Linear recurrence

def: The sequence A 0\ 0 Al 4\1 I _is given by a linear recurrence relation with constant coefficients
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We call this equality as a linear recurrence relation. If d=0, then we say thatitis a
homogenous linear recurrence relation with constant coefficients.

Example: The Fibonacci sequence is given by a homogenous linear recurrence relation:
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The first 9 elements of the series are: 0,1,1,2,3,5,8,13,21, n
Its closed-form expression is: :ﬂ,\t A— (‘L%\V\ - C;E\‘
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Today we are going to see two methods how we can obtain the closed-form-“expression of
any sequence given by a homogenous linear recurrence relation.
1st method: generating function
def: Let (/\u |“\ \ 0\1 \ 0\40\, _,be a number sequence, then the power series 2 0\0(
is called as the generating function of the sequence and usually denoted by :F G() v

We can sirp)gly use formal power series for calculation, but remember, the power series
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it is divergent outside of the closed disc (-r,r) and sometimes it is convergent, sometimes
it is divergent at points -r and r. Also F(x) is differentiable in (-r,r) infinitely many times.

:FL \ 2 mx is convergent on the open disc (-r,r) where r= \{—‘—~\

Some operations:

AN \0\5\M oo B V‘H‘lﬂ
04 by A b &) T
0|“[9|(M\(}\1k{)\/5 &73 TQ)

0y g bl bay £y )

How can we use the generating function to find a closed-form expression of a sequence?

Let's see it for the Fibonacci numbersI So let F(x) be the generating function of the
Fibonacci numbers
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We use the recurrence relation here
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We solve this function equality:
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We calculate the partial fraction decomposition of the generating fun/‘:tion.
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We have not discussed why this power series is convergent. We can verify the convergence
criteria for the obtained Fi-s and we see that every operation was feasible.

On the other hand, it is not necceseary to think about convergece. We can always use
formal power series to obtain a closed-form expression and we can use induction to show
the correctness of the obtained result.

So the generating function method in general is the following:

Let say that the initial values A\ g ) A\ - ({/\ and a homogenous linear reccurrence
relation with constant coefficients ar\'e given V\ when V\‘Z\P
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Then we calculate the generating function:
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We use the recurrence relation: 184
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and then we reorganize the equation to obtain V_, (7‘\ = 4V £ AN
<\
A7

Finally we use partial fraction decomposition to determine the coefficients in the power
series of R(x).

This method requiers a lot of calculation, let's see an easier one.
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def: XP: C/‘Y? + CL% ~+ - C QA >< + (() is called the characteristic equation of the
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Example: Consider the Fibonacci sequence again. Its characteristic equation is X ;><+/]
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Claim: The geometric sequences created from the powers of the roots of the characteristic
_equatlon are solutions of the reccurrence relation:
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Then any linear combination of these two geometric sequences is a solution of the
reccurence relation. We pick a linear combination such that it also satisfies the inintial
conditions:
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The roots of this equation are: X1 i

Why? Because:
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So we have find the closed-form expression: (/\: \F; 7, o
The characteristic equation method in general is the foIIowmg o /\-
We find the roots of the characteristic equation 2
Lets say the roots are X K X 0

Case I: We have obtained p different roots so each of them is a simple root. Then we solve the following
Iinear system:
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And the solutions are: .2 ey Z ?\ ?§



Case II: The roots are x'\\xl "~ <€ and Xx'is a roof of multiplicity K 4 . So kfkq [ H(] =
Then the following geometric sequences satify the recurrence relation:
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Because if the multiplicity of)(/] is K/\ , then it is a root of the qu "/‘ th derivative of the
the characteristic function 4 -,
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x1 is the root of muItlpI|C|ty k1-1 of this derivative function. Lets multiply * by x. x1 is the roof of
multiplicity k1-1 of this new function as well. Lets differentiate it:
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x1 is the root of multiplicity k1-2 of the obtained function. If we multiply it by x, then x1 is the root of
multiplicity k1-2 of the new function.
We can repeat this procedure until %q is the root of the obtained derivative.
We do this for all the roots of the characteristic polynomial.
Then we can solve the following linear system:
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And the solutions are:



