Sperner's theorem, LYM inequality
definition: A family \hat{t} is called a Sperner system/ Sterner family if for any $A, B \in \mathcal{F}$:
$A \notin B$ and $B \not \subset A$.
Sterner's Theorem (1928):
If $\Psi \leq 2^{n}$ is a Sperner system, then $|\hat{t}| \leq\binom{ n}{\left[\frac{n}{2}\right.}$ and the only (even: one, odd: two) Sperner systems which reach this bound are

$$
\binom{\left[\frac{n}{n}\right]}{\left[\frac{n}{2}\right]} \text { and }\binom{\left[\frac{n}{2}\right]}{\left[\frac{n}{2}\right]} .
$$

$\binom{[n]}{K}:$ is the family which contains all the k element subsets of [n].

Of course a k element set cannot contain another k element set, therefore these are sperner systems and $\left\|\binom{n}{k}\right\|=\binom{n}{k}$, We are going to prove this theorem later.

LYM inequality (Lubell '66, Yamamoto '54, Meshalkin '63):
Let $\mathcal{F} 2^{n}$ be a Sperner system and let f_{k} denote the number of k element sets contained in t. Then: $\sum_{i=0}^{n} \frac{f_{i}}{\binom{n}{i}} \leq 1$. Equality is attained if and only if $t=\binom{t}{k}$ for some k.

Proof of Sperner's theorem by LYM inequality:

$$
\begin{aligned}
& \text { Proof of Sperner's theorem by LYM inequality: } \\
& 1 \geq \sum_{i=0}^{n} \frac{f_{i}}{\binom{n}{i}} \geq \sum_{i=0}^{n} \frac{j_{i}}{\binom{n}{\left(\frac{n}{2}\right)}}=\frac{|\vec{F}|}{\binom{n}{\left(\frac{n}{2}\right)}} \Rightarrow\binom{n}{\left(\frac{n}{2}\right)} \geq|\mathbb{F}| . \\
& \text { We have used here that }\binom{n}{\left(\frac{n}{2}\right)} \geq\left(\begin{array}{c}
n \\
n \\
i
\end{array}\right) \quad \forall i
\end{aligned}
$$

$$
\begin{aligned}
& \text { If }\binom{n}{\left[\frac{n}{2}\right.}=|\mathcal{t}| \text {, then every inequality is satisfied with equality, therefore by LYM inequality } \\
& F=\binom{n}{i} \text { for some i and }\binom{n}{\left[\frac{n}{2}\right.}=\binom{n}{i} \text { therefore either } f=\left(\begin{array}{l}
n \\
n \\
{\left[\frac{n}{2}\right.}
\end{array}\right) \text { or } E=\left(\left[\begin{array}{c}
n \\
n
\end{array}\right)\right.
\end{aligned}
$$

We are going to give 2 different proofs for LYM inequality. The statement about the equality case will be obtained only from the second one.

LYM inez est proof:
$A_{0} \subset A_{1} C A_{2} C A_{3} C \ldots C A_{i} C \ldots A_{n}$ where $\forall_{i}\left|A_{i}\right|=\wedge$ is called as an ascending chain. There is a bijection between ascending chains of [n] and the permutations of [n].
Example: $\quad \phi \subset\{3\} \subset\{2,3\} \subset\{2,3,4\} \subset\{1,2,3,4\} \Leftrightarrow 3241$
so $\pi(j)=i \Leftrightarrow j \notin A_{i-1}$ but $j \in A_{i}$

Clearly a Sperner system can contain at most one set from an ascending chain.
A k element set from [n] is contained in exactly $k!(n-k)$! ascending chains:
We need to include its k elements one by one in the first k set of the ascending chain. It can be done in k ! different ways. Then we can finnish the ascending chain by adding the remaining $n-k$ elements one by one and that can be done ($n-k$)! different ways.

Lets calculate the number of ascending chains which contain a set from ℓ, An ascending chain can contain at most one set from \mathcal{f}, therefore:

Let \mathbb{T} be a circular permutation of [n]. A set A is an arc in $\mathbb{\|}$ if its elements are consecutive in π. Fix π, At most n sets from f can be an arc in T : At a position at most one arc set from \mathbb{F} can start,, because if A and B start at the same position, then one $q f$ them ends later and it contains the other one, but \notin is a Sperner system. There are n positions, at each of them at most one arc set from \notin can start, therefore at most n sets from ${ } \boldsymbol{t}$ is an arc in π. The number of circular permutations of [n] is ($n-1$)!. A k element subset of [n] is an arc in exactly k ! ($n-k$)! circular permutations.
Lets calculate the total number of arcs in all circular permutations which are contained in t :

position where B ends

$n-F$ elements $(n-E)!$ order

$$
\sum_{k=0}^{n} \frac{f_{k}}{\binom{n}{k}} \leq 1
$$

an upper bound on total number of arcs in all circular permutations
What if $\sum_{k=0}^{n} \frac{f_{k}}{\binom{n}{k}}=17$. which are contained in t

Then our upper bound on the total number of arcs in all circular permutations is sharp, therefore for each circular permutation there \uparrow are exactly n sets from $\mathbb{E}_{\text {which }}$ are arcs in \uparrow. In this case all of these n sets must have the same cardinality: At any position an arc from starts, and if their size is not the same, then there are arcs $A, B \in F$ such that A and B starts at adjacent positions, B starts later but $|B|<|A|$. It means $B C A \mid$ but \mathcal{E} is a Sperner system, so this cannot happen. Therefore in \mathbb{T} all arcs which are contained in \mathcal{F} have the same size.

For any two sets $A, B \in[n]$, there is a circular permutation such that A and B are arcs in it:
Therefore if satisfies LYM with equality, then in any circular permutation the size of any arc which is contained in \mathfrak{F}, has the same size. Thus $t=\binom{n}{k}$ for some k.

