1. Let G be any graph which has at least 10 vertices. Show that $\omega(G) \geq 4$ or $\alpha(G) \geq 3$.

Let v be a vertex. If it is not adjacent to 4 vertices, then these vertices are either connected to each other so they induce a clique of size 4 or two of them are not adjacent which form an independent set of size 3 with v .
Otherwise at least 6 vertices are adjacent to G. The graph which is induced by these six vertices is either contains a clique of size 3 which with v form a clique of size 4 , or an independent set of size 3 . So we are done.

2. Proove that $R(3,3,3) \leq 17$ and prove that $R(3,4)=9$.

Let v be a vertex in a 17 vertex complete graph and color its edges by three colors: blue, red, green. There is a color, w.l.o.g blue s. t. v is incident to 6 blue edges. The other endpoints of these edges induce a clique of size at least 6 . If there is a blue edge, then that edge with the two adjacent edges going to v form a blue triangle. If there is no blue edge, then this clique of size $>=6$ has only green and red edges therefore it either contains a red or a green triangle. So $R(3,3,3)<=17$.

An 8 vertex graph which neither contains a clique of size 3 nor an independent set of size 4: Clearly it does not contain a triangle. If we choose a vertex v, then 4 vertices are not adjacent to this, but that 4 vertices form a cycle of length 4 , therefore no
 independent set of size 4 can be chosen. Therefore $R(3,4)>8$.

We show that $R(4,3)<=9$, of course $R(4,3)=R(3,4)$.
Consider an arbitrary 9 vertex graph. If there is a vertex v which has 4 non-neighbours, then these vertices are either connected to each other so they induce a clique of size 4 or two of them are not adjacent which form an independent set of size 3 with v. Therefore the degree of each vertex is at least 5 . Furthermore, because the sum of the degrees must be even, there is a vertex w whose degree is at least six. The neighbours of w induce an at least six vertex graph which either has an independent set of size 3 or a clique of size 3 which can be extended by w to a clique of size 4.
3. a. We have colored the edges of a complete graph by red and blue. Prove that it has a monochromatic spanning tree.

If the blue edges form a connected graph, then it has a spanning tree which is blue. Otherwise, the there are at least two blue connected components. In that case if two vertices are in different blue components, then there is a red edge between them. If two vertices are in the same blue component then there is a two long red path between them which uses a vertex from another blue component. Therefore in that case the red edges form a connected graph which has a red spanning tree.

b. Is it true that a monochromatic Hamiltonian-path also exists?

No, example:

4. Prove, that $R_{3}(4,4) \leq 21$.

Let S be a 21 element set and color every 3 element subset by either red or blue. We would like to show that there are 4 elements such that any 3 element subset of them have the same color. Let v be an element of S . Consider the 3 element subsets which contain v . Remove v from them, then we end up with two element subsets, so a an edge colored complete graph. Let the color of edge (a, b) be the color of $(\mathrm{v}, \mathrm{a}, \mathrm{b})$.

W.I.o.g. we have a blue clique of size 4 . Then if we put back vertex v we obtain 6 blue triangles (3 element subsets). If any three element of the clique of size 4 forms a blue triangle, then these elements with v form a 4 element subset such that all of its triangles are blue. Otherwise any three element of this size 4 clique form a red triangle, and in that case the vertices of the clique is a 4 element subset such that all of its triangles are red.
5. Prove the following inequality: $R_{3}(k, l) \leq R_{2}\left(R_{3}(k-1, l), R_{3}(k, l-1)\right)+1$. What kind of upper bound (in magnitude) on $R_{3}(k, k)$ comes from this inequality?

Consider a set of size $\quad R_{3}(k, l) \leq R_{2}\left(R_{3}(k-1, l), R_{3}(k, l-1)\right)+1$. and let v be one of its elements. Let's say that the first color is blue, the second color is red.
If we consider only the triangles which contain v and delete v we obtain an edge colored complete graph over $R_{2}\left(R_{3}(k-1, l), R_{3}(k, l-1)\right)$ vertices. So it either contains a blue clique of size $R_{3}(k-1, l)$ or a red clique of size $\cdot R_{3}(k, l-$ IIn the first case either this blue clique contains an I element subset whose all triangles are colored red or it contains a k-1 element subset whose all triangles are colored blue. We can extend this $\mathrm{k}-1$ element subset by v and all of the triangles are still colored blue because this was a blue clique.
We can handle the second case in the exact same way.
6. Prove, that if $c \geq 3$, then $R_{t}\left(n_{1}, n_{2}, \ldots, n_{c}\right) \leq R_{t}\left(n_{1}, n_{2}, \ldots, n_{c-2}, R_{t}\left(n_{c-1}, n_{c}\right)\right)$.

