In this lecture we are going to talk about simple graphs.

Question: What is the maximum number of edges of an n vertex simple graph if it does not contain a triangle?

Theorem(Mantel 1907): $\begin{bmatrix} h \\ L \end{bmatrix}, \begin{bmatrix} h \\ Z \end{bmatrix}$

Example:

Proof: Later

definition: A graph G is k-partite, if V(G) is partitioned to k independent sets, which are call the classes of the vertices. Example: a 4-partite graph:

because the independent sets are the color classes when we color the graph with k colors.

a vertex class

definition: A graph G is a complete k-partite graph, if V(G) is partitioned to k independent sets and if vertices u an v are from different classes, then they are adjacent.

Example: A complete 4-partite graph:

Note: If G is a complete k-partite graph, then

X(6)=k.

definition: The Turán graph $\int h_{1}m_{n}$ is a complete m-partite n-vertex graph whose classes are as equal as possible, so if n=km+r, then there are m-r classes which contain k vertices and r classes which contain k+1 vertices.

Definition: ex(n;H) denotes the maximum number of edges of an n vertex simple graph which does not contain H as a subgraph. Ex(n,H) denotes the set of n vertex simple graphs which do not contain H as a subgraph and each of them has ex(n,H) edges. These graphs are called extremal graphs.

Theorem Turán '41: $eX\left(N_{1}K_{m+1}\right) = \left|E\left(T_{N_{1}}m\right)\right|_{1}EX\left(U_{1}K_{m+2}\right) = \left\{T_{N_{1}}m\right\}_{1}$ In other words: The n vertex graph which does not contain a K_{m+1} subgraph and has the most.

edges is $T_{n,m}$, and there is no other extremal graph.

Proof: T_{h_1M} does not contain k_{M+1} as a subgraph, therefore $\mathcal{C} \times (L_1 k_{M+1})^2 | \mathcal{E}(T_{h_1M})|$. If we have an n vertex m-partite graph, then it has at most as many edges as T_{h_1M} has:

Clearly it is enough to consider complete n vertex m-partite graphs, because we can obtain such a graph by edge addition.

Let G be a complete n vertex m-partite graph which is not a Turan graph, therefore there are two classes of G such that the difference between their sizes is at least 2. So lets say in class A there are a vertices, in class B there are b vertices and b = a+2.

We delete a vertex v from B and add a vertex u to A and connect u to every vertex outside of A. v and u are adjacent to the same amount of vertices outside of AUB, but v had a neighbors in AUB and u has b-1 neighbors in AUB. The degree of each vertex of B increased by one, and the degree of each vertex of A decreased by one. So the sum of degrees increased by $b-1-a+b-1-a=2b-2-2a \ge 2(a+2)-2-2a=2$. So the new graph has more edges. Therefore G does not have the maximum amount of edges among the n vertex m-partite graphs, therefore the only n vertex m-partite graph which has the maximum amount of edges among the n vertex m-partite graphs is The

Claim: If G is an n vertex graph and $K_{n+1} \notin G$ then there is an n vertex complete m-partite graph H, such that $A_{L_{n}}(v) \notin A_{H_{n}}(v)$ for all $\forall \notin \bigvee G$ and there is an equality at all vertices if and only if G is m-partite. (Which means that $|E(G)| \le |E(H)|$ and if G is not an m-partite graph, then $|E(G)| \le |E(H)|$)

Proof: We use induction on m. Clearly if m=1, then the graph is the empty graph which is a complete 1-partite. So lets assume that the statment is true for m-1 and now let G bet an n vertex graph s.t. $k_{m+1} \neq 6$.

Let v be a vertex of G whose degree is maximum. Let V1 be the neighbors of v and V2 be the rest of the vertices of G. V1 induces a graph and (\checkmark) because otherwise a clique of size m of G1 would be extended to a clique of size m+1 of G by v. Therefore we can use the induction hypothesis, so G1 can be replaced by an m-1 partite graph H1 such that $(\downarrow) = (\downarrow)$ for all

We delete all the edges in V2 but we add all the edges between V1 and V2. Denote the obtained graph by H. Since H1 is an m-1-partite graph, H is m-partite. The degrees:

$$d_{G}(v) = d_{H}(v)$$

$$H_{U} \in V_{1,1} \text{ then:} \quad d_{G}(u) \leq d_{G}(u) + |V_{2}| \leq d_{H_{1}}(u) + |V_{2}| = d_{H}(u)$$

$$H_{U} \in V_{1,1} \text{ then:} \quad d_{G}(u) \leq d_{G}(u) + |V_{2}| \leq d_{H_{1}}(u) + |V_{2}| = d_{H}(u)$$

because v is a max degree vertex in G

So H satisfies the desired properties. If equality holds at each vertex, $d_{G_1}(u) = d_{H_1}(u) \forall u \in V(G_1)$ and by induction G1 is m-1-partite and each element of V1 is incident to each element of V2 and sincev is a max degree vertex G is an m-partite graph.

