Partially ordered sets (posets)

A relation é is called a partial order over a set S, if it satisfies the following three properties:

-reflexivity: VO\fj%', ﬁéﬂ\
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Definition: If we have a set S and a relation £ which is a partioal order over S, then we call
the pair (S,é) as a partially ordered set, or poset for short.

Definition: a,bg S are called comparable elements if &b or b& a. If two elements are not
comparable, then we call them as incomparable elements.

Notation: If a=b and a;Lb, then we simply write a<b.

Definition: {al, a2, ..., an}<Sis a chain in (S, l_:) if there is a permutation@éghsuch that
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Definition: {al, a2, ..., an} Sis an antichainin (S, ) if there is no ai and aj(i%j)which are
comparable.

Example: S= the points of the plane
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This relation is a partial order over the plane:
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Q P,_/? Q ( Fé z ' R and Q are incomparable
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{al, a2, a3, a4} is a chain in this poset. 0 'b
29

P {bl, b2, b3, b4} is an antichain in this poset. . 10

How to "draw" a poset?

Hesse diagram of a poset:

Each element of (S,£) is a vertex on the plane. If a<b, then the vertex of b appears above the
vertex of a. Vertices a and b are adjacent if and only if a<b and there is no ceS s.t. a<c<b or
b<a and there is no c£S s.t. b<c<a.

Example: Let S be the following pomts on the plane and let the partial order be the previous,
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Dilworth's theorem ('50):
Let (S, £) be a poset and let a be the size of a maximum antichain of (S,£). Then (S, <) can
be partitioned into a chains but it cannot be partitioned into a-1 chains.

Dual of Dilworth's theorem/Mirsky's theorem:
Let (S,5) be a poset and let ¢ be the size of a maximum chain of (S, £). Then (S, ) can be
partitioned into ¢ antichains but it cannot be partitioned into c-1 antichains.



Note: If A is an antichain and C is a chain, then |[ANC| £1.
Proof: If a,b are contained in a chain then they are comparable, so they cannot be in an

antichain.
Corrollary: \Ae 2 cannot be partitioned into a-1 chains because to cover the maximum
antichain, size is a, we need at least a chains.

S|m|IIarIy i cannot be partitioned into c-1 chains because to cover the maximum
chain, whose size is ¢, we need at least ¢ chains.

Proof of Dual Dilworth's thm:

We have seen that c-1 antichains are not enough to cover the poset. We give c antichains
which cover it. Let s £S. We define r(s), the rank of s, as the size of the largest chain whose
maximum element is h.

Example:
)=

largest chain
whose maximum
elementis s

Clearly for any s¢€S: 1 & ’TKS\)é C.
Claim: If r(s1)=r(s2) and sl 51552, then s1 and s2 are jncomparable. *
To show that indirectly assume that r(sl)=r(s2), s]:;ZsZ and “(/lésfb‘

Let C1 be the Iargest chain whose maximal element is s1. The size of C1 is r(sl).
Since s1<s2 and £ is tansitive [ {J}4. 4 is a chain whose maximum element is s2.
Then r(s2) 2 r(sl)+1 r(s2)+1 which is a tontradiction, so X is true.

Now we g| e an antichaincover whose size is c:
Let % 5| (o) —4§ 4FA‘H A ,are antichains and they cover S.

Proof of Dilworth: later
Comparability graphs

def: A graph G is a comparability graph if there is a poset (V(G), 5) such that l/d\ln éb((7>
are adjacent if and only if g and h are comparable and g=h.

Claim: Comparability graphs are perfect:

Proof: An induced subgraph of a comparability graph is a comparability graph, because
if we restrict the relation & to a subset then it induces a s bgrap G. Therefore it is
enough to show that if G is a comparablllgy graph, then 7( ? F

Note that: 6 \g
clique <--> chain
maximum cliq <--> maximum chain
/Je) <--> C
independent se <--> antichain
max mdependent <--> maximum antichain
<-->

In an optimal coloring we divide V(G) to 9(( >disjoint inpedendent sets, so we divide
the corresponding poset to the fewest number qf antichains, By M|r y S thm that number
is ¢, the size of a maximum chain which is Wy (, . So Wl(ﬂ



Proof of Dilworth's theorem by the weak perfect graph theorem:

Let G be the comparability graph of the poset (S, ) Then G is the "incomparability" graph
of (S, < ) where two vertices are adjacent if and only if the two elements are incomparable.
Gis perfect Z \S/e can u e the weak perfect graph theorem and obtain that G is perfect as

well. Thus/X W&G Where w G) (G size of the largest antichain in (S, 4).

An independent set |n G |s a chaip in (S, £), therefore X G is the least number of chains
which cover S. So j is equivalent to the Dilworth's thm. D

A direct proof of Dilworth's theorem:

We use induction on |S]|. |S|—1 is trivial. Let C be a maximum chain in (S, 9.

Reminder: a denotes the size of a maX|mum antichain in (S, £).

Let A be a maximum antichain in (S\C,£) The size of A is either a or a-1. If |A|=a-1, then

by induction S\C can be covered by a-1 chains and by adding C we obtain a partition of (S, £)
into a chains.

Otherwise |A|=a, so it is also a maximum antichain in (S,£).

Let A={sl,s2,..,5a}. Let x be the maximum element of C and let y be the minimum element
of C.

Let {*= {5é§]%sfe%\ : gz,g&g | g—:{seﬁ,ﬂg\-ﬁ\ : %é@;\
Claim 1: §+ N 5 A
Clearly: S /\g ®, 2 [ - . Indirectly assume that% ¢A 665 /\S
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‘ AU i% is a bigger antichain of (S,£) and its size is a+1%

a was the size of a maximum

Clam3: X & S+ \aﬁg

A
Indirectly assume that xﬁs . By Claim 2, then X & S =) {]I §6g : )(é,S
= é fogis a chain which is bigger than C, but C was a maximum chain. éf

By 3. |Sv|<|S| and |S+|<|S| so we can use our inductional hypothesis for the posets

CS |_,j and (.ﬁ ié) A is a maximum antichain in both. Therefore both one can be

partitioned into a chains. Each chain of[S 13 contains o $ ment of A and that is the
maximum element of that chain. Slmllarly each chain ofg < ) contains one element of
A and that is the minimum element of the chain. We can comblne each chain of(S‘P,Q
to a chain of(S jto obtain a chain of (S,£).

By this construction we obtained a partition of (S,<) to a chains. D



