Partially ordered sets (posets)

A relation \leq is called a partial order over a set S , if it satisfies the following three properties: -reflexivity: $\forall a \in S: a \leq a$
-antisymmetry: $\forall a, \leqslant \in$: if $a \leq b$ and $b \leq a \Rightarrow a=b$ -transitivity: $\forall a, b, c \in S$: if $a \leq b$ and $b \leq c \Rightarrow a \leq c$
Definition: If we have a set S and a relation \leqslant which is a partioal order over S, then we call the pair (S, S) as a partially ordered set, or pose for short.

Definition: $a, b \in S$ are called comparable elements if $a \leq b$ or $b \leq a$. If two elements are not comparable, then we call them as incomparable elements.

Notation: If $a \leq b$ and $a \neq b$, then we simply write $a<b$.
Definition: $\{$ al, az, ... an $\} \subseteq S$ is a chain in $(S, \leq$ if there is a permutation $\overbrace{t} S_{n}$ such that $a_{\pi(n)}<a_{\pi(2)}<a_{\pi(3)}<\ldots<a_{\pi(n)}$.
Definition: $\{a 1, a 2, \ldots, a n\} \quad S$ is an antichain in (S, \quad) if there is no ai and oj $(i \neq j)$ which are comparable.

Example: $\mathrm{S}=$ the points of the plane
The definition of $\leq_{5}:\left(x_{1}, y_{1}\right) \leq_{5}\left(x_{2}, y_{2}\right) \Leftarrow x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$
This relation is a partial order over the plane:
reflexivity: $(x, y) \leq 5(x, y) \Leftrightarrow x \leq x$ and $y \leq y$
antisymmetry: $\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) \leq s\left(x_{1}, y_{1}\right)$
$\underbrace{x_{1} \in\left(x_{1}, y_{2}\right)}_{x_{1}=x_{2}, y_{1}=y_{2} \Rightarrow\left(x_{1}, y_{1}\right)}$
transitivity:

$$
\begin{array}{ll}
\left(x_{1}, y_{1}\right) \leq 5\left(x_{1}, y_{2}\right) & \operatorname{and}\left(x_{2}, y_{2}\right) \frac{\leq}{5}\left(x_{3}, 讠\right. \\
x_{1} \leqslant x_{2} & x_{2} \leq x_{3} \\
y_{1} \leqslant x_{2} & \\
y_{2} \leq y_{3}
\end{array}
$$

θ

$\{a 1, a 2, a 3, a 4\}$ is a chain in this poset.

- by
$\{b 1, b 2, b 3, b 4\}$ is an antichain in this posed.
$-b_{2}$

How to "draw" a poses?
Hesse diagram of a posit:
Each element of (S, S) is a vertex on the plane. If $a<b$, then the vertex of b appears above the vertex of a. Vertices a and b are adjacent if and only if $a<b$ and there is no $c \in S$ s.t. $a<c<b$ or $b<a$ and there is no $c \in S$ st. $b<c<a$.

Example: Let S be the following points on the plane and let the partial order be the previous, so $\left(x_{1}, y_{1}\right) \leqslant\left(x_{2}, y_{2}\right)\left(\theta x_{1} \leqslant x_{2}\right.$ and $y_{1} \leqslant y_{7}$.

The Hesse diagram of (S $\frac{c}{\Gamma_{5}}$:

Dilworth's theorem ('50):
Let (S, \leqslant) be a poset and let a be the size of a maximum antichain of (S, \leqslant). Then $(\mathrm{S}, \leq$) can be partitioned into a chains but it cannot be partitioned into a-1 chains.

Dual of Dilworth's theorem/Mirsky's theorem:
Let (S, \leftrightharpoons) be a post and let c be the size of a maximum chain of (S, \leqslant). Then (S, \leqslant) can be partitioned into c antichains but it cannot be partitioned into c-1 antichains.

Note: If A is an antichain and C is a chain, then $|A \cap C| \leqslant 1$.
Proof: If a, b are contained in a chain then they are comparable, so they cannot be in an antichain.

Corrollary: (S, L) cannot be partitioned into a-1 chains because to cover the maximum antichain, whose size is a, we need at least a chains.
Simillarly $\left(S_{1} \leq\right)$ cannot be partitioned into c-1 chains because to cover the maximum chain, whose size is c, we need at least c chains.

Proof of Dual Dilworth's the:
We have seen that c-1 antichains are not enough to cover the poses. We give c antichains which cover it. Let $s \in S$. We define $r(s)$, the rank of s, as the size of the largest chain whose maximum element is h.

