def: The sequence $a_{01} d_{\wedge 1} d_{21}$, is given by a linear recurrence relation with constant coefficients if $a_{0} d_{1}, \ldots, a_{p-1}$ and $p+1$ numbers $c_{11} c_{2} \ldots c_{p} d_{\text {given which satisfies the following }}$ equality: $\quad a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{p} a_{n-p}+d$. when $n \geqslant p$ We call this equality as a linear recurrence relation. If $d=0$, then we say that it is a homogenous linear recurrence relation with constant coefficients.

Example: The Fibonacci sequence is given by a homogenous linear recurrence relation:
$F_{0}=0 i F_{1}=\Lambda_{i} F_{n}=F_{n-1}+F_{n-2}$
The first 9 elements of the series are: $0,1,1,2,3,5,8,13,21$,

$$
\begin{aligned}
& \text { The first } 9 \text { elements of the series are: } 0,1,1,2,3,5,8,13,21, \\
& \text { Its closed-form expression is: } \quad F_{h}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) .
\end{aligned}
$$

Today we are going to see two methods how we can obtain the closed-form expression of any sequence given by a homogenous linear recurrence relation.

1st method: generating function
def: Let $a_{0,} a_{1}, d_{2}, d_{31} \ldots$, be a number sequence, then the power series is called as the generating function of the sequence and usually denoted by $F(x) \quad{ }_{i=0}$
We can simply use formal power series for calculation, but remember, the power series $F(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ is convergent on the open disc $(-r, r)$ where $r=\frac{1}{\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}}$
it is divergent outside of the closed disc $(-r, r)$ and sometimes it is convergent, sometimes it is divergent at points $-r$ and r. Also $F(x)$ is differentiable in $(-r, r)$ infinitely many times.

Some operations:

How can we use the generating function to find a closed-form expression of a sequence?
Let's see it for the Fibonacci numbers! So let $\mathrm{F}(\mathrm{x})$ be the generating function of the

$$
F(x)=\sum_{i=0}^{\infty} F_{i} x^{i}=F_{0}+F_{1} x+\sum_{i=2}^{\infty} F_{i} x^{i}=0+x+\sum_{i=2}^{\infty}\left(F_{i-1}+F_{i-2}\right) x^{i}=
$$

We solve this function equality:

$$
\begin{aligned}
& F(x)\left(1-x-x^{2}\right)^{2}=x \\
& F(x)=\frac{x}{1-x-x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We calculate the partial fraction decomposition of the generating function. } \\
& F(x)=\frac{x}{1-x-x^{2}}=\frac{1}{\left(1-\frac{1+\sqrt{5}}{2} x\right)\left(1-\frac{1-\sqrt{5}}{2} x\right)}=\frac{1}{\sqrt{5}} \frac{1}{1-\frac{1+\sqrt{5} x}{2}}-\sqrt{\sqrt{5}} \frac{1}{1-\frac{1 \sqrt{5} x}{2} x}
\end{aligned}
$$

We have not discussed why this power series is convergent. We can verify the convergence criteria for the obtained Fi-s and we see that every operation was feasible.
On the other hand, it is not necceseary to think about convergece. We can always use formal power series to obtain a closed-form expression and we can use induction to show the correctness of the obtained result.

So the generating function method in general is the following:
Let say that the initial values $a_{d} a_{1} \ldots a_{p} \wedge$ and a homogeneous linear recurrence relation with constant coefficients are given: $a_{n}=\sum_{i=1} c_{i} a_{n-i} \quad$ when $n \geqslant p$

$$
\begin{aligned}
& \text { Then we calculate the generating function: } \\
& R(x)=a_{0}+a_{1} x+a_{l} x^{2}+\ldots+a_{p-1} x^{p-1}+\sum_{i=p}^{\infty} a_{i} x^{\hat{1}}= \\
& \text { We use the recurrence relation: }
\end{aligned}
$$

$$
=a_{0}+a_{1} x+a_{2} x^{1}+\ldots+d_{p-1} x^{p-1}+\sum_{n=p}^{p} \sum_{j=1}^{p} c_{p} a_{i-j} x^{i}=
$$

and then we reorganize the equation to obtain

$$
R(x)=\frac{g_{(}(x)}{1-\sum_{i=1}^{p} c x^{j}}
$$

Finally we use partial fraction decomposition to determine the coefficients in the power series of $R(x)$.

