Let A be a base set. Then 2^{A} is the power set of A, so it contains all subsets of A. $\mathcal{F} \subseteq 2^{A}$ is called a set-system or a family of subsets.

We do not lost generality if we say that $A = \{1, 2, 3, .., n\} = [n]$. A set-system can be interpreted as a hypergraph where the verticess are the elements of A, the hyperedges are the elements of A, which are subsets of A.

A set-system/hypergraph is k-uniform if each element of f_{-} /hyperedge is a k element set. A 2-uniform set-system/hyperedge is a graph.

Extremal set theory: How big can (+ be if it satisfies some conditions?

Examples:

$$\mp \subseteq 2^{(n)}$$
, for any pair $A_{B} \in \widehat{T}$: if $A \neq B =) A \cap B = (\phi \Rightarrow max |T| = h + 1)$

The maximum is attained when `au contains each one element subset and the empty set.

$$f \leq 2^{(h)}$$
, for any pair $A_1B \in f$: $A_1A \neq B \Rightarrow A \cap B \neq \emptyset \Rightarrow max |f| = 2^{h-1}$

Proof: If $A \in T$ then $A \notin F$, therefore at most half of the subsets of [n] can be included in T. And this bound can be attained if we choose all subsets of [n] which contains 1.

Theorem: Erdős-Ko-Rado 1961: $\mathcal{F} \subseteq \mathcal{I}^{(n)}$ and \mathcal{F} is k-uniform where $k \leq N_{\mathcal{I}}$ and for any pair $\mathcal{A}_{\mathcal{B}} = \mathcal{F}$: $\mathcal{A} \cap \mathcal{B} \neq \emptyset$ then $\mathcal{F} \leq \mathcal{I}^{(n-1)}_{(k-1)}$.

Note that if k>n/2, then any two k element subsets of [n] intersect each other, this is why the opposite case is interesting.

 $\binom{N-1}{K-1}$ can be attained if we pick all the k element subsets of [n] which contain 1.

0

Proof by Gyula Katona OH '72:

Let Π be a circular permutation of [n]. So we imagine that the n elements are seated around a table.

A set A is an arc in || if its elements are consecutive in ||:

Fix a circular permutation $\hat{\mu}$. There are at most k sets from $\hat{\mu}$ which are arcs in $\hat{\mu}$:

Pick a set A from \uparrow which is an arc in Π . An other set B from \uparrow which is also an arc in Π can ends at k-1 different positions, because B intersect A.

For each such position there is only one set from fwhich is an arc in \hat{f} and ends there: Each set from fhas the same size k, therefore two

has the same size k, therefore two arcs B and C of size k which end at the same place are either the same or disjoint because $k \notin N$. So for there are at most k set

from f which are arcs.

The total number of circular permutations is (n-1)!So if we consider all of the circular permutations, we find at most k(n-1)! arcs which correspond to sets from $\mathcal{H}_{\mathbf{r}}$

A set from f is an arc in k!(n-k)! circular permutations. Therefore:

$$f(\zeta \frac{k(n-1)!}{k!(n-k)!} = {n-1 \choose k-1}$$

If m vectrors which are n dimensional are linearly independent, then m ${\lneq}$ ${\it N}$.

Theorem: Ray-Chaudhuri-Wilson: $L = \{\ell_{11}, \dots, \ell_{5}\}, \quad f \in 2^{[M]}, \quad \forall A, B \in \mathcal{F}, A \neq B : |AAB| \notin L \quad \text{then}: |\mathcal{F}| (\leq \sum_{i=0}^{5} \binom{i}{i})$ This bound can be attained, for example when L= {1,2,...,s-1}, then $\mathcal{F} = \{A \in [W] | |A| \leq S\}$ $u \neq (f) = \sum_{i=0}^{5} \binom{iN}{i}$. When s=1, Ray-Chaudhuri-Wilson gives that $\forall A_{1}B \notin A \neq B : |AAB| = \ell \Rightarrow |\mathcal{F}| (\leq \sum_{i=0}^{5} \binom{i}{i}) = h + 1$ Fischer's inequality gives: $\forall A_{1}B \notin A \neq B : |AAB| = \ell \Rightarrow |\mathcal{F}| (\leq \sum_{i=0}^{5} \binom{i}{i}) = h + 1$ The difference comes from that $\ell \ge 0$ for $f \neq f$. There is exactly one set $A \in \mathcal{G}$ such that $A_{1} \notin A$, and if $B \notin \mathcal{G} \Rightarrow [A_{1}] \in [M_{1}], i \neq j$: there is exactly one set $A \in \mathcal{G}$ $\Rightarrow |\mathcal{G}| = 1 \quad \text{or} \quad [\mathcal{G}| \ge m$. This theorem can be interpreted in the following way: If m points in the projective plane are given then either they are on the same line or they determine at least m different lines. We prove this theorem by using hypergraph duality:

Any hypergraph $f \in \mathcal{I}^{(n)}$ can be represented by a bipartite graph in the folowing way: One color class is f, the other one is [n], and a set A is incident to an element j if $j \notin A$, $f \in \mathcal{I}^{(n)}$

this can be a multiset of sets

If $f \in \mathcal{E}^{\mathcal{W}}$, $|\mathcal{F}| = \mathcal{W}$ then the dual hypergraph of \mathcal{F} is a hypergraph $\mathcal{G} \subseteq \mathcal{I}^{\mathcal{W}}$, \mathcal{I} .

 $\left(\mathcal{G} \mid \mathcal{F} \mid \mathcal{G} \mid \mathcal{G} \right)$ and the bipartite graph representation of \mathcal{G} and \mathcal{F} are the same, except

that the role of the two color classes have been swaped. So the class which contained elements of \mathcal{T} is containing the elements of [m] and the other class which contained the elements of [n] is containing the elements of \mathcal{L} .

Proof of De Bruijn-Erdős:

Let G be a set system which satisfies the conditions of the theorem and let f be its dual. Case 1: We obtained the same set twice by the construction of \mathcal{F} is othere are A, B \mathcal{EF} if A=B, so \mathcal{F} is not a set but a multiset. In this case A and B contain the same elements. What does it mean for G? A and B correspond to elements a and b, respectively and any set of G which contains a or b it contains the other. But there is exactly one such set. If c is another element from [m], then there must be a set which contains a and c, but then it also contains b. So c is also contained in that set. Therefore $G = \mathcal{M}$. Case 2: Every set appears only once during the construction of \mathcal{F} , so it is a set of subsets. Then $\forall a \subseteq t \in M$. $\forall A \subseteq t \in M$. $\forall A \subseteq t \in M$.

So we can apply Fischer's inequality and we obtain that $M \leq \sqrt{-|G|}$.

m can be attained by the following example which is called as the "near pencil":

