Combinatorics and graph theory 2.

2nd practice, 21st of September, 2022.
Posets, Comparability graphs, Perfect graphs

Good to know:

Let H be a set and \preceq be a relation over its elements. Relation \preceq satisfies:
reflexivity:, for all $a \in H: a \preceq a$;
antisymmetry, if $a \preceq b, b \preceq a \longrightarrow a=b$;
transitivity, if $a \preceq b, b \preceq c \longrightarrow a \preceq c$.
A reflexive, antisimmetric and transitive relation is called a partial order, and the pair (H, \preceq) is called as a partially ordered set.

If $a \preceq b$ and $a \neq b$, then we denote this by $a \prec b$.
If $a \preceq b$ or $b \preceq a$, then we say that a and b are comparable. If neither $a \preceq b$ nor $b \preceq a$, then we say that a and b are incomparable.

From this point, Let (H, \preceq) be a partially ordered set. The subset $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subset H$ is called as a chain if $a_{1} \prec a_{2} \prec \cdots \prec a_{k}$, and it is called as an antichain, if for any i, j where $1 \leq i<j \leq k a_{i}$ and a_{j} are incomparable.

Dilworth's theorem: Let a be the size of the maximum antichain in the partially ordered set (H, \preceq). Then H can be partitioned into a chains but it cannot be partitioned into $a-1$ chains.
Dual of Dilworth's theorem: Let l be the size of the maximum chain in the partially ordered set (H, \preceq). Then H can be partitioned into l antichains but it cannot be partitioned into $l-1$ antichains.

Denote the comparability graph which corresponds to the partially ordered set (H, \preceq) by $G(H)$. The vertices of $G(H)$ are the elements of H and two vertices are adjacent if and only if the corresponding elements are comparable.
Lemma. Comparability graphs are perfect.

1. Let $a_{1}, a_{2}, \ldots, a_{n}$ be a number sequence. We create graph G over the vertex set $v_{1}, v_{2}, \ldots, v_{n}$ by the following rules: for all $n \geq i>j \geq 1$ pair v_{i} and v_{j} are adjacent if and only if $a_{i}>a_{j}$.
Show, that for any number sequence $a_{1}, a_{2}, \ldots, a_{n}$, the obtained graph is perfect.
2. (Erdős-Szekeres theorem) Let $A=a_{1}, a_{2}, \ldots, a_{m}$ be a number sequence which does not contain the same number twice. Let $m=k l+1, k, l>0$.
a. Prove that A contains a $k+1$ long increasing or an $l+1$ long decreasing subsequence.
b. Prove that this statement is not necessarily true when $m=k l$.
3. We have a lot of boxes which correspond to the vertices of graph G. Two vertices of G are adjacent if and only if neither of the corresponding two boxes can be put in the other one. Show, that G is perfect.
4. Several discs are given on the plane. We create the following graph G : The vertices of G are correspond to the discs. Two vertices are adjacent if and only if one of the two corresponding discs contains the other one. Prove that G is perfect.
5. n points are given on the plane. Prove that, either we can choose $\lfloor\sqrt{n}\rfloor$ points from the given ones such that the angle between each line which is incident with two choosen points and the x axis is at least 30 degrees or we can choose $\lfloor\sqrt{n}\rfloor$ points from the given ones such that the angle between each line which is incident with two choosen points and the x axis is at most 30 degrees.
6. 50 different intervals of the same size are given on the line. Prove that
(a) either there is a vertex which is contained in 8 intervals or there are 8 pairwise disjoint intervals.
(b) either there is a vertex which is contained in 7 intervals or there are 9 pairwise disjoint intervals.
7. Let (H, \prec) be a partially ordered set. An element x is maximal (minimmal), if there is no element $y \in H$ which satisfies $x \prec y(y \prec x)$.
a. Prove that the set of maximal (minimal) elements of H forms an antichain.
b. Assume that the set of maximal and minimal elements together form an antichain. Prove that in this case all elements of H form an antichain as well.
8. Let G be an n vertex perfect graph. Prove that $\omega(\bar{G}) \omega(G) \geq n$.
9. Let $G(V, E)$ be a graph such that $E=E_{1} \cup E_{2}, G_{1}\left(V, E_{1}\right)$ and $G_{2}\left(V, E_{2}\right)$ are perfect graphs and $|V|=65$. Prove that $\max (\alpha(G), \omega(G)) \geq 5$.
10. A triange $A B C$ and n points inside of $A B C$ are given. Prove that we can choose $\lfloor\sqrt[3]{n}\rfloor$ points from the given ones such that each line which is incident with two choosen points intersects the same two edges of $A B C$.
11. Let (H, \prec) be a partially ordered set. Let L be a maximal chain whose maximal and minimal elements are x and y, respectively. Let $A=\left\{z_{1}, \ldots, z_{a}\right\}$ be a maximal antichain in H.
Finally let

$$
H^{+}=\{h \in H \mid \exists z \in A: z \preceq h\}
$$

and

$$
H^{-}=\{h \in H \mid \exists z \in A: h \preceq z\} .
$$

a. Prove that $H^{+} \cap H^{-}=A$.
b. Prove that $H^{+} \cup H^{-}=H$.
c. Prove that $x \in H^{+}, y \in H^{-}$.

Homework

1. Give a partially ordered set (H, \prec), a maximal chain C and a maximal antichan A in (H, \prec) such that C and A are disjoint.
2. $G(V, E)$ be a graph such that $E=E_{1} \cup E_{2}, G_{1}\left(V, E_{1}\right)$ is perfect, $G_{2}\left(V, E_{2}\right)$ is bipartite and $|V|=163$. Prove that $\max (\alpha(G), \omega(G)) \geq 10$.

Hint: Start with a perfect graph theorem.

