
Partially ordered sets (posets)

A relation      is called a partial order over a set S, if it satisfies the following three properties:

-reflexivity:

-antisymmetry: 

-transitivity: 

Definition: If we have a set S and a relation     which is a partioal order over S, then we call
the pair (S,   ) as a partially ordered set, or poset for short. 

Definition: a,b   S are called comparable elements if a   b or b   a. If two elements are not 
comparable, then we call them as incomparable elements.

Notation: If  a    b and a   b, then we simply write a<b.

Definition: {a1, a2, ..., an}   S is a chain in (S,   ) if there is a permutation          such that 

Definition: {a1, a2, ..., an}   S is an antichain in (S,   ) if there is no ai and aj i   j which are
comparable.

Example: S= the points of the plane
The definition of 

This relation is a partial order over the plane:

reflexivity:

antisymmetry:  

transitivity: 



R and Q are incomparable

{a1, a2, a3, a4} is a chain in this poset.

{b1, b2, b3, b4} is an antichain in this poset.

How to "draw" a poset? 

Hesse diagram of a poset:
Each element of (S,  ) is a vertex on the plane. If a<b, then the vertex of b appears above the
vertex of a. Vertices a and b are adjacent if and only if a<b and there is no c  S s.t. a<c<b or
b<a and there is no c   S s.t. b<c<a. 

Example: Let S be the following points on the plane and let the partial order be the previous,
so    

The Hasse diagram of (S   ):

Dilworth's theorem ('50):
Let (S,   ) be a poset and let a be the size of a maximum antichain of (S,   ). Then (S,    ) can
be partitioned into a chains but it cannot be partitioned into a-1 chains.

Dual of Dilworth's theorem/Mirsky's theorem: 
Let (S,   ) be a poset and let c be the size of a maximum chain of (S,   ). Then (S,    ) can be
partitioned into c antichains but it cannot be partitioned into c-1 antichains.



largest chain
whose maximum
element is s

Proof of Dual Dilworth's thm:
We have seen that c-1 antichains are not enough to cover the poset. We give c antichains
which cover it. Let s   S. We define r(s), the rank of s, as the size of the largest chain whose
maximum element is h.

Example:

Note: If A is an antichain and C is a chain, then |A  C|   1
Proof: If a,b are contained in a chain then they are comparable, so they cannot be in an
antichain.

Corrollary:            cannot be partitioned into a-1 chains because to cover the maximum 
antichain, whose size is a, we need at least a chains.
Simillarly          cannot be partitioned into c-1 chains because to cover the maximum 
chain, whose size is c, we need at least c chains. 

Clearly for any s   S: 
Claim: If r(s1)=r(s2) and s1   s2, then s1 and s2 are incomparable. 
To show that indirectly assume that r(s1)=r(s2), s1   s2 and

Let C1 be the largest chain whose maximal element is s1. The size of C1 is r(s1). 
Since s1<s2 and     is tansitive                  is a chain whose maximum element is s2.
Then r(s2)    r(s1)+1=r(s2)+1 which is a contradiction, so      is true. 

Now we give an antichain cover whose size is c:
Let                                                                    are antichains and they cover S. 

Proof of Dilworth: later

Comparability graphs

def: A graph G is a comparability graph if there is a poset (V(G),   ) such that
are adjacent if and only if g and h are comparable and g   h.

Claim: Comparability graphs are perfect:
Proof: An induced subgraph of a comparability graph is a comparability graph, because
if we restrict the relation      to a subset then it induces a subgraph in G. Therefore it is 
enough to show that if G is a comparability graph, then 
Note that:

clique      <-->       chain
       maximum clique      <-->       maximum chain

       <-->     
independent set     <-->       antichain

max independent set     <-->       maximum antichain
       <-->

In an optimal coloring we divide V(G) to            disjoint inpedendent sets, so we divide
the corresponding poset to the fewest number of antichains. By Mirsky's thm that number
is c, the size of a maximum chain which is                So     



Proof of Dilworth's theorem by the weak perfect graph theorem:

Let G be the comparability graph of the poset (S,   ). Then G is the "incomparability" graph
of (S,    ) where two vertices are adjacent if and only if the two elements are incomparable.
G is perfect, so we can use the weak perfect graph theorem and obtain that G is perfect as
well. Thus                            Where                            size of the largest antichain in (S,    ).

An independent set in G is a chain in (S,   ), therefore         is the least number of chains 
which cover S.  So                          is equivalent to the Dilworth's thm. 

A direct proof of Dilworth's theorem:

We use induction on |S|. |S|=1 is trivial. Let C be a maximum chain in (S,   ).
Reminder: a denotes the size of a maximum antichain in (S,   ).
Let A be a maximum antichain in (S\C,   ) The size of A is either a or a-1. If |A|=a-1, then
by induction S\C can be covered by a-1 chains and by adding C we obtain a partition of (S,   )
into a chains.
Otherwise |A|=a, so it is also a maximum antichain in (S,   ). 
Let A={s1,s2,..,sa}. Let x be the maximum element of C and let y be the minimum element
of C.
Let   

is a bigger antichain of (S,  ) and its size is a+1 

a was the size of a maximum

             is a chain which is bigger than C, but C was a maximum chain. 

and              A is a maximum antichain in both. Therefore both one can be 

Claim 1: 

Clearly:                               Indirectly assume that

By the def of S

By the def of S

Claim 2: 
Indirectly assume that

Claim 3: 

Indirectly assume that  x           By Claim 2, then

By 3. |S  |<|S| and |S  |<|S| so we can use our inductional hypothesis for the posets 

partitioned into a chains. Each chain of S       contains one element of A and that is the
maximum element of that chain. Similarly each chain of S       contains one element of
A and that is the minimum element of the chain. We can combine each chain of S
to a chain of S    to obtain a chain of (S,   ).  

By this construction we obtained a partition of (S,   ) to a chains.   


