1. Let G be any graph which has at least 10 vertices. Show that w(G) > 4 or «(G) > 3.

Let v be a vertex. If it is not adjacent to 4 vertices, then these vertices are either connected
to each other so they induce a clique of size 4 or two of them are not adjacent which form
an independent set of size 3 with v.

Otherwise at least 6 vertices are adjacent to G. The graph which is induced by these six
vertices is either contains a clique of size 3 which with v form a clique of size 4, or an
independent set of size 3. So we are done.

2. Proove that R(3,3,3) < 17 and prove that R(3,4) = 9.

Let v be a vertex in a 17 vertex complete graph and color its edges by three colors:
blue, red, green. There is a color, w.l.0.g blue s. t. v is incident to 6 blue edges. The
other endpoints of these edges induce a clique of size at least 6. If there is a blue
edge, then that edge with the two adjacent edges going to v form a blue triangle.

If there is no blue edge, then this clique of size >=6 has only green and red edges
therefore it either contains a red or a green triangle. So R(3,3,3)<=17.

An 8 vertex graph which neither contains a clique of size 3 nor an independent set of

size 4: Clearly it does not contain a triangle. If we choose a vertex v, then 4 vertices

are not adjacent to this, but that 4 vertices form a cycle of length 4, therefore no
independent set of size 4 can be chosen. Therefore
R(3,4)>8.

We show that R(4,3)<=9, of course R(4,3)=R(3,4).

Consider an arbitrary 9 vertex graph. If there is a vertex v which has 4 non-neighbours,
then these vertices are either connected to each other so they induce a clique of size 4
or two of them are not adjacent which form an independent set of size 3 with v.
Therefore the degree of each vertex is at least 5. Furthermore, because the sum of the
degrees must be even, there is a vertex w whose degree is at least six. The neighbours
of w induce an at least six vertex graph which either has an independent set of size 3
or a clique of size 3 which can be extended by w to a clique of size 4.

3. a. We have colored the edges of a complete graph by red and blue. Prove that it has a monochromatic
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spanning tree.

If the blue edges form a connected graph, then it has a spanning tree which is blue.
Otherwise, the there are at least two blue connected components. In that case if two
vertices are in different blue components, then there is a red edge between them. If
two vertices are in the same blue component then there is a two long red path between
them which uses a vertex from another blue component. Therefore in that case the red
edges form a connected graph which has a red spanning tree.



b. Is it true that a monochromatic Hamiltonian-path also exists?

No, example:

4. Prove, that R3(4,4) < 21.

Let S be a 21 element set and color every 3 element subset by either red or blue. We
would like to show that there are 4 elements such that any 3 element subset of them
have the same color. Let v be an element of S. Consider the 3 element subsets which
contain v. Remove v from them, then we end up with two element subsets, so a an
edge colored complete graph. Let the color of edge (a,b) be the color of (v,a,b).

This complete graph has 20 vertices and 20= (Lr 44 Jrsv) 2z lz (q L‘,)so this graph
contains a monochromatic clique of size 4. U4-1 ’

W.l.0.g. we have a blue clique of size 4. Then if we put back vertex v we obtain 6 blue
triangles (3 element subsets). If any three element of the clique of size 4 forms a blue
triangle, then these elements with v form a 4 element subset such that all of its triangles
are blue. Otherwise any three element of this size 4 clique form a red triangle, and in
that case the vertices of the clique is a 4 element subset such that all of its triangles are red.

5. Prove the following inequality: R3(k,l) < Ro(R3(k — 1,1), R3(k,1 — 1)) + 1. What kind of upper bound
(in magnitude) on R3(k, k) comes from this inequality?

Consider a set of size Ry(k,1) < Ry(R3(k — 1,1), R3(k,1 — 1)) + 1. and let v be one of its elements.
Let's say that the first color is blue, the second color is red.

If we consider only the triangles which contain v and delete v we obtain an edge colored
complete graph over R.(R;(k — 1,1), Ry(k,l — 1)) vertices. So it either contains a blue clique of

size Hs(k—1,0or a red clique of size - f(k.!+ 1In the first case either this blue clique

contains an | element subset whose all triangles are colored red or it contains a k-1 element
subset whose all triangles are colored blue. We can extend this k-1 element subset by v and

all of the triangles are still colored blue because this was a blue clique.

We can handle the second case in the exact same way.

6. Prove, that if ¢ > 3, then R¢(ni,na,...,n.) < Ri(ni,n2, ... ,ne—2, Ri(ne—1,n¢)).

We tell it for graphs, the same can be told for hypergraphs.

Assume that there is a graph having R(n1,n2,..nc-2,R(nc-1,nc)) vertices. Color it by n
different colors. Assume that the two colors are the same. Then there is a color i
such that it contains a clique of size ni whose color is i. If i<c-1 then we ore done.

If i is either c-1 or ¢, then in the graph there is a clique of size R(nc-1,nc) which is
colored by c-1 and c. But then in that there is either a clique of size nc colored by ¢
or a clique of size nc-1 colored by c-1.



7 #. Show that for each positive integer k there is a thresshold N (k) , such that if n > N(k) and we color
the subsets of the set [n] := {1,2,...,n} by k colors, then there are disjoint subsets X; and X5 of [n]
such that the colorsof X1, X5 and X; U X5 #% are the same. Is this statement true for 3 disjoint subsets?

Create a complete graph G where the edge ij correspond to the subset {i,i+1,..j-1}.
If G has at least R(3,3,...3) elements where the nhumber of arguments is t, then

it does not matter how we color the graph (and the corresponding sets) we always
obtain a monochromatic triangle which correspond to X, Y and XUY where X and Y
are disjoint. This reasoning works if we have 3 or more disjoint subsets.

& 97 Let H(V, E) be a k uniform hypergaph which has less than 2! edges. Show that the vertices of H can
be colored by red and blue in such a way that no edge is monochromatic. (Each edge have blue and red
vertices. )

Color each vertex independently and randomly in such a way that the probability
that a vertex is blue is 1/2 and similarly the probability that a vertex is red is 1/2.
Let A be in edge of H. H contains k vertices, therefore:
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Let XN\ae the random variable whose value is 1 if A is monochro%atlc and 0 otherwise.
EXp=I (A v Wov\oo(/\YOW\W) A )

Let Y be the random variable whose value is the number of monochromatic edges of H.

s 2% .
Aé{l expec ation IS linear )k ~4

R = 2% 2$XALL @ =]

The expected value of nhumber of monochromatic edges is less than one. Therefore
there is a coloring when there are 0 monochromatic edges.

J. l/I/ Show that if G is an n vertex graph, then max(a(G),w(G)) > 8% log, n .

Let k be the biggest number such that R(k k)<=n. In that case V\/\NU\U_.,\ \m{b\jz |
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