Motivation:

$\omega(G)$: clique number of G : Size of the biggest complete subgraph of G .
$\chi(G):$ the chromatic number of G : Least k such that G has a proper vertex coloring with k colors. A vertex coloring is proper if adjacent vertices receive different colors. Remainder: $\quad \omega(G) \leq X(G)$ (We need different colors for each vertex of a clique) Question: What graph G satisfies $X(G)=\omega(G)$?

Answer: G can be any graph which contains a huge a clique. If we have a graph H whose clique and chromatic number are far away then by puting a huge clique in the graph we can force the equality. Therefore locally the graph can be anything.

$$
\begin{aligned}
& A(H)=N>(H) \\
& A(G)=N=W(U)
\end{aligned}
$$

So this graph class is not so interesting.
Question II: What graph G satisfies that any subgraph H of G satisfies Answer: $\left.W\left(C_{2 k+1}\right)=Z_{\text {and }} X\left(C_{2 k+1}\right)=\right\}$ if $k>1$, therefore such a graph cannot contain an odd cycle except triangles. And it can be proven that these graph have the required property. These graphs are not so interesting.

Example:

definition: Induced subgraph:
Let $G=(V(G), E(G))$ be a graph. H is an induced subgraph of G if:

1) $V(H) \subseteq V(G)$ and
2) $h 1, h 2 \in V(H)$ and $(h 1, h 2) \in E(H)$ then $(h 1, h 2) \in E(G)$

Alternative definition: H is an induces subgraph of G if H can be obtained from G by deleting some of its vertices and the edges which are incident to the deleted vertices.
definition: (Barge '63) A graph G is called perfect if each induced subgraph H of G satisfies that $X(H)=\omega(H)$.
It turns out that the interesting question is that what are the perfect graphs. We will see later that perfect graphs have many interesting applications.

Examples: Complete graphs are perfect, empty graphs are perfect
If a graph contains an induced odd cycle which is not a triangle, then it is not perfect.
Claim: Bipartite graphs are perfect
Proof: Let G pe a bipartite graph. We need to show for all induced subgraph H of G that $X(H)=W(H)$. Fortunately an induced subgraph of a bipartite is also a bipartite graph: Remember that G is bipartite <--> G does not contain an odd cycle. By deleting some vertices and edges to obtain an induced subgraph we cannot create gd d cycles. Therefore it is enough to show that if G is bipartite, then $X(G)=w(6)$,
This is true. We know that either $X(G)=\Lambda=w(0)$ or $X(G)=2=w(0)$ when
G is bipartite. So we are done.

Interval graphs
definition: G is an interval graphs if it can be represented by several intervals on a line in the following way:

1) There is a bijection between the vertices of G and the intervals
2) Two vertices of G are adjacent if and only if the corresponding intervals intersect.

Example:

Note: Not all graphs are interval graphs. For example C4 is not an interval graph.
Claim: Interval graphs are perfect.
Proof: An induced subgraph of an interval graph is an interval graph: If you delete a vertex from a intervalgraph then you delete the corresponding interval and obtain the interval representation of the obtained graph.
Therefore it is enough to show that if G is an interval graph, then $X(G)=W(G)$.
The following greedy algorithm colors an interval graph G with $W(G)$ colors:
Order the intervals according to their left endpoints, so the first interval in the ordering has the leftmost left endpoint. Color the first interval with color 1 . If the 2 nd and the 1 st interval intersect then color the second interval with color 2 , otherwise color it with color 1 . The general step: color the next interval with the smallest available color, so with a color which is not used by already colored intervals which intersect the current interval. Clearly this algorithm creates a proper coloring of the intervals and the corresponding interval graph.
Claim: This algorithm uses at most $w(G)$ colors. Proof: Indirectky assume that for some interval It it uses color $w(G)+1$. Then it means that all the smaller colors were not available, so IN intersects with $\geq \mathrm{w}(G)$ intervals which have been colored so their leftmost endpoint is not to the right. In this case all of these intervals contain the leftmost endpoint of Ik, so they form a clique of size $\omega(G)+1$ in G, which is a contradiction.

So G has a proper coloring with $w(6)$ colors and since $A(6) \supseteq w(6)$ it is an optimal coloring. Therefore G is perfect.

Some theorems about perfect graphs:
Weak perfect graph theorem (Lovász '72): G is perfect <--> $\overline{\mathrm{G}}$ is perfect.
2nd perfect graph theorem of Lovász: G is perfect $\Leftrightarrow \forall H$ induced subgraph of $G:(H) \mid \leqslant \mathcal{L}(H) \cdot w(H)$
Strong perfect graph theorem (Chudnovsky, Robertson, Seymour, Rhomas '02):
G is perfect if and only if G does not contain an induced subgraph H which is an odd cycle of length at least five or H is a complement of an odd cycle of length at least five.

