 1.: Let x0 be any solution of Ax ≤ b and let y0 be a
solution of yT A = cT , y ≥ 0. Then:
cT x0 = yT

0 Ax0 ≤ yT
0 b = s, where s is a number and it is an

upper bound on the objective function cT x , because the value
of s does not depend on the choice of x0.

These statements are equivalent

1. cT x is bounded above on the set of solutions of Ax ≤ b.
2. The system Az ≤ 0, cT z > 0 does not have a solution.
3. The system yT A = cT , y ≥ 0 has a solution.

Proof: 1.→ 2.: Indirectly assume that there is a solution z0 of
Az ≤ 0, cz > 0. Consider a solution x0 of Ax ≤ b.
Then x0 + λz0 is also a solution of Ax ≤ b if λ > 0:
A(x0 + λz0) = Ax0 + λAz0 ≤ b + λ0 = b.

cT (x0 + λz0) = cT x0 + λcT z0 so it is a linear function in λ which
can be arbitrary large if we choose λ big enough.
2.→ 3.: If Az ≤ 0, cT z > 0 does not have a solution, then the
system Az ≥ 0, cT z < 0 also does not have. Then by the 2nd
version of Farkas’ Lemma yT A = cT , y ≥ 0 has a solution.
3.→ 1.: Let x0 be any solution of Ax ≤ b and let y0 be a
solution of yT A = cT , y ≥ 0. Then:
cT x0 = yT

0 Ax0 ≤ yT
0 b = s, where s is a number and it is an

upper bound on the objective function cT x , because the value
of s does not depend on the choice of x0.

These statements are equivalent

1. cT x is bounded above on the set of solutions of Ax ≤ b.
2. The system Az ≤ 0, cT z > 0 does not have a solution.
3. The system yT A = cT , y ≥ 0 has a solution.

Proof: 1.→ 2.: Indirectly assume that there is a solution z0 of
Az ≤ 0, cz > 0. Consider a solution x0 of Ax ≤ b.
Then x0 + λz0 is also a solution of Ax ≤ b if λ > 0:
A(x0 + λz0) = Ax0 + λAz0 ≤ b + λ0 = b.
cT (x0 + λz0) = cT x0 + λcT z0 so it is a linear function in λ which
can be arbitrary large if we choose λ big enough.

2.→ 3.: If Az ≤ 0, cT z > 0 does not have a solution, then the
system Az ≥ 0, cT z < 0 also does not have. Then by the 2nd
version of Farkas’ Lemma yT A = cT , y ≥ 0 has a solution.
3.→ 1.: Let x0 be any solution of Ax ≤ b and let y0 be a
solution of yT A = cT , y ≥ 0. Then:
cT x0 = yT

0 Ax0 ≤ yT
0 b = s, where s is a number and it is an

upper bound on the objective function cT x , because the value
of s does not depend on the choice of x0.

These statements are equivalent

1. cT x is bounded above on the set of solutions of Ax ≤ b.
2. The system Az ≤ 0, cT z > 0 does not have a solution.
3. The system yT A = cT , y ≥ 0 has a solution.

Proof: 1.→ 2.: Indirectly assume that there is a solution z0 of
Az ≤ 0, cz > 0. Consider a solution x0 of Ax ≤ b.
Then x0 + λz0 is also a solution of Ax ≤ b if λ > 0:
A(x0 + λz0) = Ax0 + λAz0 ≤ b + λ0 = b.
cT (x0 + λz0) = cT x0 + λcT z0 so it is a linear function in λ which
can be arbitrary large if we choose λ big enough.
2.→ 3.: If Az ≤ 0, cT z > 0 does not have a solution, then the
system Az ≥ 0, cT z < 0 also does not have. Then by the 2nd
version of Farkas’ Lemma yT A = cT , y ≥ 0 has a solution.

3.→ 1.: Let x0 be any solution of Ax ≤ b and let y0 be a
solution of yT A = cT , y ≥ 0. Then:
cT x0 = yT

0 Ax0 ≤ yT
0 b = s, where s is a number and it is an

upper bound on the objective function cT x , because the value
of s does not depend on the choice of x0.

These statements are equivalent

1. cT x is bounded above on the set of solutions of Ax ≤ b.
2. The system Az ≤ 0, cT z > 0 does not have a solution.
3. The system yT A = cT , y ≥ 0 has a solution.

Proof: 1.→ 2.: Indirectly assume that there is a solution z0 of
Az ≤ 0, cz > 0. Consider a solution x0 of Ax ≤ b.
Then x0 + λz0 is also a solution of Ax ≤ b if λ > 0:
A(x0 + λz0) = Ax0 + λAz0 ≤ b + λ0 = b.
cT (x0 + λz0) = cT x0 + λcT z0 so it is a linear function in λ which
can be arbitrary large if we choose λ big enough.
2.→ 3.: If Az ≤ 0, cT z > 0 does not have a solution, then the
system Az ≥ 0, cT z < 0 also does not have. Then by the 2nd
version of Farkas’ Lemma yT A = cT , y ≥ 0 has a solution.
3.→ 1.: Let x0 be any solution of Ax ≤ b and let y0 be a
solution of yT A = cT , y ≥ 0. Then:
cT x0 = yT

0 Ax0 ≤ yT
0 b = s, where s is a number and it is an

upper bound on the objective function cT x , because the value
of s does not depend on the choice of x0.

