
Ramsey Theory

Assume that A, B and C are adjacent to v. If any two of these vertices are adjacent, then
we have a clique of size 3, otherwise these three vertices are non-adjacent.

Now consider that A,B and C are not adjacent to v. If any two of these three vertices are
not adjacent to each other, then they whit v form an independent set of size three. 
Otherwise A,B and C form a clique of size 3.

Note: This claim is not true when we have only 5 vertices. Example:

Ramey's Theorem: For any k and l, there is a number R(k,l), which is defined to be the 
smallest possible, such that if you take any graph containing at least R(k,l) vertices, then
the graph contains a clique of size k or an independent set of size l.

Note: The previous claim shows that R(3,3)=6. 

Proof of Ramsey's theorem by Erdős and Szekeres:

We are going to prove that for any l and k:    

We prove by induction on k and l.
R(2,l)=l because if a graph has l vertices, then either it contains an edge or all of its vertices
are independent. Similarly R(k,2)=k. Furthermore: 

So the base cases are OK, and we can start the induction.

Claim: In any six vertex graph either there are 3 pairwise adjacent vertices, a clique, or 3 pairwise 
non-adjacent vertices, an independent set.

Proof: Let G be a six vertex graph. A vertex v in G is either adjacent to three vertices or there
are three vertices which are not adjacent to v. 



We show that in the general case:
R(k,l)<=R(k-1,l)+R(k,l-1) and therefore R(k,l) exists.

Let G be a graph which contains at least R(k-1,l)+R(k,l-1) vertices and let v be a vertex of G.
Either v is adjacent to R(k-1,l) vertices or it is not adjacent to R(k,l-1) vertices.

In the first case, by the inductional assumption either the neighbors of v induce a subgraph
which contains a clique of size k-1, which can be extended by v to a clique of size k, or they
contain an independent set of size l. In both cases we are done.

In the second case, by the inductional assumption either the neighbors of v induce a subgraph
which contains an independent set of size l-1, which can be extended by v to an independent
set of size l-1, or it contains a clique of size k. Again, in both cases we are done.   

by induction

Corollary:

Note:

The best known upper bound for R(k,k) is 

This problem can be told as an edge coloring problem in the following way: 
We have a complete graph and color the edges by two colors, red and blue. If a an edge is
blue, then it is an edge of G, otherwise it is not an edge of G. 
Clearly if the complete graph has at least R(k,l) vertices, then it does not matter how we 
color its edges, there is either a blue clique of size k or a red clique of size l.
This coloring description allow us to generalise the problem:

Theorem: There is a number R(k1,k2,..km) such that if we color the edges of a complete
graph which has at least R(k1,k2,..km) vertices by m colors, then there is a color i, such 
that there is a clique of size ki whose edges have color i.

Remember that

Number of k-1 element subsets of a 
2k-2 element set

Number of subsets of a 2k-2 element set



Claim:

A lower bound on R(k,k):

Claim: 

The previous proof can be generalised to prove this claim.

We are going to prove this result by the probabilistic method. 

Proof: Let n             .  Let         be the number of n vertex simple graphs over n labeled vertices.

So for example we distinguish the following two isomorphich graphs: 

Let            be the number of n vertex simple graphs over n labeled vertices which contain a

clique of size k. 

Because from 1,2..n we can create        pairs and for each of them we can
either place or do not place an edge. 

That many ways can we choose k vertices to be a clique

The number of possible edges which are not determined
by the choosen clique.

Clearly a labeled graph which contains a clique of size k can be counted many times at the
right hand side. For example    is counted         many times.  

the number of numerators is less than the 
number of denominators and each numerator is
not bigger than a corresponding denominator

So less than half of the n vertex graphs contain a clique of size k if 

In the exact same way we can count the number of n vertex graphs which contain an 
independent set of size k and we obtain that less than half of the n vertex graphs
contain an independent set of size k if 

Therefore if                   , then there is an n vertex graph which neither contains a clique
of size k nor contains an independent set of size k. Thus R(k,k)  



Note that the probabilistic method has not given us such an example. We only proved its
existance. People are trying to construct such an example, but they are not even close.

The best known lower bound on R(k,k) is approxametly 

Theorem:

Other generalization:

Assume that we have a set and we are coloring the p element subsets of the set. Note that
p=2 means that we are coloring the edges of a graph. When p>2 we are coloring the edges
of a hypergaph.

Theorem: There is a (smallest possible) number                                   such that if a set
contains at least                                  elements, then it does not matter how we color the
p element subsets of the set by t colors there is always a color i, such that there is a ki 
element subset whose all p element subsets have color i.

If                                                            , then A contains an arbitrary long finite arithmetic 

progression.

Theorem (Schur 1916): For each t, there is a number N(t), such that if we color the numbers
1,2,3..N(t) by t colors, then there are numbers x,y,z which have obtained the same color and
x+y=z.

Proof: Let N=                           We color 1,2,3...N by t colors, and for such a coloring we 
create a coloring of the edges of the N vertex complete graph:

The edge (vi,vj) receives the color of the number |i-j|. Since N=R(3,3...3), there is a
monchromatic triangle in that graph. Let a,b and c be its vertices such that a<b<c. Then:
x:=c-b, y:=b-a, z:=c-a. x,y,z are the numbers whose colors are given to the edge of the
monochromatic triangle, so they received the same color and x+y=z. 

Theorem (Van der Waerden 1927): For each t,n there is a number N(t,n) such that if we
color the numbers 1,2,3...N(t,n) by t colors then there is a monochromatic aritmetic 
progression of length n.

Corrolary: If we color all the natural numbers by t colors, then there is an arbitrary long 
finite monochromatic arithmetic progression. 
On the other hand an infinite monochromatic arithmetic progression not necessarily exists. 

Theorem (Szemerédi 1975): Let A be a subset of the natural numbers. 



these does not form a convex polygon.For example:

Proof (By Johnson)
We are going to show the following weak upper bound:

Assume that we have              points in general position. 
Any three given points form a triangle and we color such a triangle by blue if its interior 
contains even number of given points and we color it red if its interior contains odd number
of given points.

Since we have              points, there are n points such that any triangle which they span have
the same color. In this case they form a vertex set of a convex polygon because:  
Indirectly assume that they not. In these case there are four of them in the following position:

which means the following by the definition of the coloring:

Either their color is blue:

Or its color is red:

But in this case the outer triangle contains odd number of points, so it is red,
which is a contradiction. 

But in this case the outer triangle contains even number of points, so it is
blue, which is a contradiction.

Theorem (Erdős-Szekers 1935 also known as the Happy ending problem):

For each n, there is a (smallest possible) F(n) such that if F(n) points in general position
(no three points are incident to the same line) are given, then there are n of them which
form the vertices of a convex polygon.


