1. Decide whether the following graphs are planar or not:

This is a subdivision of K 5 therefore by Kuratowskys thm this is not planar.

This is not a subdivision of K 5 and if you delete some edge then you do not have enough degree 5 vertices to contain a subdivision of K 5 as a subgraph. It also does not contain a $\mathrm{K} 3,3$ but it a little bit harder. An esasy reasoning:
It can be drawn without edge crossings as you can see above.

This is not planar by Kuratowskys theorem. If you delete the red edge then you obtain a subdivision of K5.

THis is not planar because it contains a subdivision of $\mathrm{K} 3,3$ as a subgraph.

This is planar because we can draw without a crossing.

Not planar because it contains a subdivision of K3,3.

Not planar because it contains a subdivision of K3,3
2. Is there a plane graph in which the number of vertices, edges and faces are all divisible by 3 ?

Yes. $\mathrm{n}+\mathrm{f}=\mathrm{e}+1+\mathrm{c}$ by Euler's formula, therefore it must have two connected components or more.

3. Is there a simple connected plane graph which has half as many vertices as faces?

No because $\mathrm{n}+\mathrm{f}=\mathrm{e}+2$ and $\mathrm{f}=2 \mathrm{n}$ would mean that $3 \mathrm{n}=\mathrm{e}+2$ but we know that $\mathrm{e}<=3 \mathrm{n}-6$.
4. In a simple, connected plane graph the degree of each vertex is 4 , and the number of the edges is 16 . Determine the number of faces.

The number of edges is $4 n / 2=2 n=16$ therefore $n=8$. By Euler's formula $f=e+2-n=16+2-8=10$.
5. A convex polyhedron has 20 vertices and 12 faces. Each face of the polyhedron is bounded by the same number of edges. What is this common number?

Let x denote the number of edges bound a face. $\mathrm{e}=12 \mathrm{x} / 2$
The graph of the polyhedron is connected planar graph therefore by Euler's Formula: $n+f=e+2$ so $6 x=20+12-2=30$ and $x=5$.
6. a) Show that in a simple planar graph the minimum degree is at most 5 .
b) In the simple planar graph G the minimum degree is 5 . Show that in this case G contains at least 12 vertices of degree 5 .
c) Is the statement true with 13 instead of 12 ?
a) Assume the contrary, so each verte has degree at least six. Since the graph is planar and simple we know that $\mathrm{e}<=3 \mathrm{n}-6$. But:

$$
\begin{gathered}
6 \cdot n \leq \sum_{i=1}^{n} d\left(v_{i}\right)=2 e=2(3 n-6)=6 n-12 \\
6 n \leq 6 n-124
\end{gathered}
$$

b) Let x denote the number of degree 5 vertices.

$$
\begin{gathered}
5 x+6(n-x)<\sum_{i=1}^{n} d\left(v_{i}\right)=2 e=6 n-12 \\
6 n-x \leq 6 n-12 \\
-x \leq-12 \rightarrow x \leq 12
\end{gathered}
$$

c) No it is not true because th icosahedron has 12 vertices and each of them has degree 5. The graph of the icosahedron is planar.
7. a) Pove that if G is a simple graph on at least 11 vertices then at least one of G and its complement \bar{G} is not planar.
b) Give a simple graph G on 8 vertices such that both G and \bar{G} are planar.

Assume that G has 11 vertices. We know that $e_{G}+e_{\bar{G}}=e_{K_{11}}$

$c_{k 11}=\frac{11 \cdot 10}{2}=55$

If an 11 vertex graph is simple and planar then it has at most edges. So if G is planar, then G has at least 28 edges, so it is not planar.

If G has more than 11 vertices, then take an 11 vertex subgraph H. If H is not planar then G is also not planar. If H is planar then \widetilde{H} is not planar which is a subgraph of \mathbb{G}, therefore \vec{T} is not planar.
b) Take the graph of the cube and triangulate it. The degree sequence of the complement graph is $3,3,3,3,2,2,2,2$. So it neither contains a subdivision of $\mathrm{K} 3,3$ which would require 6 degree 3 vertices nor K 5 which require 5 degree 4 vertices. So by Kuratowski's theorem the complement of this planar graph is also planar.

8. a) Let G be a simple graph on at most 6 vertices. Dove that at least one of G and its complement \bar{G} is planar.
b) Give a simple graph G on 8 vertices such that neither G nor \bar{G} is planar.

Assume that G has 6 vertices. If G is planar then we are done. Assume that G is not planar. We utilise Kuratowski's the:
Case 1: G contains a K5 or its subdivison: Then in the complement 5 vertices has degree 0 or 1 and one vertex can have higher degree. So the complement graph is a star and some isolated vertices which is planar.
Case 2: G contains a K3,3 or its subdivision: Then in the complement each verex has degree 0,1 or 2 . So The complamant is a union of cycles, paths, and isolated vertices which is planar.
b) Let G be $\mathrm{K} 3,3$ and two isolated vertices. Its complement looks like this:

This does not work. It is easy to see that the complement of K 5 plus something will be planar. So instead of these pick a subdivision of K3,3 plus an isolated vertex:

This looks nice, lets haunt a K3, 3 in this,
So this graph an also its complement is not planar.

