Extrema set theory

Let A be a base set. Then 2^{A} is the power set of A, so it contains all subsets of A. $\mathcal{F} 2^{A}$ is called a set-system or a family of subsets.

We do not lost generality if we say that $A=\{1,2,3, . ., n\}=[n]$.
A set-system can be interpreted as a hypergraph where the vertices are the elements of A, the hyperedges are the elements of , which are subsets of A.

A set-system/hypergraph is k-uniform if each element of $\frac{f}{f}$ /hyperedge is a k element set. A 2-uniform set-system/hyperedge is a graph.

Extremal set theory: How big can \mathcal{F} be if it satisfies some conditions?
Examples:
$F<q^{[n]}$, for any pair $A, B \notin T:$ if $A \neq B \Rightarrow A \cap B=Q \Rightarrow \max |F|=n+1$
The maximum is attained when \mathcal{f} contains each one element subset and the empty set.
$\mathcal{F} \leq 2^{[n]}$: for any pair $A, B \in \mathcal{F}: \quad$ if $A \nmid B \Rightarrow A \cap B \neq \phi \Rightarrow$ mac $\mid\left\{\mid=2^{n-1}\right.$ Proof: If $A \in \overparen{A}$ then $A \notin \in$, therefore at most half of the subsets of [n] can be included in \mathcal{E}. And this bound can be attained if we choose all subsets of [n] which contains 1.
Theorem: Erdős-Ko-Rado 1961: $\mathcal{F}<L^{[n]}$ and \mathcal{F} is k-uniform where $k \leq n / 2$ and for any pair ABET: $A \cap B \neq \phi$ then $A \leq\binom{ n-1}{k-1}$.
Note that if $k>n / 2$, then any two k element subsets of [n] intersect each other, this is why the opposite case is interesting.
$\binom{n-1}{k-1}$ can be attained if we pick all the k element subsets of $[n]$ which contain 1 .
Proof by Gyula Katona OH '72:
Let Ti be a circular permutation of [n]. So we imagine that the n elements are seated around a table.
A set A is an arc in $\|$ if its elements are consecutive in $\mathbb{\|}$:
Fix a circular permutation \mathbb{T}. q which are arcs in $\mathbb{\|}$:
There are at most k sets from

Pick a set A from \mathcal{f} which is an arc in $\overparen{\|}$. An other set B from \neq which is also an arc in $\|$ can ends at k-1 different positions, because B intersect A.
For each such position there is only one set from
which is an arc in $\$$ and ends there: Each set from
which is an arc in \prod and ends there: Each set from $\not \subset$ has the same size k, therefore two arcs B and C of size k which end at the same place are either the same or disjoint because $k \leq n$.
So for \mathbb{T} there are at most k set from \mathcal{F} which are arcs.

k elements of A
The total number of circular permutations is $(\mathrm{n}-1)$! So if we consider all of the circular permutations, we find at most $k(n-1)$! arcs which correspond to sets from t
A set from \mathcal{F}^{\prime} is an arc in $k!(n-k)$! circular permutations. Therefore:

$$
|t| \leq \frac{k(n-1)!}{k!(n-k)!}=\binom{n-1}{k-1}
$$

Theroem: Fischer's inequality:

$$
\begin{aligned}
& \text { TTenoem: : sher's inequality: } \\
& \tau=\left\{A_{1}, A_{2}, \cdots, A_{m}^{[n]}, \lambda>0 \text { and for } \forall i \neq j| | A_{i} \cap A_{i} \mid=\lambda \Rightarrow m \leq n\right.
\end{aligned}
$$

Proof: For each i $\left|A_{1}\right| \geqslant \lambda$.
Case 1: There is an element A_{i} st $\left|A_{i}\right|=\lambda_{1}$, Then every other set A_{j} contains A_{i} as a subset. But then $\left.A_{1} A_{i}, A_{i} A_{i}, \ldots A_{i-1} \backslash A_{i}, ~ d, A_{i+1} \backslash A_{i} \cdots, A_{m} \backslash A_{i}\right\}$ is an m element set-system such that any two elements are disjoint, and its base set contains $n-\chi$ elements, therefore this set system contains at most $n-\lambda+1 \leq n$ sets, so $m \leq n$.