This method requiers a lot of calculation, let's see an easier one.

$$
\begin{aligned}
& =x+x \sum_{i=1}^{\infty} F_{i-1} x^{i-1}+x^{2} \sum_{i=2}^{\sum_{i=2}} F_{i-2} x^{i-2}=x+x\left(\sum_{i=1}^{\infty} F_{i-1}-x_{1}^{i-1}-F_{0}\right)+x_{i=2}^{2-2} F_{i-2} x^{i-2}=
\end{aligned}
$$

def: $x^{p}=c_{1} x^{p-1}+c_{2} x^{p-2}+\ldots c_{p-1} x+c_{p}$ is called the characteristic equation of the homogenous linear recurrence $+\ldots c_{\rho-1} x+c_{p}$ is
$d_{n}=\sum_{i=1}^{p} c_{i} a_{n-i}$.
Example: Consider the Fibonacci sequence again. Its characteristic equation is $x^{2}=x+1$
The roots of this equation are: $\quad x_{1}=\frac{1+\sqrt{5}}{2}, x_{2}=\frac{1-\sqrt{5}}{2}$
Claim: The geometric sequences created from the powers of the roots of the characteristic equation are solutions of the reccurrence relation:

$$
\begin{aligned}
a_{i}^{1}=x_{1}^{2} \text { and } d_{i}^{2} & =x_{2}^{i} \\
\text { Why? Because: } \quad x_{1}^{2} & =x_{1}+1 \Leftrightarrow x_{1}^{n}=x_{1}^{n-1}+x_{1}^{n-2} \Leftrightarrow a_{n}^{1}=a_{n-1}^{1}+d_{n-2}^{1} \\
x_{2}^{2} & =x_{2}+1 \Leftrightarrow x_{2}^{n}=x_{2}^{n-1}+x_{2}^{n-2} \fallingdotseq a_{n}^{2}=d_{n-1}^{2}+d_{n-2}^{2}
\end{aligned}
$$

Then any linear combination of these two geometric sequences is a solution of the reccurence relation. We pick a linear combination such that it also satisfies the initial conditions:

$$
\left.\begin{array}{l}
F_{n}=\lambda_{1} x_{1}^{n}+\lambda_{2} x_{2}^{n} \\
F_{0}=\lambda_{1} x_{1}^{0}+\lambda_{2} x_{1}^{0}=\lambda_{1}+\lambda_{2}=0 \\
F_{1}=\lambda_{1} x_{1}+\lambda_{2} x_{2}=\lambda_{1} \frac{1+\sqrt{5}}{2}+\lambda_{2} \frac{1-\sqrt{5}}{2}=1 \\
\text { so we have find the closed-form expression: } \quad F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{array}\right\} \begin{aligned}
& \lambda_{1}=\frac{1}{\sqrt{5}} \\
& x_{2}=-\frac{1}{\sqrt{5}}
\end{aligned}
$$

The characteristic equation method in general is the following:
We find the roots of the characteristic equation

$$
x^{p}=\sum_{i=1}^{p} c_{i} x^{p-i}
$$

Lets say the roots are $\quad X_{1}, X_{1}, \ldots X_{p}$.
Case I: We have obtained p different roots so each of them is a simple root. Then we solve the following linear system:

$$
\begin{aligned}
& a_{0}=\lambda_{1}+\lambda_{2}+\ldots \lambda_{p} \\
& a_{1}=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+x_{p} x_{p} \\
& \begin{array}{l}
a_{i}=\lambda_{1} x_{1}^{i}+\lambda_{2} x_{2}^{i} \ldots+\lambda_{p} x_{p}^{i} \\
\vdots \\
d_{p-1}=\lambda_{1} x_{1}^{p-1}+\lambda_{1} x_{2}^{p-1}+\ldots+\lambda_{p} x_{p}^{p-1}\left|\begin{array}{lll}
x_{1}^{0} x_{2}^{0} \\
x_{1}^{1} & x_{2}^{1} & x_{p}^{0} \\
x_{1}^{p-1} x_{2}^{p-1} & x_{p}^{p-1}
\end{array}\right| \neq 0
\end{array} \\
& \text { And the solutions are: } \\
& a_{n}=\sum_{i=1}^{p} \lambda_{i} x_{i}^{n}
\end{aligned}
$$