The end of Turán's thm's proof:

If G is an n vertex graph which does not contain K_{m+1} as a subgraph, then there is an n vertex m-partite graph which has at least as many edges, and if it is not the Turán graph T_{h_1m} , then T_{h_1m} has even more edges. Therefore $\exp(n_1 k_{m+1}) = |E(T_{h_1m})|$

Furthermore if G was not an m-partite graph, then the obtained m-partite graph has more edges than G, therefore the only extremel graph is $T_{n_1m_2}$.

It can be counted, that in the Turán graph $T_{\mathcal{H},\mathcal{H}} \qquad \mathcal{A}(\mathcal{V}) \simeq \left(1 - \frac{1}{\mathcal{H}}\right) \mathcal{H}$ So approximately the 1/m part of the edges are missing.

Also:
$$\left| E(t_{n,m}) \right| \approx \left(1 - \frac{1}{m} \right) \binom{n}{2}$$

More precisely: $\lim_{n \to \infty} \frac{1 E(T_{n,m})}{\binom{n}{2}} = 1$

Corrolary of Turán's them: If G is an n vertex graph and $|E(G)| > |E(T_n, M)|$

Theorem: Erdős-Stone: For all \$70 and 770 there is a number $N_0(\xi_1 r)$ s.t. if G has n vertices $N 7 U_0(\xi_1 r)$ and $|E(G)| \ge |E(T_{N_1 m})| + \xi \cdot h^2 \Rightarrow T_{(m+1)}r_{m+1} \subseteq G$

- <u>1</u> m

So there is a blown-up K_{m+1} in G where every vertex of K_{m+1} has been replaced by r twins. This is the Turán graph $\widehat{I_{(m+1)}} \tau_1 m_{+1}$.

An equivalent form of Erdős-Stone: For $\{70 \text{ and } r70 \text{ there is a number } u_0^{(\xi_1)} \text{ s.t. } G \text{ has n vertice}$ $N \supset N_0(\xi_1 \wedge) u_0 \mathcal{A} \mid [E(G) \mid 2 \binom{N}{2} (1 - \frac{1}{2} + \xi) \Rightarrow T_{(m+1)}r_1 + 1 \subseteq G.$

Note: Let H be an arbitrary graph which satisfies $X(H) \leq m_{+1}$. If r is sufficiently large, then $H \leq T_{(m+1)} r_{1} m_{+1}$

So any m+1 chromatic graph is a subgraph of a blown-up $\ensuremath{{\mbox{\sc m}}}_{\mbox{\sc m}} \ensuremath{{\mbox{\sc m}}}_{\mbox{\sc m}}$.

Theorem: Erdős-Simonovits:

$$\lim_{n \to \infty} \frac{e_{\mathcal{K}}(n, \mathcal{H})}{\binom{n}{2}} = 1 - \frac{\Lambda}{\chi(\mathcal{H}) - 1}$$

Proof: $T_{H_{1}}X(H) - 1$ does not contain H as a subgraph, therefore $\lim_{\lambda \to \infty} \frac{e_{X}(h_{1}, H)}{\binom{1}{2}} = \lim_{\lambda \to \infty} \frac{|E(T_{H_{1}}X(H) - 1)|}{\binom{1}{2}} = 1 - \frac{1}{\binom{1}{\binom{1}{2}} - 1}$ By the Erdős-Stone thm, for any $\mathcal{E}O$ if n is big enough and G is an n-vertex graph: $\left(\mathbb{E}\left(\mathcal{G}\right)\left[\mathbb{E}\left(\left(1-\frac{1}{\chi(H-1}+\mathcal{E})\begin{pmatrix}\omega\\2\end{pmatrix}\right)=\right)\right] + \mathcal{E}\left(1-\frac{1}{\chi(H-1}+\mathcal{E})\begin{pmatrix}\omega\\2\end{pmatrix}\right) = \mathcal{E}\left(1-\frac{1}{\chi(H-1}+\mathcal{E})\begin{pmatrix}\omega\\2\end{pmatrix}\right) + \mathcal{E}\left(1-\frac{1}{\chi(H-1}+\mathcal{E})\begin{pmatrix}\omega\\2\end{pmatrix}\right) = \mathcal{E}\left(1-\frac{1}{\chi(H-1)}+\mathcal{E}\right)\left(1-\frac{1}{\chi(H-1)}\right) + \mathcal{E}\left(1-\frac{1}{\chi(H-1)}+\mathcal{E}\right)\left(1-\frac{1}{\chi(H-1)}\right) + \mathcal{E}\left(1-\frac{1}{\chi(H-1)}+\mathcal{E}\right)\left(1-\frac{1}{\chi(H-1)}\right) + \mathcal{E}\left(1-\frac{1}{\chi(H-1)}+\mathcal{E}\right)\left(1-\frac{1}{\chi(H-1)}\right) + \mathcal{E}\left(1-\frac{1}{\chi(H-1)}+\mathcal{E}\right)\left(1-\frac{1}{\chi(H-1)}\right) + \mathcal{E}\left(1-\frac{1}{\chi(H-1)}+\mathcal{E}\right)\left(1-\frac{1}{\chi(H-1)}\right) + \mathcal{E}\left(1-\frac{1}{\chi(H-1)}\right) + \mathcal{E}\left(1-\frac{1}{\chi(H-1)}+\mathcal{E}\right)\left(1-\frac{1}{\chi(H-1)}\right) + \mathcal{E}\left(1-\frac{1}{\chi(H-1)}\right) + \mathcal{E}\left(1$