We tell it for graphs, the same can be told for hypergraphs.
Assume that there is a graph having $\mathrm{R}(\mathrm{n} 1, \mathrm{n} 2, . . \mathrm{nc}-2, \mathrm{R}(\mathrm{nc}-1, \mathrm{nc})$) vertices. Color it by n different colors. Assume that the two colors are the same. Then there is a color i such that it contains a clique of size ni whose color is i . If $\mathrm{i}<\mathrm{c}-1$ then we ore done. If i is either $\mathrm{c}-1$ or c , then in the graph there is a clique of size $\mathrm{R}(\mathrm{nc}-1, \mathrm{nc})$ which is colored by $\mathrm{c}-1$ and c . But then in that there is either a clique of size nc colored by c or a clique of size $\mathrm{nc}-1$ colored by $\mathrm{c}-1$.
7. \%. Show that for each positive integer k there is a thresshold $N(k)$, such that if $n>N(k)$ and we color the subsets of the set $[n]:=\{1,2, \ldots, n\}$ by k colors, then there are disjoint subsets X_{1} and X_{2} of $[n]$ such that the color of X_{1}, X_{2} and $X_{1} \cup X_{2}$ are the same. Is this statement true for 3 disjoint subsets?

Create a complete graph G where the edge ij correspond to the subset $\{\mathrm{i}, \mathrm{i}+1, . . \mathrm{j}-1\}$. If G has at least $R(3,3, \ldots 3)$ elements where the number of arguments is t, then it does not matter how we color the graph (and the corresponding sets) we always obtain a monochromatic triangle which correspond to X, Y and XUY where X and Y are disjoint. This reasoning works if we have 3 or more disjoint subsets.
8. 8. Let $H(V, E)$ be a k uniform hypergaph which has less than 2^{k-1} edges. Show that the vertices of H can be colored by red and blue in such a way that no edge is monochromatic. (Each edge have blue and red vertices.)

Color each vertex independently and randomly in such a way that the probability that a vertex is blue is $1 / 2$ and similarly the probability that a vertex is red is $1 / 2$. Let A be in edge of $\mathrm{H} . \mathrm{H}$ contains k vertices, therefore:

$$
P(A \text { is mong chromatic })=P(\text { all vertices of } A \text { me red })+P(d l l \text { well cs of A arellhe })=
$$

$$
=\left(\frac{1}{2}\right)^{k}+\left(\frac{1}{2}\right)^{k}=\left(\frac{1}{2}\right)^{k-1}
$$

Let $X_{\text {Abe the }}$ random variable whose value is 1 if A is monochromatic and 0 otherwise.

$$
\nVdash X_{A}=\mathbb{P}(A \text { is monochromatic })=\left(\frac{1}{2}\right)^{k-1}
$$

Let Y be the random variable whose value is the number of monochromatic edges of H .

$$
\begin{aligned}
& y=\sum_{A \in E} X_{A} \\
& \mathbb{F}^{\prime} Y=\mathbb{E} \sum_{A \in E} X_{A_{i}} \stackrel{\perp}{=} \sum_{A \in E} \mathbb{E} X_{A}<2^{k-1} \cdot\left(\frac{1}{2}\right)^{k-1}=1
\end{aligned}
$$

The expected value of number of monochromatic edges is less than one. Therefore there is a coloring when there are 0 monochromatic edges.
9. 11. Show that if G is an n vertex graph, then $\max (\alpha(G), \omega(G)) \geq \log _{4} n$.

Let k be the biggest number such that $R(k, k)<=n$. In that case

$$
\max (\alpha(6), w(6)) \geq k
$$

$$
\text { and } \quad n<R(k+1, k+1)<2^{2 k}=4^{k}
$$

$$
\Rightarrow \log _{4} n \leq k
$$

$$
\Rightarrow \quad \log _{4 n} \leq k \leq \operatorname{mot}(\alpha(b), \omega(\theta))
$$