This system always has a unique solution because the following Vandermonde determinant is not 0 :

Case II: The roots are $X_{11} x_{2}, \cdots X_{e}$ and X_{i} is a roof of multiplicity k_{i}. so $k_{1}+k_{1}+\ldots+K_{1}=p$.
Then the following geometric sequences satify the recurrence relation:

$$
a_{n}^{n}=x_{1}^{n} \quad d_{n}^{2}=n x_{1}^{n} \quad a_{n}^{3}=n^{2} x_{1}^{n} \ldots a_{n}^{k_{1}^{-1}}=n^{k-1} x_{1}^{n}, \quad a_{n}^{k_{1}}=x_{2}^{n}, \ldots
$$

Because if the multiplicity of X_{1} is k_{1}, then it is a root of the $k_{1}-1$ th derivative of the the characteristic function

Clearly X_{1} is also a root of the k1-1th derivative of the function $\rightarrow x-\sum_{i=1} c_{i} x^{x} \quad$ if $n \geq p$

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{n}-\sum_{i=1}^{p} c_{i} x^{n-i}\right)=n x^{n-1}-\sum_{n=1}^{c_{i}(n-i) x^{n-i}}=x^{n} \\
& \text { and } n x_{1}^{n-1}-\sum_{i=1} c_{i} x^{n-1}=0 \Leftrightarrow n x_{1}^{n}=C_{1}(n-1) x_{1}^{n-1}+c_{2}(n-2) x_{1}^{n-2}+C_{d}(n-1) x_{1}^{n-d}
\end{aligned}
$$

x 1 is the root of multiplicity $\mathrm{k} 1-1$ of this derivative function. Lets multiply * by $\mathrm{x} . \mathrm{x} 1$ is the roof of multiplicity k1-1 of this new function as well. Lets differentiate it:
and

$$
\begin{aligned}
& \frac{d}{d x}\left(n x^{n}-\sum_{i=1}^{D} c_{i}(n-i) x^{n-i}\right)=n^{2} x^{n-1}-\sum_{i=1}^{p} c_{i}(n-i)^{2} x^{n-1-1} \text { if } n^{2}-p \\
& n^{2} x_{1}^{n-1}-\sum_{i=1}^{p} c_{i}(n-i)^{2} x_{i}^{n-1-1}=0 \quad\left(-1 n^{2} x_{1}^{n}=c_{1}(n-1) x_{1}^{n}+\ldots .+c_{a}(n-d) x^{n-1}\right.
\end{aligned}
$$

x 1 is the root of multiplicity k1-2 of the obtained function. If we multiply it by x , then x 1 is the root of multiplicity k1-2 of the new function.

We can repeat this procedure until X_{\uparrow} is the root of the obtained derivative.
We do this for all the roots of the characteristic polynomial.
Then we can solve the following linear system:

$$
\begin{aligned}
& a_{0}=\lambda_{1}+\lambda_{2}+\lambda_{3}+\ldots+\lambda_{k_{1}-1}+\lambda_{k} \lambda_{1} . \\
& a_{1}=\lambda_{1} x_{1}+\lambda_{2} x_{1}+\lambda_{3} x_{1}+\ldots+\lambda_{k_{i}-1 x_{1}+\lambda_{k_{1}} x_{2} T} \\
& a_{i}=\lambda_{1} x_{1}^{i}+\lambda_{2} i x_{i}+\lambda_{3} i^{2} x_{i}^{i}+\lambda_{k-1} i^{k_{1}-1} x_{1}+\lambda_{k-1} x_{2}^{i}+\ldots \\
& \vdots \\
& a_{p-1}=\lambda_{1} x_{1}^{p-1}+\lambda_{1}(p-1) x_{1}^{p-1}+\quad+\lambda_{k_{1} 1}(p-1)_{1}^{k_{1}-1}+\lambda_{k-1} x_{2}^{p-1}+\ldots \\
& \text { And the solutions are: } \quad a_{n}=\lambda_{1} x_{1}+\lambda_{2} n x_{1}+\lambda_{3} n^{2} x_{1}^{1} \ldots+\lambda_{k_{1}-1}
\end{aligned}
$$