$$=) \lim_{N \to \infty} \frac{e_{x}(\underline{h},\underline{H})}{\binom{n}{2}} \leq 1 - \frac{1}{\chi(\underline{H}) - 1}$$

١

So the asymptotics of ex(n,H) is determined by the chromatic number of H. However, when H is bipartite, the Erdős-Stone theorem only implies that $ex(n,H)=o(n^2)$. Not even the asymptotics of ex(n,H) is determined for any bipartite H, but we know it for some bipartite graphs. Examples:

 $\begin{aligned} & \mathcal{C}_{\mathsf{A}}(\mathsf{n}_{\mathsf{L}}\mathcal{C}_{\mathsf{4}}) \approx \mathsf{n}^{3h} \\ & \mathcal{C}_{\mathsf{X}}(\mathsf{n}_{\mathsf{L}}\mathcal{C}_{\mathsf{6}}) \approx \mathsf{n}^{4/3} \\ & \mathcal{C}_{\mathsf{X}}(\mathsf{n}_{\mathsf{L}}\mathcal{C}_{\mathsf{10}}) \approx \mathsf{n}^{6/5} \end{aligned}$

Theorem: Erdős-Kővári-Sós-Turán:

Proof: Let G be an n vertex graph which does not contain C4 as a subgraph. We count the number of . If we calculate these at the middle vertices, then their numbers are:

$$\# \bigvee_{i=1}^{n} = \sum_{j=1}^{n} \begin{pmatrix} d_{i} \\ 2 \end{pmatrix}$$

^

because any vertex together with its two neighbors form a 🗸 .

If we try to calculate the # \checkmark at its endpoints, then what we see is that if we fix two vertices, there can be at most one \checkmark whose endpoints are the two fixed vertices, otherwise there would be a C4:

Let
$$\mathcal{J}$$
 denote the average degree, so $\mathcal{J} = \frac{\mathcal{L}}{\mathcal{J}}$
The function $f(n) \begin{pmatrix} n \\ n \end{pmatrix} = \frac{h(n-1)}{2}$ is convex, therefore
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \mathcal{L} \stackrel{\prime}{=} \frac{h(n-1)}{2}$ is convex, therefore
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \mathcal{L} \stackrel{\prime}{=} \frac{h(n-1)}{2}$ is convex, therefore
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \mathcal{L} \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & A \\ \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2}$ so:
 $\mathcal{J} \left(\begin{array}{c} \mathcal{L} & n \end{array} \right) \stackrel{\prime}{=} \frac{h(n-1)}{2} \stackrel{}{=} \frac{h(n-1)}{2} \stackrel{}{=} \frac{h(n-1)}{2} \stackrel{}{=} \frac{h(n-1)}{2} \stackrel{}{=} \frac{h(n-1)}{2} \stackrel$

s convex, therefore we can apply Jensen's inequality:

$$e_{X}(n_{1}k_{2,1}) \approx h^{3/2}$$

$$e_{Y}(n_{1}K_{3,3}) \approx h^{5/3}$$

$$c \cdot n^{2-2} \leq e_{X}(n_{1}K_{7,5}) \leq c \cdot h^{2-\frac{1}{7}}$$

$$e_{Y}(n_{1}C_{4}) \leq c \cdot h^{3/2}$$

$$\overline{d}(\overline{d}-1)_{n} = \left[\frac{d}{2}\right]_{n} \leq \left(\frac{n}{2}\right) = \frac{n(h-1)}{2}$$

$$\overline{d}(\overline{d}-1) \leq n-1$$

$$\overline{d} \leq 5n$$

$$\overline{a} = \frac{zd}{n} = \frac{2e}{n} \leq 5n = 2e \leq \frac{n^{3/2}}{2}$$

$$= 2e \left(n \leq n\right) \leq \frac{n^{3/2}}{2} \qquad = 2e \leq \frac{n^{3/2}}{2}$$