
Turán type theorems

In this lecture we are going to talk about simple graphs.

Question: What is the maximum number of edges of an n vertex simple graph if it does not
contain             as a subgraph?  0
What is the maximum number of edges of an n vertex simple graph if it does not contain                    
                    as a subgraph? 

Question: What is the maximum number of edges of an n vertex simple graph if it does not
contain a triangle?

Theorem(Mantel 1907): 

Note: If G is a complete k-partite graph, then 

Example: A complete 4-partite graph:

Example:

Proof: Later

definition: A graph G is k-partite, if V(G) is partitioned to k independent sets, which are called
the classes of the vertices. Example: a 4-partite graph:

Note: If G is k-partite <==> 

because the independent sets are the color classes
when we color the graph with k colors.

a vertex class

definition: A graph G is a complete k-partite graph, if V(G) is partitioned to k
independent sets and if vertices u an v are from different classes, then they are adjacent.



Example: 

definition: The Turán graph               is a complete m-partite n-vertex graph whose
classes are as equal as possible, so if n=km+r, then there are m-r classes which contain
k vertices and r classes which contain k+1 vertices. 

We delete a vertex v from B and add a vertex u to A and connect u to every vertex outside of A.
v and u are adjacent to the same amount of vertices outside of AUB, but v had a neighbors
in AUB and u has b-1 neighbors in AUB. The degree of each vertex of B increased by one, and the
degree of each vertex of A decreased by one. So the sum of degrees increased by
b-1-a+b-1-a=2b-2-2a>=2(a+2)-2-2a=2. So the new graph has more edges.
Therefore G does not have the maximum amount of edges among the n vertex m-partite
graphs, therefore the only n vertex m-partite graph which has the maximum amount of edges
among the n vertex m-partite graphs is  

Definition: ex(n,H) denotes the maximum number of edges of an n vertex simple graph
which does not contain H as a subgraph. Ex(n,H) denotes the set of n vertex simple graphs
which do not contain H as a subgraph and each of them has ex(n,H) edges. These graphs are
called extremal graphs.

Theorem Turán '41:                                                                

In other words: The n vertex graph which does not contain a         subgraph and has the most

edges is           and there is no other extremal graph.    

Proof:       does not contain         as a subgraph, therefore

If we have an n vertex m-partite graph, then it has at most as many edges as          has:

Clearly it is enough to consider complete n vertex m-partite graphs, because we can obtain
such a graph by edge addition. 
Let G be a complete n vertex m-partite graph which is not a Turan graph, therefore there are 
two classes of G such that the difference between their sizes is at least 2.
So lets say in class A there are a vertices, in class B there are b vertices and b>=a+2.
 



We delete all the edges in V2 but we add all the edges between V1 and V2. Denote the
obtained graph by H. Since H1 is an m-1-partite graph, H is m-partite.
The degrees:

because v is a max degree vertex in G

Claim: If G is an n vertex graph and            then there is an n vertex complete 
m-partite graph H, such that             for all           and there is an equality at all
vertices if and only if G is m-partite.                                                     
(Which means that |E(G)|<=|E(H)| and if G is not an m-partite graph, then |E(G)|<|E(H)|)

Proof: We use induction on m. Clearly if m=1, then the graph is the empty graph which
is a complete 1-partite. So lets assume that the statment is true for m-1 and now let
G bet an n vertex graph s.t.   

Let v be a vertex of G whose degree is maximum. Let V1 be the neighbors of v and V2
be the rest of the vertices of G. V1 induces a graph    and            because otherwise
a clique of size m of G1 would be extended to a clique of size m+1 of G by v.
Therefore we can use the induction hypothesis, so G1 can be replaced by an m-1 partite
graph H1 such that              for all

So H satisfies the desired properties. If equality holds at each vertex,            
andby induction G1 is m-1-partite and each element of V1 is incident to each element of V2
and sincev is a max degree vertex G is an m-partite graph.

The end of Turán's thm's proof:
If G is an n vertex graph which does not contain         as a subgraph, then there is an
n vertex m-partite graph which has at least as many edges, and if it is not the Turán graph
      , then      has even more edges. Therefore 

Furthermore if G was not an m-partite graph, then the obtained m-partite graph has more
edges than G, therefore the only extremel graph is 



It can be counted, that in the Turán graph

So approximately the 1/m part of the edges are missing.

Also:

More precisely:   

Corrolary of Turán's them: If G is an n vertex graph and 

Theorem: Erdős-Simonovits:

Theorem: Erdős-Stone: For all       and     there is a number        s.t. if G has n vertices
 

So there is a blown-up      in G where every vertex of         has been replaced by
r twins. This is the Turán graph  

An equivalent form of Erdős-Stone: For     and     there is a number      s.t. G has n vertices 

Note: Let H be an arbitrary graph which satisfies            If r is sufficiently large,
then H

So any m+1 chromatic graph is a subgraph of a blown-up  

Proof:                   does not contain H as a subgraph, therefore 



So the asymptotics of ex(n,H) is determined by the chromatic number of H. 
However, when H is bipartite, the Erdős-Stone theorem only implies that ex(n,H)=o(n^2).
Not even the asymptotics of ex(n,H) is determined for any bipartite H, but we know it
for some bipartite graphs.
Examples:

 

because any vertex together with its two neighbors form a

 

Let          denote the average degree, so 

The function f(n)=                    is convex, therefore we can apply Jensen's inequality: 

By the Erdős-Stone thm, for any          if n is big enough and G is an n-vertex graph:

contains a blow-up         which contains

                           H as a subgraph.

Theorem: Erdős-Kővári-Sós-Turán:

Proof: Let G be an n vertex graph which does not contain C4 as a subgraph. We count
the number of      .  If we calculate these at the middle vertices, then their numbers are:

If we try to calculate the      at its endpoints, then what we see is that if we fix two
vertices, there can be at most one      whose endpoints are the two fixed vertices, otherwise
there would be a C4: 