Let \bar{a}_{i} be the characteristic vector of A_{1}, so it is an n dimensional vector and $a_{i, j}= \begin{cases}1 & i \\ 0 & j \in A_{i} \\ 0 & \| A_{j}\end{cases}$ Example: If $n=7$ and $A_{i}=\{1,3,5\}$ then $\bar{u}_{i}=[1,0,1,0,1,0,0\}$
We are going to show that $\bar{a}_{1}, \bar{a}_{l}, \ldots \bar{a}_{m}$ are linearly independent.

$$
\bar{a}_{i}, \bar{u}_{j}= \begin{cases}\lambda & \text { if } i \neq j \\ \left|A_{i}\right| & \text { if } i=i\end{cases}
$$

Consider a linear combination $c_{1} \bar{a}_{1}+c_{7} \bar{a}_{7}+c_{3} \bar{a}_{3}+\ldots+c_{m} \bar{d}_{m}=\underline{0}$
Take the dot product of this vector and $\mathbb{\pi}_{i}$:

$$
\begin{align*}
& \text { Take the dot product of this vector and } \bar{a}_{i}: \\
& 0=\underline{0} \cdot \bar{a}_{i}=\left(c_{1} \overline{a_{1}}+c_{2} \bar{a}_{2}+\ldots+c_{m} \overline{a_{m}}\right) \overline{a_{i}}=\left(c_{1}+c_{2}+\ldots+c_{m}\right) \lambda+c_{i}\left(\left|A_{1}\right|-\lambda\right) \\
& \text { If } c_{1}+c_{2}+c_{3}+\ldots+c_{m}=0 \Rightarrow c_{i}=0 \quad \forall i \\
& \text { If } \left.c_{1}+c_{2}+c_{3}+\ldots+c_{m}\right\rangle 0 \Rightarrow c_{i}<0 \forall i \quad, \\
& \text { If } c_{1}+c_{2}+c_{3}+\ldots+c_{m}<0 \Rightarrow c_{i}>0 \forall_{i} \bar{Z}_{2}
\end{align*}
$$

If m vectors which are n dimensional are linearly independent, then $m \leq n$.

Theorem: Ray-Chaudhuri-Wilson:
$L=\left\{l_{1}, \ldots, l_{5}\right\}, \tilde{t} \leq 2^{[u]}, \forall A, B \in F, \quad A \neq B:|A \cap B| \in L$ then: $|\mathcal{F}| \leq \sum_{i=0}^{S}\binom{n}{i}$
This bound can se attained, for example when $L=\{01,2, \ldots, s-1\}$, then $\hat{F}=\{A \leq[\omega)| | A \mid \leq S\}$ and $|f|=\sum_{i=0}^{s}\left(u_{i}\right)$.
When s=1, Ray-Chaudhuri-Wilson gives that $\forall A, B E \mp \quad A \neq B:|A \cap B|=l \Rightarrow|\mp| \leq \sum_{i=0}^{1}\binom{n}{1}=u+1$
Fischer's inequality gives:
$\forall A, B \in F \quad H \neq B ;|A+A B|=\lambda \Rightarrow|f| \leq n$
The difference comes from that $l \geq 0$ but $\lambda>0$!
Theorem: De Bruijn-Erdős: $G \leq 2[m], \forall i, j \in[m]$, $i \neq j$: there is exactly one set $A \in G$
such that $i, j \in A$. and if $B \in G \Rightarrow|B| \supseteq 2$.

$$
\Rightarrow|g|=1 \text { or }|g| \geq m
$$

This theorem can be interpreted in the following way: If m points in the projective plane are given then either they are on the same line or they determine at least m different lines.

We prove this theorem by using hypergraph duality:
Any hypergraph
$E \leq 2^{[n]}$ can be represented by a bipartite graph in the following
way: One color class is \mathcal{E}, the other one is $[n]$, and a set A is incident to an element j if

$$
t \in 2^{[n]} \quad[n]
$$

If $\mathcal{t} \leq\left\{{ }^{n}\right.$, $|\mathcal{F}|=m$ then the dual hypergraph of f is a hypergraph $j t A$.

this can be a multiset of sets
$|g|=n$ and the bipartite graph representation of \mathcal{g} and \uparrow are the same, except
that the role of the two color classes have been swayed. So the class which contained elements of 保 is containing the elements of [m] and the other class which contained the elements of $[n]$ is containing the elements of y.

Proof of De Bruijn-Erdős:

Let G be a set system which satisfies the conditions of the theorem and let \mathcal{F} be its dual.
Case 1: We obtained the same set twice by the construction of \mathcal{F}, so there are A,B $\in \mathcal{F}$, \nmid $A=B$, so ${ }^{2}$ is not a set but a multiset. In this case A and B contain the same elements. What does it mean for G ? A and B correspond to elements a and b, respectively and any set of $\mathcal{C}_{\text {which contains } a \text { or } b}$ it contains the other. But there is exactly one such set. If c is another element from [m], then there must be a set which contains a and c, but then it also contains b. So c is also contained in that set. Therefore $\delta=\{[m]\}$.
Case 2: Every set appears only once during the construction of \mathcal{t}, so it is a set of subsets.
Then $\forall a\left(b \in[m) \Rightarrow \exists^{\prime} C \in G: a b+C \Rightarrow \forall A, B \in \hat{F} \Rightarrow \exists!c \in[A]: c \in A \cap B\right.$.
So we can apply Fischer's inequality and we obtain that $m \leq n=|g|$.

m can be attained by the following example which is called as the "near pencil":