Example:
largest chain
whose maximum element is s

$$
r(s)=4
$$

Clearly for any $s \in s: 1 \leq T(S) \leq C$.
Claim: If $r(s 1)=r(s 2)$ and $s 1 \neq s 2$, then si and s2 are incomparable. *
To show that indirectly assume that $r(s 1)=r(s 2), s 1 \neq s 2$ and $S_{1} \leq S_{2}$.
Let C1 be the largest chain whose maximal element is $s 1$. The size of C 1 is $\mathrm{r}(\mathrm{s} 1)$.
Since $s 1<s 2$ and \leq is transitive $\mathcal{C}_{1} \cup\left\{S_{2}\right\}$ is a chain whose maximum element is $s 2$.
Then $r(s 2) \geq r(s 1)+1=r(s 2)+1$ which is a contradiction, so $\mathbb{*}$ is true.
Now we give an antichain cover whose size is c:
Let $A_{i}=\{s \in S \mid r(s)=i\}$. $A_{1} A_{21} \ldots A_{c}$ are antichains and they cover s.
Proof of Dilworth: later

Comparability graphs

def: A graph G is a comparability graph if there is a post $(\mathrm{V}(\mathrm{G}), \leftrightharpoons$ such that $\forall \mathrm{g}, \mathrm{h} \in \mathbb{U}(G)$
are adjacent if and only if g and h are comparable and $\mathrm{g} \neq \mathrm{h}$.
Claim: Comparability graphs are perfect:
Proof: An induced subgraph of a comparability graph is a comparability graph, because if we restrict the relation \leqslant to a subset then it induces a sybgraph in G. Therefore it is enough to show that if G is a comparability graph, then $X(G)=w(G)$.
Note that:
G $(0, C)$
clique <--> chain
maximum clique $<-->$ maximum chain
$w(6)<-->$
C
independent set <--> antichain
max independent set <--> maximum antichain
$\alpha(G)<->d$
In an optimal coloring we divide $\mathrm{V}(\mathrm{G})$ to $\chi(\sigma$ disjoint inpedendent sets, so we divide the corresponding pose to the fewest number of antichains, By Mirsky's the that number is c, the size of a maximum chain which is $w(G)$. So

Proof of Dilworth's theorem by the weak perfect graph theorem:
Let G be the comparability graph of the pose $(S, \leqslant$). Then G is the "incomparability" graph of (S, \leq) where two vertices are adjacent if and only if the two elements are incomparable. G is perfect, sQ we can use the weak perfect graph theorem and obtain that \bar{G} is perfect as well. Thus $X(\bar{G})=\omega(\bar{G})$. Where $w(\vec{G})=\mathcal{L}(G)=$ size of the largest antichain in (S, \leq).
An independent set in \bar{G} is a chain in (S, \angle), therefore $X(\bar{G})$ is the least number of chains which cover S. So $\lambda\left(\frac{\sigma}{G}\right)=w\left(\frac{G}{G}\right)$ is equivalent to the Dilworth's the.

A direct proof of Dilworth's theorem:
We use induction on $|S| .|S|=1$ is trivial. Let C be a maximum chain in (S, \leftrightarrows).
Reminder: a denotes the size of a maximum antichain in (S, \leq).
Let A be a maximum antichain in ($S \backslash C, \angle$) The size of A is either a or a-1. If $|A|=a-1$, then by induction $S \backslash C$ can be covered by a-1 chains and by adding C we obtain a partition of (S, \leq) into a chains.
Otherwise $|A|=a$, so it is also a maximum antichain in (S, \leqslant).
Let $A=\{s 1, s 2, . ., s a\}$. Let x be the maximum element of C and let y be the minimum element
Let ${ }_{\text {of }} S^{+}=\left\{s \in S \mid \exists_{s i \in A: s}: s_{i}\right\}, s^{-}=\left\{s \in S \mid \sigma_{s} \in A: s \leq s_{i}\right\}$
Claim 1: $S^{+} \cap S^{-}=A$:
clearly: $s^{+} \wedge S^{2} \supseteq \neq \cdots$ Indirectly assume that $\exists s \notin A: S \in S^{+} \wedge S^{-}$
 Claim 2: $S_{\text {Indirectly assume that }}^{+}=S_{s \in S \backslash}^{-}\left\{S^{+} \cup S^{-}\right\}:$$\left\{\begin{array}{l}\neq S_{i} \in A: S_{i} \geq 5 \in S \notin S^{-} \\ 7 S_{i} \in A \quad S_{i} \leq S \in S \notin S^{+}\end{array}\right.$ $A \cup\{s\}$ is a bigger antichain of (s, ζ) and its size is a+1 a was the size of a maximum

Claim 3: $x \in S^{+}, y \in S^{-}$:
Indirectly assume that $x \notin S^{+}$, By Claim 2, then $x \in S^{-} \Rightarrow \exists S \in S: x \leqslant S$ $\Rightarrow C U\left\{_{x}\right\}$ is a chain which is bigger than C, but C was a maximum chain.
By 3. $\left|S^{-}\right|<|S|$ and $\left|S^{\top}\right|<|S|$ so we can use our inductional hypothesis for the poses $\left(S^{-}, \leqslant\right)$and $\left(S_{1}^{+}, S\right)$. is a maximum antichain in both. Therefore both one can be partitioned into a chains. Each chain of $(S,-\leq)$ contains one element of A and that is the maximum element of that chain. Similarly each chain of $(S T \leq)$ contains one element of A and that is the minimum element of the chain. We can combine each chain of $(S+1 \leq)$ to a chain of (S, \leq) to obtain a chain of (S, S).
By this construction we obtained a partition of (S, \leqslant) to a chains.

