Combinatorics and graph theory II.

6 th practice, 19th of October, 2022.
Ramsey

Good to know:

Ramsey's theorem (for graphs with two colors): For all integers $k, l>0$ exists a (smallest possible) number $R=R(k, l)$ which satisfies that it does not matter how we color the edges of the R vertex complete graph by red and blue, there is either a blue clique of size k or a red clique of size l . Erdős-Szekeres: $R(k, l) \leq\binom{ k+l-2}{k-1}$.

$$
2^{\frac{k}{2}} \leq R(k, k) \leq 4^{k-1}
$$

Ramsey's theorem (for graphs with r colors): For all $r>0, k_{1}, k_{2}, \ldots, k_{r}>0$ numbers there is a (smallest possible) $R=R\left(k_{1}, k_{2}, \ldots, k_{r}\right)$ number such that it does not matter how we color the edges of the R vertex complete graph by colors $1,2, \ldots, r$ there is a color i, such that there is a clique of size k_{i} whose edges have color i. ra

Ramsey's theorem (for k-uniform hipergraphs with r colors): Fopr all $r>0, k \geq 2, k_{1}, k_{2}, \ldots, k_{r}>0$ numbers there is a (smallest possible) number $R=R_{k}\left(k_{1}, k_{2}, \ldots, k_{r}\right)$ such that it does not matter how we color the edges of complete k-uniform hypergraph by colors $1,2, \ldots, r$ there is a color i such that there are k_{i} vertices which induce a subhipergraph whose all edges have color i.

1. Let G be any graph which has at least 10 vertices. Show that $\omega(G) \geq 4$ or $\alpha(G) \geq 3$.
2. Prove that $R(3,3,3) \leq 17$ and prove that $R(3,4)=9$.
3. a. We have colored the edges of a complete graph by red and blue. Prove that it has a monochromatic spanning tree.
b. Is it true that a monochromatic Hamiltonian-path also exists?
4. Prove, that $R_{3}(4,4) \leq 21$.
5. Prove the following inequality: $R_{3}(k, l) \leq R_{2}\left(R_{3}(k-1, l), R_{3}(k, l-1)\right)+1$. What kind of upper bound (in magnitude) on $R_{3}(k, k)$ comes from this inequality?
6. a) Prove, that if $c \geq 3$, then $R\left(n_{1}, n_{2}, \ldots, n_{c}\right) \leq R\left(n_{1}, n_{2}, \ldots, n_{c-2}, R\left(n_{c-1}, n_{c}\right)\right)$.
b) Prove, that if $c \geq 3$, then $R_{t}\left(n_{1}, n_{2}, \ldots, n_{c}\right) \leq R_{t}\left(n_{1}, n_{2}, \ldots, n_{c-2}, R_{t}\left(n_{c-1}, n_{c}\right)\right)$.
7. Show that for each positive integer k there is a thresshold $N(k)$, such that if $n>N(k)$ and we color the subsets of the set $[n]:=\{1,2, \ldots, n\}$ by k colors, then there are disjoint subsets X_{1} and X_{2} of $[n]$ such that the color of X_{1}, X_{2} and $X_{1} \cup X_{2}$ is are the same. Is this statement true for 3 disjoint subsets?
8. Let $H(V, E)$ be a k uniform hypergaph which has less than 2^{k-1} edges. Show that the vertices of H can be colored by red and blue in such a way that no edge is monochromatic. (Each edge have blue and red vertices.)
9. Show that if G is an n vertex graph, then $\max (\alpha(G), \omega(G)) \geq 1+\log _{4} n$.
10. (Infinite Ramsey's theorem) We color the edges of a complete graph which has infinite number of vertices by red and blue. Show that there is a monochromatic infinite clique in the graph.

Homework:

Show that the Ramsey number $R(16 ; 17) \geq 241$.

